Skip to main content

Allelopathy: Full Circle from Phytotoxicity to Mechanisms of Resistance

  • Chapter
Allelopathy in Sustainable Agriculture and Forestry

Abstract

Recently there have been important strides in decoding the role of allelopathy in ecological invasions. However, in order to truly unlock the potential of allelopathy it is necessary to understand how allelochemicals affect plants on many levels, from their influence on community dynamics to their cellular targets within an individual plant to how modifications of the structure of a chemical can alter its activity. Collaborations between ecologists, chemists, and molecular biologists are now facilitating the elucidation of some of these interactions. Perhaps one of the most recent and well-documented of these interdisciplinary studies of an allelochemical is the research that has been done on (± )-catechin, a phytotoxin produced by Centaurea maculosa. As detailed in this chapter, several ecological, chemical and molecular studies have been conducted in an attempt to clarify the role of this chemical in the invasive success of C. maculosa. Although proof for an ecological role of this phytochemical remains elusive, these studies provide a model for the type of interdisciplinary work that is required to determine the importance of allelopathy in ecology and to manipulate the allelopathic potential of certain plants for weed management in cultivated crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bais, H.P., Walker, T.S., Stermitz, F.R., Hufbauer, R.A. and Vivanco, J.M. (2002) Enantiomeric-dependent phytotoxic and antimicrobial activity of (± )-catechin. A rhizosecreted racemic mixture from spotted knapweed (Centaurea maculosa). Plant Physiol. 128, 1173–1179.

    Article  PubMed  CAS  Google Scholar 

  • Bais, H.P., Vepachedu, R., Gilroy, S., Callaway, R.M. and Vivanco, J.M. (2003a) Allelopathy and exotic plant invasion, from molecules and genes to species interactions. Science 301, 1377–1380.

    Google Scholar 

  • Bais, H.P., Walker, T.S., Kennan, A.J., Stermitz, F.R. and Vivanco, J.M. (2003b) Structure-dependent phytotoxicity of catechins and other flavonoids, flavonoid conversions by cell-free protein extracts of Centaurea maculosa (spotted knapweed) roots. J. Agric. Food Chem. 51, 897–901.

    Google Scholar 

  • Bais, H.P., Park, S.W., Weir, T.L., Callaway, R.M. and Vivanco, J.M. (2004) How plants communicate using the underground information superhighway. Trends Plant Sci. 9, 26–32.

    Article  PubMed  CAS  Google Scholar 

  • Blair, A.C., Nissan, S.J., Brunk, G.R. and Hufbauer, R.A. (2006) A lack of evidence for an ecological role of the putative allelochemical (± )-catechin in spotted knapweed invasion success. J. Chem. Ecol. 32, 2327–2331.

    Article  PubMed  CAS  Google Scholar 

  • Blum, U., Staman, K.L., Flint, L.J. and Shafer, S.R. (2000) Induction and/or selection of phenolic acid-utilizing bulk soil and rhizosphere bacteria and their influence on phenolic acid phytotoxicity. J. Chem. Ecol. 26, 2059–2078.

    Article  CAS  Google Scholar 

  • Buckhout, T.J. and Thimm, O. (2003) Insights into metabolism obtained from microarray analysis. Curr. Opin. Plant Biol. 6, 288–296.

    Article  PubMed  CAS  Google Scholar 

  • Callaway, R.M. (1997) Positive interactions in plant communities and the individualistic-continuum concept. Oecologia 112, 143–149.

    Article  Google Scholar 

  • Callaway, R.M. (2002) The detection of neighbors by plants. Trends Ecol. Evol. 17, 104–105.

    Article  Google Scholar 

  • Callaway, R.M. and Aschehoug, E.T. (2000) Invasive plants versus their new and old neighbors, a mechanism for exotic invasion. Science 290, 521–523.

    Article  PubMed  CAS  Google Scholar 

  • Callaway, R.M., Thelen, G.C., Barth, S., Ramsey, P.W. and Gannon, J.E. (2004) Soil fungi alter interactions between the invader Centaurea maculosa and North American natives. Ecology 85, 1062–1071.

    Article  Google Scholar 

  • Callaway, R.M., Ridenour, W.M., Laboski, T., Weir, T. and Vivanco, J.M. (2005) Natural selection for resistance to the allelopathic effects of invasive plants. J. Ecol. 93, 576–583.

    Article  Google Scholar 

  • Davis, E.S., Fay, P.K., Chicoine, T.K. and Lacy, C.A. (1993) Persistence of spotted knapweed (Centaurea maculosa) seed in soil. Weed Sci. 41, 57–61.

    Google Scholar 

  • Della Monache, F., Ferrari, F., Poce-Tucci, A. and Marini-Bettolo, G.B. (1972) Catechins with (–)-epi-configuration in nature. Phytochemistry 11, 2333–2335.

    Google Scholar 

  • Dixon, R.A. (2001) Natural products and plant disease resistance. Nature 411, 843–847.

    Google Scholar 

  • Du, Q., Cheng, H. and Ito, H. (2001) Separation of radioactive metabolites in cultured tea cells fed with [14C] phenylalanine using high-speed counter-current chromatography. J. Chromat. 921, 331–334.

    Article  CAS  Google Scholar 

  • Einhellig, F.A. (1995) Mechanism of action of allelochemicals in allelopathy. ACS Symp. Ser. 582, 96–116.

    Article  Google Scholar 

  • Inderjit and Duke, S.O. (2003) Ecophysiological aspects of allelopathy. Planta 217, 529–539.

    Google Scholar 

  • Jacobs, J.S. and Sheley, R.L. (1999) Competition and niche partitioning among Pseudoroegneria spicata, Hedysarum boreale, and Centaurea maculosa. Great Basin Nat. 59, 175–181.

    Google Scholar 

  • Karimdzhanov, A.K., Kusnetsova, N.N. and Dzhataev, S.A. (1997) Phenol compounds of Gossypium hirsutum cotton plants and callus fiber. Chem. Nat. Comp. 33, 250–253.

    Article  Google Scholar 

  • Kayashima, T. and Katayama, T. (2002) Oxalic acid is available as a natural antioxidant in some systems. Biochim. Biophys. Acta 1537, 1–3.

    Google Scholar 

  • Keane, R.M. and Crawley, M.J. (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol. Evol. 17, 164–170.

    Article  Google Scholar 

  • Kiderlen, A.F., Kayser, O., Ferreira, D. and Kolodziej, H. (2001) Tannins and related compounds, killing of amastigotes of Leishmania donovani and release of nitric oxide and tumor necrosis factor alpha in macrophages in vitro. Z. Naturforsch. 56, 444–454.

    CAS  Google Scholar 

  • Kim, S.J., Han, D., Ahn, B.H. and Rhee, J.S. (1997) Effect of glutathione, catechin, and epicatechin on the survival of Drosophila melanogaster under paraquat treatment. Biosci. Biotechnol. Biochem. 61, 225–229.

    Article  PubMed  CAS  Google Scholar 

  • Marschner, H. (1995) Mineral Nutrition of Higher Plants, 2nd edition. Academic Press, London.

    Google Scholar 

  • Nahrstedt, A., Proksch, P. and Conn, E.E. (1987) Dhurrin, (–)-catechin, flavanol glycosides and flavones from Chamaebatia-foliolosa. Phytochemistry 26, 1546–1546.

    Article  CAS  Google Scholar 

  • Ohno, T. (2001) Oxidation of phenolic acid derivatives by soil and its relevance to allelopathic activity. J. Environ. Qual. 30, 1631–1635.

    PubMed  CAS  Google Scholar 

  • Ohno, T. and First, P.R. (1998) Assesment of the Folin and Ciocalteu’s method for determining soil phenolic carbon. J. Environ. Qual. 27, 776–782.

    Article  CAS  Google Scholar 

  • Perry, L.G., Johnson, C., Alford, E.R., Vivanco, J.M. and Paschke, M.W. (2005a) Screening of grassland plants for restoration after spotted knapweed invasion. Restor. Ecol. 13, 725–735.

    Google Scholar 

  • Perry, L.G., Thelen, G.C., Ridenour, W.M., Weir, T.L., Callaway, R.M., Paschke, M.W. and Vivanco, J.M. (2005b) Dual role for an allelochemical, (± )-catechin from Centaurea maculosa root exudates regulates conspecific seedling establishment. J. Ecol. 93, 1126–1135.

    Google Scholar 

  • Perry, L.G., Thelen, G.C., Ridenour, W.M., Callaway, R.M., Paschke, M.W. and Vivanco, J.M. (2007) Concentrations of the allelochemical (± )-catechin in Centaurea maculosa soils. J. Chem. Ecol. 33, 2337–2344.

    Article  PubMed  CAS  Google Scholar 

  • Ridenour, W.M. and Callaway, R.M. (2001) The relative importance of allelopathy in interference, the effects of an invasive weed on a native bunchgrass. Oecologia 126, 444–450.

    Article  Google Scholar 

  • Schirman, R. (1981) Seed production and spring seedling establishment of diffuse and spotted knapweed. J. Range Manage. 34, 45–47.

    Article  Google Scholar 

  • Schmidt, S.K. and Ley, R.E. (1999) Microbial competition and soil structure limit the expression of allelochemicals in nature. In: Inderjit, K.M.M. Dakshini and C.L. Foy (Eds.), Principles and Practices in Plant Ecology: Allelochemical Interactions. CRC Press, Boca Raton, FL, pp. 339–351.

    Google Scholar 

  • Sicker, D., Schneider, B., Hennig, L., Knop, M. and Schulz, M. (2001) Glycoside carbamates from benzoxazolin-2(3H)-one detoxification in extracts and exudates of corn roots. Phytochemistry 58, 819–825.

    Article  PubMed  CAS  Google Scholar 

  • Steeghs, M., Bais, H.P., de Gouw, J., Goldan, P., Kuster, W., Northway, M., Fall, R. and Vivanco, J.M. (2004) Proton-transfer-reaction mass spectrometry as a new tool for real time analysis of root-secreted volatile organic compounds in Arabidopsis. Plant Physiol. 135, 47–58.

    Google Scholar 

  • Stermitz, F.R., Bais, H.P., Foderaro, T.A. and Vivanco, J.M. (2003) 7,8-Benzoflavone, a phytotoxin from root exudates of invasive Russian knapweed. Phytochemistry 64, 493–497.

    Article  PubMed  CAS  Google Scholar 

  • Sticher, L., Mauch-Mani, B. and Metraux, J.P. (1997) Systemic acquired resistance. Annu. Rev. Phytopathol. 35, 235–270.

    Article  PubMed  CAS  Google Scholar 

  • Story, J.M., Smith, L. and Good, W.R. (2001) Relationship among growth attributes of spotted knapweed (Centaurea maculosa) in western Montana. Weed Technol. 15, 750–761.

    Article  Google Scholar 

  • Veluri, R., Weir, T.L., Bais, H.P., Stermitz, F.R. and Vivanco, J.M. (2004) Phytotoxic and antimicrobial activities of catechin derivatives. J. Agric. Food Chem. 52, 1077–1082.

    Article  PubMed  CAS  Google Scholar 

  • Vivanco, J.M., Bais, H.P., Stermitz, F.R., Thelen, G.C. and Callaway, R.M. (2004) Biogeographical variation in community response to root allelochemistry, novel weapons and exotic invasion. Ecol. Lett. 7, 285–292.

    Article  Google Scholar 

  • Walker, T.S., Bais, H.P., Grotewold, E. and Vivanco, J.M. (2003) Root exudation and rhizosphere biology. Plant Physiol. 132, 44–51.

    Article  PubMed  CAS  Google Scholar 

  • Walker, T.S., Bais, H.P., Deziel, E., Schweizer, H.P., Rahme, L.G., Fall, R. and Vivanco, J.M. (2004) Pseudomonas aeruginosa-plant root interactions. Pathogenicity, biofilm formation, and root exudation. Plant Physiol. 134, 320–331.

    Article  PubMed  CAS  Google Scholar 

  • Weiland, I., Kluge, M., Schneider, B., Schmidt, B., Sicker, D. and Schulz, M. (1998) 3-β -D-Glucopyranosyl-benzoxazolin-2(3H)-one, a detoxification product of benzoxazolin-one in oat roots. Phytochemistry 49, 719–722.

    Article  Google Scholar 

  • Weiland, I., Freibe, A., Kluge, M., Sicker, D. and Schulz, M. (1999) Detoxification of benzoxazolinone in higher plants. In: F.A. Macias, J.M.G. Molinillo, J.C.G. Galindo and H.G. Cutler (Eds.), Recent Advances in Allelopathy. A Science for the Future, Vol. 1. S.A.I. Universidad de Cadiz, Madrid, Spain, pp. 47–56.

    Google Scholar 

  • Weir, T.L., Bais, H.P. and Vivanco, J.M. (2003) Intraspecific and interspecific interactions mediated by a phytotoxin, (–)-catechin, secreted by the roots of Centaurea maculosa (spotted knapweed). J. Chem. Ecol. 29, 2397–2412.

    Article  PubMed  CAS  Google Scholar 

  • Weir, T.L., Park, S.W. and Vivanco, J.M. (2004) Biochemical and physiological mechanisms mediated by allelochemicals. Curr. Opin. Plant Biol. 7, 492–499.

    Article  CAS  Google Scholar 

  • Weir, T.L., Bais, H.P., Stermitz, F.R. and Vivanco, J.M. (2006) Oxalate contributes to the resistance of Gaillardia grandiflora and Lupinus sericeus to a phytotoxin produced by Centaurea maculosa. Planta 223, 785–795.

    Article  PubMed  CAS  Google Scholar 

  • Weston, L.A. (1996) Utilization of allelopathy for weed management in agroecosystems. Agron. J. 88, 860–866.

    Google Scholar 

  • Whitson, T.D., Burrill, L.C., Dewey, S.A., Cudney, D.W., Nelson, B.E., Lee, R.D. and Parker, R. (1999) Weeds of the West. Pioneer of Jackson Hole, Jackson, WY.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Weir, T.L., Vivanco, J.M. (2008). Allelopathy: Full Circle from Phytotoxicity to Mechanisms of Resistance. In: Zeng, R.S., Mallik, A.U., Luo, S.M. (eds) Allelopathy in Sustainable Agriculture and Forestry. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77337-7_5

Download citation

Publish with us

Policies and ethics