This chapter presents a brief coverage of a range of common plant allelochemical groups, and includes discussion of their structures, chemistry, distribution, ecology, bioactivity, biosynthesis, allelopathy, and mode of action where known.


Phenolic Acid Root Exudate Hydroxamic Acid Allelopathic Effect Allelopathic Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angelini, L.G., Carpanese, G., Cioni, P.L., Morelli, I., Macchia, M. and Flamini, G. (2003) Essential oils from Mediterranean Lamiaceae as weed germination inhibitors. J. Agric. Food Chem. 51, 6158–6164.PubMedCrossRefGoogle Scholar
  2. Angus, J.F., Gardner, P.A., Kirkegaard, J.A. and Desmarchelier, J.M. (1994) Biofumigation: isothiocyanates released fromBrassica roots inhibit growth of the take-all fungus. Plant Soil 162, 107–112.CrossRefGoogle Scholar
  3. Avers, C.J. and Goodwin, R.H. (1956) Studies on roots IV. Effects of coumarin and scopoletin on the standard root growth pattern of Phleum pratense. Amer. J. Bot. 43, 612–620.CrossRefGoogle Scholar
  4. Bais, H.P., Loyola-Vargas, V.M., Flores, H.E. and Vivanco, J.M. (2001) Root-specific metabolism: the biology and biochemistry of underground organs. In Vitro Cell. Dev. Biol. Plant. 37, 730–741.CrossRefGoogle Scholar
  5. Bais, H.P., Vepachedu, R., Gilroy, S., Callaway, R.M. and Vivanco, J.M. (2003a) Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301, 1377–1338.Google Scholar
  6. Bais, H.P., Walker, T.S., Kennan, A.J., Stermitz, F.R. and Vivanco, J.M. (2003b) Structure-dependent phytotoxicity of catechins and other flavonoids: Flavonoid conversions by cell-free protein extracts of Centaurea maculosa (Spotted knapweed) roots. J. Agric. Food Chem. 51, 897–901.Google Scholar
  7. Barnes, J.P. and Putnam, A.R. (1987) Role of benzoxazinones in allelopathy by rye (Secale cereale L.). J. Chem. Ecol. 13, 889–906.CrossRefGoogle Scholar
  8. Batish, D.R., Singh, H.P., Kohli, R.K., Saxena, D.B. and Kaur, S. (2002) Allelopathic effects of parthenin against two weedy species, Avena fatua, andBidens pilosa. Environ. Exper. Bot. 47, 149–155.CrossRefGoogle Scholar
  9. Belz, R.G. and Hurle, K. (2004) A novel laboratory screening bioassay for crop seedling allelopathy. J. Chem. Ecol. 30, 175–198.PubMedCrossRefGoogle Scholar
  10. Bialy, Z., Oleszek, W., Lewis, J. and Fenwick, G.R. (1990) Allelopathic potential of glucosinolates (mustard oil glycosides) and their degradation products against wheat. Plant Soil 129, 277–281.Google Scholar
  11. Blum, M.S. (2004a) The importance of alkaloid functions. In: Macias, F.A., J.C.G. Galindo, J.M.G. Molinillo and H.G. Cutler (Eds.), Allelopathy: Chemistry and Mode of Action of Allelochemicals. CRC Press, Boca Raton, pp. 163–181.Google Scholar
  12. Blum, U. (2004b) Fate of phenolic allelochemicals in soils – the role of soil and rhizosphere microorganisms. In: Macias, F.A., J.C.G. Galindo, J.M.G. Molinillo and H.G. Cutler (Eds.), Allelopathy: Chemistry and Mode of Action of Allelochemicals. CRC Press, Boca Raton, pp. 57–76.Google Scholar
  13. Brown, P.D. and Morra, M.J. (1995) Glucosinolate-containing plant tissues as bioherbicides. J. Agric. Food Chem. 43, 3070–3074.CrossRefGoogle Scholar
  14. Brown, P.D. and Morra, M.J. (1996) Hydrolysis products of glucosinolates inBrassica napus tissues as inhibitors of seed germination. Plant Soil. 181, 307–316.CrossRefGoogle Scholar
  15. Brown, P.D. and Morra, M.J. (1997) Control of soil-borne plant pests using glucosinolate-containing plants. In: L.D. Sparks (Ed.), Advances in Agronomy. Vol. 61, Academic Press, New York, pp. 167–231.Google Scholar
  16. Burgos, N.R., Talbert, R.E. and Mattice, J.D. (1999) Cultivar and age differences in the production of allelochemicals by Secale cereale. Weed Sci. 47, 481–485.Google Scholar
  17. Cambier, V., Hance, T. and de Hoffmann, E. (2000) Variation of DIMBOA and related compounds content in relation to the age and plant organ in maize. Phytochemistry 53, 223–229.PubMedCrossRefGoogle Scholar
  18. Charron, C.G. and Sams, C.E. (1999) Inhibition of Pythium ultimum and Rhizoctonia solani by shredded leaves of Brassica species. J. Amer. Soc. Hortic. Sci. 124, 462–467.Google Scholar
  19. Chaves, N., Sosa, T. and Escudero, J.C. (2001) Plant growth inhibiting flavonoids in exudate of Cistus ladanifer and in associated soils. J. Chem. Ecol. 27, 623–631.PubMedCrossRefGoogle Scholar
  20. Chen, S. and Andreasson, E. (2001) Update on glucosinolate metabolism and transport. Plant Physiol. Biochem. 39, 743–758.CrossRefGoogle Scholar
  21. Choesin, D.V. and Boerner, R.E.J. (1991) Allyl isothiocyanate release and the allelopathic potential of Brassica napus (Brassicaceae). Amer. J. Bot. 78, 1083–1090.CrossRefGoogle Scholar
  22. Copaja, S.V., Nicol, D. and Wratten, S.D. (1999) Accumulation of hydroxamic acids during wheat germination. Phytochemistry 50, 17–24.CrossRefGoogle Scholar
  23. Dalton, B.R. (1999). The occurrence and behavior of plant phenolic acids in soil environments and their potential involvement in allelochemical interference interactions: methodological limitations in establishing conclusive proof of allelopathy. In: Inderjit, K.M.M. Dakshini and C.L. Foy (Eds.), Principles and Practices in Plant Ecology: Allelochemical interactions. CRC Press, Boca Raton, pp. 57–74.Google Scholar
  24. Davis, E.F. (1928) The toxic principle of Juglans nigra as identified with synthetic juglone, and its toxic effects on tomato and alfalfa plants. Amer. J. Bot. 15, 620.Google Scholar
  25. Dayan, F.E., Kagan, I.A. and Rimando, A.M. (2003) Elucidation of the biosynthetic pathway of the allelochemical sorgoleone using retrobiosynthetic NMR analysis. J. Biol. Chem. 278, 28607–28611.PubMedCrossRefGoogle Scholar
  26. Desai, S.R., Kumar, P. and Chilton, W.S. (1996) Indole is an intermediate in the biosynthesis of cyclic hydroxamic acids in maize. Chem. Commun. 1321.Google Scholar
  27. Drobnica, L., Kristian, P. and Augustin, J. (1977) The chemistry of the -NCS group. In: Patai S. (Ed.), The Chemistry of Cyanates and Their Thio Derivatives. Part 2. Wiley, New York.Google Scholar
  28. Duke, S.O. and Oliva, A. (2004) Mode of action of phytotoxic terpenoids. In: Macias, F.A., J.C.G. Galindo, J.M.G. Molinillo and H.G. Cutler (Eds.), Allelopathy: Chemistry and Mode of Action of Allelochemicals. CRC Press, Boca Raton, pp. 201–216.Google Scholar
  29. Duroux, L., Delmotte, F.M., Lancelin, J.M., Keravis, G. and Jay, A.C. (1998) Insight into naphthoquinone metabolism: beta-glucosidase-catalyzed hydrolysis of hydrojuglone beta-D-glucopyranoside. Biochem. J. 333, 275–283.PubMedGoogle Scholar
  30. Einhellig, F.A., Schon, M.K. and Rasmussen, J.A. (1982) Synergistic effects of four cinnamic acid compounds on grain sorghum. J. Plant Growth Regul. 1, 251–258.Google Scholar
  31. Einhellig, F.A. (1996) Interactions involving allelopathy in cropping systems. Agron. J. 88, 886–893.Google Scholar
  32. Einhellig, F.A. (2004) Mode of allelochemical action of phenolic compounds. In: Macias, F.A., J.C.G. Galindo, J.M.G. Molinillo and H.G. Cutler (Eds.), Allelopathy: Chemistry and Mode of Action of Allelochemicals. CRC Press, Boca Raton, pp. 217–238.Google Scholar
  33. Erdie, L., Szabo-Nagy, A. and Laszlavik, M. (1994) Effects of tannin and phenolics on H+ -ATPase activity in plant plasma membrane. J. Plant Physiol. 144, 49.Google Scholar
  34. Fahey, J.W., Zalcmann, A.T. and Talalay, P. (2001)The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56, 5–51.PubMedCrossRefGoogle Scholar
  35. Fate, G., Chang, M. and Lynn, D.G. (1990) Control of germination in Striga asiatica: chemistry of spatial definition. Plant Physiol. 93, 201.PubMedGoogle Scholar
  36. Feucht, W. and Treutter, D. (1999) The role of flavan-3-ols and proanthocyanidins in plant defense. In: Inderjit, K.M.M. Dakshini, and C.L. Foy (Eds.), Principles and Practices in Plant Ecology: Allelochemical Interactions. CRC Press, Boca Raton, pp. 307–338.Google Scholar
  37. Fischer, N.H. (1986) The function of mono and sesquiterpenes as plant germination and growth regulators. In: Putnam A.R. and C.S. Tang (Eds.), The Science of Allelopathy. Wiley-Interscience, New York, pp. 203–218.Google Scholar
  38. Fischer, N.H., Weidenhamer, J.D. and Bradow, J.M. (1989) Inhibition and promotion of germination by several sesquiterpenes. J. Chem. Ecol. 15, 1785–1793.CrossRefGoogle Scholar
  39. Fischer, N.H. (1991) Plant terpenoids as allelopathic agents. In: Harborne J.B. and F.A. Tomas-Barberan (Eds.), Ecological Chemistry and Biochemistry of Plant Terpenoids. Clarendon Press, Oxford, pp. 377–398.Google Scholar
  40. Friebe, A., Roth, U., Kuck, P., Schnabl, H. and Schulz, M. (1997) Effects of 2,4-dihydroxy-1,4-benzoxazin-3-ones on the activity of plasma membrane H+-ATPase. Phytochemistry 44, 979–983.CrossRefGoogle Scholar
  41. Friebe, A. (2001) Role of benzoxazinones in cereals. J. Crop Prod. 4, 379–400.CrossRefGoogle Scholar
  42. Gagliardo, R.W. and Chilton, W.S. (1992) Soil transformation of 2(3H)-benzoxazolone of rye into phytotoxic 2-amino-3H-phenoxazin-3-one. J. Chem. Ecol. 18, 1683–1690.CrossRefGoogle Scholar
  43. Hagin, R.D. (1989) Isolation and identification of 5-hydroxyindole-3-acetic acid and 5-hydroxytryptophan, major allelopathic aglycons in quackgrass (Agropyron repens L. Beauv.). J. Agric. Food Chem. 37, 1143–1149.CrossRefGoogle Scholar
  44. Harborne, J.B. (1991) Recent advances in the ecological chemistry of plant terpenoids. In: Harborne, J.B. and F.A. Tomas-Barberan (Eds.), Ecological Chemistry and Biochemistry of Plant Terpenoids. Phytochemical Society of Europe, Proceedings Vol. 31. Clarendon Press, Oxford, pp. 399–426.Google Scholar
  45. Hashimoto, Y. and Shudo, K. (1996) Chemistry of biologically active benzoxazinoids. Phytochemistry 43, 551–559.PubMedCrossRefGoogle Scholar
  46. Haughn, G.W., Davin, L., Giblin, M. and Underhill, E.W. (1991) Biochemical genetics of plant secondary metabolites in Arabidopsis thaliana. Plant Physiol. 97, 217–226.PubMedGoogle Scholar
  47. Hejl, A.M., Einhellig, F.A. and Rasmussen, J.A. (1993) Effects of juglone on growth, photosynthesis, and respiration. J. Chem. Ecol. 19, 559–568.CrossRefGoogle Scholar
  48. Hejl, A.M. and Koster, K.L. (2004) Juglone disrupts root plasma membrane H+-ATPase activity and impairs water uptake, root respiration, and growth in soybean (Glycine max) and corn (Zea mays). J. Chem. Ecol. 30, 453–471.PubMedCrossRefGoogle Scholar
  49. Hogge, L.R., Reed, D.W., Underhill, E.W. and Haughn, G.W. (1988) HPLC separation of glucosinolates from leaves and seeds of Arabidopsis thaliana and their identification using thermospray liquid chromatography/mass spectrometry. J. Chromatogr. 26, 551–556.Google Scholar
  50. Hoult, A.H.C. and Lovett, J.V. (1993) Biologically active secondary metabolites of barley. III. A method for identification and quantification of hordenine and gramine in barley by high-performance liquid chromatography. J. Chem. Ecol. 19, 2245–2254.CrossRefGoogle Scholar
  51. Huang, Z., Haig, T., Wu, H., An, M. and Pratley, J. (2003) Correlation between phytotoxicity on annual ryegrass (Lolium rigidum) and production dynamics of allelochemicals within root exudates of an allelopathic wheat. J. Chem. Ecol. 29, 2263–2279.PubMedCrossRefGoogle Scholar
  52. Inderjit and Dakshini, K.M.M. (1995) Quercetin and quercitrin from Pluchea lanceolata and their effect on growth of asparagus bean. In: Inderjit, K.M.M. Dakshini and F.A. Einhellig (Eds.), Allelopathy: Organisms, Processes, and Applications. Washington. ACS Symposium Series 582, pp. 86–93.Google Scholar
  53. Inderjit (1996) Plant phenolics in allelopathy. Bot. Rev. 62, 186–202.Google Scholar
  54. Inderjit, Cheng, H.H. and Nishimura, H. (1999) Plant phenolics and terpenoids: transformation, degradation, and potential for allelopathic interactions. In: Inderjit, K.M.M. Dakshini and C.L. Foy (Eds.), Principles and Practices in Plant Ecology: Allelochemical Interactions. CRC Press, Boca Raton, pp. 255–266.Google Scholar
  55. Inoguchi, M., Ogawa, S., Furukawa, S. and Kondo, H. (2003) Production of an allelopathic polyacetylene in hairy root cultures of goldenrod (Solidago altissima L.). Biosci. Biotechnol. Biochem. 67, 863–868.PubMedCrossRefGoogle Scholar
  56. Inoue, M., Nishimura, H., Li, H.H. and Mizutani, J. (1992) Allelochemicals from Polygonum sachalinense Fr. Schm. (Polygonaceae). J. Chem. Ecol. 18, 1833.CrossRefGoogle Scholar
  57. Kagan, I.A., Rimando, A.M. and Dayan, F.E. (2003) Chromatographic separation and in vitro activity of sorgoleone congeners from the roots of Sorghum bicolor. J. Agric. Food Chem. 51, 7589–7595.PubMedCrossRefGoogle Scholar
  58. Kamo, T., Hiradate, S. and Fujii, Y. (2003) First isolation of cyanamide as a possible allelochemical from hairy vetch (Vicia villosa). J. Chem. Ecol. 29, 275–283.PubMedCrossRefGoogle Scholar
  59. Kato-Noguchi, H. (2002a) Isolation of allelopathic substances in rice seedlings. Plant Prod. Sci. 5, 8–10.Google Scholar
  60. Kato-Noguchi, H., Ino, T., Sata, N. and Yamamura, S. (2002b) Isolation and identification of potent allelopathic substance in rice root exudates. Physiol. Plant. 115, 401–405.Google Scholar
  61. Kato-Noguchi, H. and Ino, T. (2003a) Rice seedlings release allelopathic substances. Biol. Plant. 46, 157–159.Google Scholar
  62. Kato-Noguchi, H., Ino, T. and Ichii, M. (2003b) Changes in release of momilactone B into the environment from rice throughout its life cycle. Funct. Plant Biol. 30, 995–997.Google Scholar
  63. Kato-Noguchi, H. (2003c) Allelopathic substances in Pueraria thunbergiana. Phytochemistry 63, 577–580.Google Scholar
  64. Kato-Noguchi, H. (2003d) Isolation and identification of an allelopathic substance in Pisum sativum. Phytochemistry 62, 1141–1144.Google Scholar
  65. Kato-Noguchi, H. (2004) Allelopathic substance in rice root exudates: rediscovery of momilactone B as an allelochemical. J. Plant Physiol. 161, 271–276.PubMedCrossRefGoogle Scholar
  66. Kim, Y.S. and Kil, B.-S. (2001) Allelopathic effects of some volatile substances from the tomato plant. J. Crop Prod. 4, 313–321.CrossRefGoogle Scholar
  67. Kobayashi, A., Morimoto, S., Shibata, Y., Yamashita, K. and Numata, M. (1980) C-10 polyacetylenes as allelopathic substances in dominants in early stages of secondary succession. J. Chem. Ecol. 6, 119–131.CrossRefGoogle Scholar
  68. Korableva, N.P., Morozova, E.V., Popova, L.V. and Metlinskii, L.V. (1969) Specific growth inhibitors in connection with dormancy and immunity in plants. Dok. Akad. Nauk SSSR. 184, 979–981.Google Scholar
  69. Krishnan, G., Holshauser, D.L. and Nissen, S.J. (1998) Weed control in soybean (Glycine max) with green manure crops. Weed Technol. 12, 97–102.Google Scholar
  70. Lam, J., Christensen, L.P., Farch, T. and Thomasen, T. (1992) Acetylenes from the roots of Solidago species. Phytochemistry 31, 4159–4161.CrossRefGoogle Scholar
  71. Lee, K.C. and Campbell, R.W. (1969) Nature and occurrence of juglone in Juglans nigra L. Hortic. Sci. 4, 297–298.Google Scholar
  72. Lehman, M.E. and Blum, U. (1999) Evaluation of ferulic acid uptake as a measurement of allelochemical dose: effective concentration. J. Chem. Ecol. 25, 2585–2600.CrossRefGoogle Scholar
  73. Levitt, J. and Lovett, J.V. (1984) Activity of allelochemicals of Datura stramonium L. (thornapple) in contrasting soil types. Plant Soil 79, 181–189.CrossRefGoogle Scholar
  74. Liu, D.L. and Lovett, J.V. (1993a) Biologically active secondary metabolites of barley. I. Developing techniques and assessing allelopathy in barley. J. Chem. Ecol. 19, 2217–2230.CrossRefGoogle Scholar
  75. Liu, D.L., and Lovett, J.V. (1993b) Biologically active secondary metabolites of barley. II. Phytotoxicity of barley allelochemicals. J. Chem. Ecol. 19, 2231–2244.CrossRefGoogle Scholar
  76. Lovett, J.V., Levitt, J., Duffield, A.M. and Smith, N.G. (1981) Allelopathic potential of Datura stramonium L. (thornapple). Weed Res. 21, 165–170.CrossRefGoogle Scholar
  77. Lovett, J.V., Ryuntyu, M.Y. and Liu, D.L. (1989) Allelopathy, chemical communication, and plant defense. J. Chem. Ecol. 15, 1193–1202.CrossRefGoogle Scholar
  78. Lovett, J.V., Hoult, A.H.C. and Christen, O. (1994) Biologically active secondary metabolites of barley. IV. Hordenine production by different barley lines. J. Chem. Ecol. 20, 1945–1954.CrossRefGoogle Scholar
  79. Lovett, J.V. and Hoult, A.H.C. (1995) Allelopathy and self-defense in barley. In: Inderjit, K.M.M. Dakshini and F.A. Einhellig (Eds.), Allelopathy: Organisms, Processes, and Applications. ACS Symposium Series 582, Washington, pp. 172–183.Google Scholar
  80. Macias, F.A. (1995) Allelopathy in the search for natural herbicide models. In: Inderjit, K.M.M. Dakshini and F.A. Einhellig (Eds.), Allelopathy: Organisms, Processes, and Applications. ACS Symposium Series 582, Washington, pp. 310–329.Google Scholar
  81. Massey, A.B. (1925) Antagonism of walnuts. Phytopathology 15, 773.Google Scholar
  82. Matsuo, A., Nadaya, K., Nakayama, M. and Hayashi, S. (1981) Plant growth inhibitors isolated from the Liverwort, Plagiochila ovalifolia. Nippon Kagaku Kaishi pp. 665–670.Google Scholar
  83. Mizutani, J. (1999) Selected allelochemicals. Crit. Rev. Plant Sci. 18, 653–671.CrossRefGoogle Scholar
  84. Moreland, D.E. and Novitsky, W.P. (1987) Effects of phenolic acids, coumarins, and flavanoids on isolated chloroplasts and mitochondria. ACS Symposium Series 330, pp. 247–274.CrossRefGoogle Scholar
  85. Mucciarelli, M., Camusso, W., Bertea, C.M., Bossi, S. and Maffei, M. (2001) Effect of (+)-pulegone and other oil components of Mentha x piperita on cucumber respiration. Phytochemistry 57, 91–98.PubMedCrossRefGoogle Scholar
  86. Nakano, H., Nakajima, E., Hiradate, S., Fujii, Y., Yamada, K., Shigemori, H. and Hasegawa, K. (2004) Growth inhibitory alkaloids from mesquite (Prosopis juliflora (Sw.) DC.) leaves. Phytochemistry 65, 587–591.PubMedCrossRefGoogle Scholar
  87. Netzley, D.H. and Butler, L.G. (1986) Roots of sorghum exude hydrophobic droplets containing biologically active components. Crop Sci. 26, 776–778.Google Scholar
  88. Niemeyer, H.M. (1988) Hydroxamic acids (4-hydroxy-1,4-benzoxazine-3-ones), defense chemicals in the Gramineae. Phytochemistry 27, 3349–3358.CrossRefGoogle Scholar
  89. Niemeyer, H.M. and Perez, F.J. (1995) Potential of hydroxamic acids in the control of cereal pests, diseases, and weeds. In: Inderjit, K.M.M. Dakshini and F.A. Einhellig (Eds.), Allelopathy: Organisms, Processes, and Applications. ACS Symposium Series 582, Washington, pp. 260–269.Google Scholar
  90. Nishimura, H., Hiramoto, S., Mizutani, J., Noma, Y., Furusaki, A. and Matsumoto, T. (1983) Structure and biological activity of bottrospicatol, a novel monoterpene produced by microbial transformation of (-)-cis-carveol. Agric. Biol. Chem. 47, 2697.Google Scholar
  91. Oleszek, W. (1987) Allelopathic effects of volatiles from some Cruciferae species on lettuce, barnyard grass and wheat growth. Plant Soil. 102, 271–273.CrossRefGoogle Scholar
  92. Olofsdotter, M., Rebulanan, M., Madrid, A., Dali, W., Navarez, D. and Olk, D.C. (2002) Why phenolic acids are unlikely primary allelochemicals in rice. J. Chem. Ecol. 28, 229–242.Google Scholar
  93. Overland, L. (1966) The role of allelopathic substances in the smother crop barley. Amer. J. Bot. 53, 423–432.CrossRefGoogle Scholar
  94. Perez, F.J. (1990) Allelopathic effect of hydroxamic acids from cereals on Avena sativa and Avena fatua. Phytochemistry 29, 773–776.CrossRefGoogle Scholar
  95. Petersen, J., Belz, R., Walker, F. and Hurle, K. (2001) Weed suppression by release of isothiocyanates from turnip-rape mulch. Agron. J. 93, 37–43.Google Scholar
  96. Pheto, M. (1993) Occurrence of cyclic hydroxamic acids in the tissues of barnyard grass (Echinochloa cruz-galli /L./P.B.), and their role in allelopathy. Acta Agron. Hungarica 42, 197–202.Google Scholar
  97. Podbielkowski, M., Waleza, M., Dobrzynska, K. and Zobel, A.M. (1996) Reaction of coumarin and its derivatives on ultrastructure ATP-ases and acid phosphatases in meristematic cells of Allium cepa roots. Int. J. Pharm. 34, 105.CrossRefGoogle Scholar
  98. Reynolds, T. (1987) Comparative effects of alicyclic compounds and quinones on inhibition of lettuce fruit germination. Ann. Bot. 60, 215–223.Google Scholar
  99. Rietveld, W.J. (1983) Allelopathic effects of juglone on germination and growth of several herbaceous and woody species. J. Chem. Ecol. 9, 1119–1133.CrossRefGoogle Scholar
  100. Rimando, A.M., Olofsdotter, M., Dayan, F.E. and Duke, S.O. (2001) Searching for rice allelochemicals: an example of bioassay-guided isolation. Agron. J. 93, 16–20.Google Scholar
  101. Roberts, M.F. and Wink, M. (1998) Introduction (Chapt. 1). In: Alkaloids: Biochemistry, Ecology, and Medicinal Applications. Plenum Press, New York, pp. 1–7.Google Scholar
  102. Romagni, J.G., Duke, S.O. and Dayan, F.E. (2000) Inhibition of plant asparagine synthetase by monoterpene cineoles. Plant Physiol. 123, 725–732.PubMedCrossRefGoogle Scholar
  103. Rosa, E.A.S., Heaney, R.K., Fenwick, G.R. and Portas, C.A.M. (1997) Glucosinolates in crop plants. Hort. Rev. 19, 99–215.Google Scholar
  104. Sardari, S., Nishibe, S. and Daneshtalab, M. (2000) Coumarins, the bioactive structures with antifungal property. In: Atta-ur-Rahman (Ed.), Studies in Natural Products Chemistry. Vol. 23. Elsevier Science, Amsterdam, pp. 335–393.Google Scholar
  105. Schulz, M., Friebe, A., Kuck, P., Seipel, M. and Schnabl, H. (1994) Allelopathic effects of living quackgrass (Agropyron repens L.). Identification of inhibitory allelochemicals exuded from rhizome borne roots. Appl. Bot. 68, 195–200.Google Scholar
  106. Sicker, D. and Schulz, M. (2002) Benzoxazinones in plants: occurrence, synthetic access, and biological activity. In: Atta-ur-Rahman (Ed.), Bioactive Natural Products. (Part H), Vol. 27. Elsevier Science, Amsterdam, pp. 185–232.Google Scholar
  107. Sicker, D., Hao, H. and Schulz, M. (2004) Benzoxazolin-2(3H)-ones – generation, effects and detoxification in the competition among plants. In: Macias, F.A., J.C.G. Galindo, J.M.G. Molinillo and H.G. Cutler (Eds.), Allelopathy: Chemistry and Mode of Action of Allelochemicals. CRC Press, Boca Raton, pp. 77–102.Google Scholar
  108. Spencer, G.F., Wolf, R.B. and Weisleder, D. (1984) Germination and growth inhibitory sesquiterpenes from Iva axillaris seeds. J. Nat. Prod. 47, 730–732.CrossRefGoogle Scholar
  109. Stevens, K.L. (1986) Polyacetylenes as allelochemicals. In: Putnam A.R. and C.S. Tang (Eds.), The Science of Allelopathy. Wiley, New York, pp. 219–228.Google Scholar
  110. Towers, G.H.N. and Wat, C.K. (1978) Biological activity of polyacetylenes. Rev. Latinoam. Quim. 9, 162–170.Google Scholar
  111. Tsao, R. and Eto, M. (1996) Light-activated plant growth inhibitory activity of cis-dehydromatricaria ester, rose bengal and fluoren-9-one on lettuce (Lactuca sativa L.). Chemosphere 32, 1307–1317.CrossRefGoogle Scholar
  112. Tsao, R., Yu, Q., Friesen, I., Potter, J. and Chiba, M. (2000) Factors affecting the dissolution and degradation of oriental mustard-derived sinigrin and allyl isothiocyanate in aqueous media. J. Agric. Food Chem. 48, 1898–1902.PubMedCrossRefGoogle Scholar
  113. Vaughn, S.F. and Spencer, G.F. (1993) Volatile monoterpenes as potential parent structures for new herbicides. Weed Sci. 41, 114–119.Google Scholar
  114. Virtanan, A.I. and Hietala, P.K. (1960) Precursors of benzoxazolinone in rye plants: I. Precursor II, the aglucone. Acta Chem. Scand. 14, 499–502.CrossRefGoogle Scholar
  115. Vokou, D., Douvli, P., Blionis, G.J. and Halley, J.M. (2003) Effects of monoterpenoids, acting alone or in pairs, on seed germination and subsequent seedling growth. J. Chem. Ecol. 29, 2281–2301.PubMedCrossRefGoogle Scholar
  116. Warton, B., Matthiessen, J.N. and Shakelton, M.A. (2001) Glucosinolate content and isothiocyanate evolution – two measures of the biofumigation potential of plants. J. Agric. Food Chem. 49, 5244–5250.PubMedCrossRefGoogle Scholar
  117. Weir, T.L., Bais, H.P. and Vivanco, J.M. (2003) Intraspecific and interspecific interactions mediated by a phytotoxin, (-)-catechin, secreted by the roots of Centaurea maculosa (Spotted knapweed). J. Chem. Ecol. 29, 2397–2412.PubMedCrossRefGoogle Scholar
  118. Weston, L.A. and Czarnota, M.A. (2001) Activity and persistence of sorgoleone, a long-chain hydroquinone produced by Sorghum bicolor. J. Crop Prod. 4, 363–377.CrossRefGoogle Scholar
  119. Wieland, I., Kluge, M., Schneider, B., Schmidt, J., Sicker, D. and Schultz, M. (1998) 3β -D-Glucopyranosyl- benzoxazolin-2(3H)-one -a detoxification product of benzoxazolin-2(3H)-one in oat roots. Phytochemistry 49, 719–722.Google Scholar
  120. Wilkes, M.A., Marshall, D.R. and Copeland, L. (1999) Hydroxamic acids in cereal roots inhibit the growth of take-all. Soil Biol. Biochem. 31, 1831–1836.CrossRefGoogle Scholar
  121. Wink, M. (1983) Inhibition of seed germination by quinolizidine alkaloids. Aspects of allelopathy in Lupinus albus L. Planta 158, 365–368.CrossRefGoogle Scholar
  122. Wink, M. (1985) Chemische verteidigung der lupinen: Zur biologischen bedeutung der chinolizidinalkaloide. Plant Syst. Evol. 150, 65–81.CrossRefGoogle Scholar
  123. Wink, M. and Latz-Bruning, B. (1995) Allelopathic properties of alkaloids and other natural products: possible modes of action. In: Inderjit, K.M.M. Dakshini, and F.A. Einhellig (Eds.), Allelopathy: Organisms, Processes, and Applications. Amer. Chem. Soc. Symposium Series 582, Washington, pp. 117–126.Google Scholar
  124. Wink, M. (1998) Chemical ecology of alkaloids. In: Roberts M.F. and M. Wink (Eds.), Alkaloids: Biochemistry, Ecology, and Medicinal Applications. Plenum Press, New York, pp. 265–300.Google Scholar
  125. Wink, M. (2004) Allelochemical properties of Quinolizidine Alkaloids. In: Macias, F.A., J.C.G. Galindo, J.M.G. Molinillo and H.G. Cutler (Eds.), Allelopathy: Chemistry and Mode of Action of Allelochemicals. CRC Press, Boca Raton, pp. 183–200.Google Scholar
  126. Wolf, R.B., Spencer, G.F. and Kwolek, W.F. (1984) Inhibition of velvetleaf (Abutilon theophrasti) germination and growth by benzyl isothiocyanate, a natural toxicant. Weed Sci. 32, 612–615.Google Scholar
  127. Wu, H., Haig, T., Pratley, J., Lemerle, D. and An, M. (2000) Distribution and exudation of allelochemicals in wheat Triticum aestivum. J. Chem. Ecol. 26, 2141–2154.CrossRefGoogle Scholar
  128. Wu, H., Haig, T., Pratley, J., Lemerle, D. and An, M. (2001a) Allelochemicals in wheat (Triticum aestivum L.): production and exudation of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one. J. Chem. Ecol. 27, 1691–1700.Google Scholar
  129. Wu, H., Pratley, J., Lemerle, D. and Haig, T. (2001b) Allelopathy in wheat (Triticum aestivum). Ann. Appl. Biol. 139, 1–9.Google Scholar
  130. Wu, H., Haig, T., Pratley, J., Lemerle, D. and An, M. (2002) Biochemical basis for wheat seedling allelopathy on the suppression of annual ryegrass (Lolium rigidum). J. Agric. Food Chem. 50, 4567–4571.PubMedCrossRefGoogle Scholar
  131. Yu, J.Q. and Matsui, Y. (1993) p-Thiocyanatophenol as a novel allelochemical in exudates from the root of cucumber. Chem. Express. 8, 577–580.Google Scholar

Copyright information

© Springer Science+Business Media LLC 2008

Authors and Affiliations

  • Terry Haig
    • 1
  1. 1.E.H. Graham Center for Agricultural InnovationCharles Sturt UniversityWagga WaggaAustralia

Personalised recommendations