Autotoxicity in Agriculture and Forestry

  • Ying Hu Liu
  • Ren Sen Zeng
  • Min An
  • Azim U. Mallik
  • Shi Ming Luo

Plant allelochemicals might interfere with growth of conspecific individuals (known as autotoxicity) when high concentrations are accumulated in soil. Autotoxicity is ubiquitous in both natural and manipulated ecosystems and may have important ecological implications. This chapter reviewed the role and management of autotoxicity in agriculture and forestry. It also discussed the mode of action of autotoxicity and its controlling factors.


Seed Germination Phenolic Acid Rice Straw Root Exudate Cinnamic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmad, N. and Mukhtar, H. (1999) Green tea polyphenols and cancer: biologic mechanisms and practical implications. Nutr. Rev. 57, 78–83.PubMedGoogle Scholar
  2. Anaya, A.L., Waller, G.R., Owuor, P.O., Friedman, J., Chou, C.H., Suzuki, T., Arroyo-Estrada, J.F. and Cruz-Ortega, R. (2002) The role of caffeine in the production decline due to autotoxicity in coffee and tea production. In: M.J. Reigosa and N. Pedrol (Eds.), Allelopathy from Molecules to Ecosystems. Science Publishers Inc., Enfiled, NH, pp. 71–92.Google Scholar
  3. Asao, T., Ottaini, N., Shimizu, N., Umeyama, M., Ohta, K. and Hosoki, T. (1998a) Possible selection of cucumber cultivars suitable for a closed nutrient hydroponic system by the bioassay with cucmber seedlings. J. Soc. High Technol. Agric. 10, 92–95.Google Scholar
  4. Asao, T., Umeyama, M., Ohta, K., Hosoki, T., Ito, N. and Ueda, H. (1998b) Decrease of yield of cucumber by non-renewal of the nutrient hydroponic solution and its reversal by supplementation of activated charcoal. J. Japan. Soc. Hortic. Sci. 67, 99–105.CrossRefGoogle Scholar
  5. Batish, D.R., Singh, H.P., Kohli, R.K. and Kaur, S. (2001a) Crop allelopathy and its role in ecological agriculture. J. Crop Prod. 4, 121–162.CrossRefGoogle Scholar
  6. Batish, D.R., Singh, H.P. and Kohli, R.K. (2001b) Vegetation exclusion under Casuarina equisetifolia L., does allelopathy play a role? Commun. Ecol. 2, 93–100.Google Scholar
  7. Ben-Hammouda, M., Ghorbal, H., Kremer, R. and Oueslatt, O. (2002) Autotoxicity of barley. J. Plant Nutr. 25, 1155–1161.CrossRefGoogle Scholar
  8. Blum, U., Stamen, K.L., Flint, L.J. and Shafer, S.R. (2000) Induction and/or selection of phenolic acid-utilizing bulk-soil and rhizosphere bacteria and their influence on phenolic acid phytotoxicity. J. Chem. Ecol. 26, 2059–2078.CrossRefGoogle Scholar
  9. Brinker, A.M. and Creasy, L.L. (1988) Inhibitions as a possible basis for grape replant problem. J. Am. Soc. Hortic. Sci. 113, 304–309.Google Scholar
  10. Callaway, R.M. (1995) Positive interactions among plants. Bot. Rev. 61, 306–349.Google Scholar
  11. Cao, P.R. and Luo. S.M. (1994) Studies on the allelopathy of tea plant Camellia sinensis (L.) Kuntze. J. South China Agric. Univ. 15(2), 129–133.Google Scholar
  12. Cao, P.R. and Luo, S.M. (1996) Studies on autotoxicity of tea tree. Tea Guangdong 2, 9–11.Google Scholar
  13. Chen, X.H. and Lin, P. (1997) Degradation of forest of Casuarina equisetifolia in China and its causes. Fujian Environ. 14, 37–39.Google Scholar
  14. Chen, L.R., Jiang, Y.M., Mu, J.M. and Jiang, Y. (1998) Effect of crop stubbles on combine state of soil humus. J. Jilin Agric. Univ. 20(1), 55–58.Google Scholar
  15. Chen, L.C., Liao, L.P., Wang, S.L. and Huang, Z.Q. (2002) Effect of exotic toxin on the nutrition of woodland soil. Chin. J. Ecol. 21, 19–22.Google Scholar
  16. Chon, S.U. and Kim, J.D. (2002) Biological activity and quantification of suspected allelochemicals from alfalfa plant parts. J. Agron. Crop Sci. 188, 281–285.CrossRefGoogle Scholar
  17. Chon, S.U., Coutts, H.H. and Nelson, C.J. (2000) Effects of light, growth media, and seedling orientation on bioassays of alfalfa autotoxicity. Agron. J. 92, 715–720.Google Scholar
  18. Chou, C.H. (1986) The role of allelopathy in subtropical agroecosystems in Taiwan. In: A.R. Putnam and C.S. Tang (Eds.), The Science of Allelopathy. John Wiley and Sons Inc., New York, pp. 57–73.Google Scholar
  19. Chou, C.H. (1990) The role of allelopathy in agroecosystems: studies from tropical Taiwan. In: S.R. Gliessman (Ed.), Agroecology: Researching the Ecological Basis for Sustainable Agriculture. Ecological Studies Vol. 78. Springer-Verlag, Berlin, pp. 105–121.Google Scholar
  20. Chou, C.H. (1995) Allelopathy and sustainable agriculture. In: Inderjit, K.M.M. Dakshini and F.A. Einhellig (Eds.), Allelopathy, Organisms, Processes and Applications. ACS Symposium Series No. 582, Amercian Chemical Society, Washington, DC, pp. 211–223.Google Scholar
  21. Chou, C.H. and Chiou, S.J. (1979) Autointoxication mechanism of Oryza sativa II. Effects of culture treatments on the chemical nature of paddy soil on rice productivity. J. Appl. Ecol. 5, 839–859.Google Scholar
  22. Chou, C.H. and Lin, H.J. (1976) Autotoxication mechanism of Oryza sativa. I. Phytotoxic effects of decomposing rice residues in soil. J. Chem. Ecol. 2, 353–367.CrossRefGoogle Scholar
  23. Chou, C.H., Chiang, Y.C. and Chang, H.H. (1981) Autointoxication mechanism of Oryza sativa III. Effect of temperature on phytotoxin production during rice straw decomposition in soil. J. Appl. Ecol. 7, 741–752.Google Scholar
  24. Chung, I.M. and Miller, D.A. (1995a) Effect of alfalfa plant and soil extracts on germination and growth of alfalfa. Agron. J. 87, 762–767.Google Scholar
  25. Chung, I.M. and Miller, D.A. (1995b) Differences in autotoxicity among seven alfalfa cultivars. Agron. J. 87, 596–600.Google Scholar
  26. Deng, L.G., Kong, C.H. and Luo, S.M. (1996) Isolation and identification of extract from Casuarnia equisetifolia branchlet and its allelopathy on seedling growth. Chin. J. Appl. Ecol. 7, 145–149.Google Scholar
  27. Dilday, R.H., Yan, W.G., Moldenhauer, K.A.K. and Gravois, K.A. (1998) Allelopathic activity in rice for controlling major aquatic weeds. In: M. Olofsdotter (Ed.), Allelopathy in Rice. Los Banos, IRRI, Philippines, pp. 7–26.Google Scholar
  28. Doran, J.C. and Hall, N. (1983) Notes on fifteen Australian Casuarina species. In: S.J. Midgley, J.W. Turmbull and R.D. Johnson (Eds.), Casuarinas Ecology, Management and Utilization. CSIRO, Melbourne, Australia, pp. 19–25Google Scholar
  29. Du, Y.J. and Jin, Y.H. (1999) Simulations of allelopathy in continuous cropping of soybean. Chin. J. Appl. Ecol. 10(2), 202–212.Google Scholar
  30. Einhellig, F.A. (2004) Mode of allelochemical action of phenolic compounds. In: F.A. Macias, J.C.G. Galindo, J.M.G. Molinilo and H.G. Cutler (Eds.),Allelopathy: Chemistry and Mode of Action of Allelochemicals.CRC Press, Boca Raton, FL, pp. 217–238.Google Scholar
  31. Einhellig, F.A., Muth, M.S. and Schon, M.K. (1985) Effects of allelochemicals on plant–water relationship. In: A.C. Thompson (Ed.), The Chemistry of Allelopathy. American Chemical Society, Washington, DC, pp. 170–195.Google Scholar
  32. Fageria, N.K. and Baligar, V.C. (2003) Upland rice and allelopathy. Commun. Soil Sci. Plant Anal. 34, 1311–1329.CrossRefGoogle Scholar
  33. Feng, Z.H., Yan, L.Y., Wang, J.X., Zhang, S.H. and Song, S.Q. (2005) Effect of autointoxication in monoculture on cucumber seed germination and seedling growth. Seed 24(6), 41–44.Google Scholar
  34. Friedman, J. and Waller, G.R. (1983) Caffeine hazards and their prevention in germinating seeds of coffee (Coffea arabica L.). J. Chem. Ecol. 9, 1099–1106.CrossRefGoogle Scholar
  35. Gallet, C. (1994) Allelopathic potential in bilberry-spruce forests, influence of phenolic compounds on spruce seedlings. J. Chem. Ecol. 20, 1009–1024.CrossRefGoogle Scholar
  36. Geng, G.D., Cheng, Z.H., Meng, H.W., Zhang, S.Q., Cao, H.X. and Zhao, H.F. (2005) Study on allelopathy and its mechanism of watermelon (Citrullus lanatus). J. Fruit Sci. 22(3), 247–251.Google Scholar
  37. Gerald, F.L., Booker, U., Blum and Fiscus, E.L. (1992) Short-term effects of ferulic acid on ion uptake and water relations in cucumber seedlings. J. Exp. Bot. 43, 649–655.CrossRefGoogle Scholar
  38. Guo, Q., Zhao, B., Li, M., Shen, S. and Xin, W. (1996) Studies on protective mechanisms of four components of green tea polyphenols against lipid peroxidation in synaptosomes. Biochim. Biophys. Acta 1304, 210–222.PubMedGoogle Scholar
  39. Han, L.M., Wang, S.Q, Ju, H.Y., Yan, F., Li, G.Q., Liu, J.P. and Yan, J.C. (2000a) Identification and study on allelopathy of soybean root exudates. Soybean Sci. 19(2), 119–125.Google Scholar
  40. Han, L.M., Wang, S.Q., Ju, H.Y., Yan, X., Yan, F.M. and Yang, Z.M. (2000b) Identification and allelopathy on the decomposition products from soybean stubs. Acta Ecol. Sin. 20(5), 771–778.Google Scholar
  41. Hao, Z.P., Wang, Q., Christie, P., Li, X.L. (2006) Autotoxicity potential of soils cropped continuously with watermelon (special issue, allelopathy in soil sickness). Allelopathy J. 18, 111–119.Google Scholar
  42. He, X.Y. (1998) Study on causes of deterioration of Casuarina equisetifolia in coastal regions of Fujian Province. J. Fujian For. Sci. Tech. 25, 40–45.Google Scholar
  43. Hegde, R.S. and Miller, D.A. (1992) Concentration dependency and stage of crop growth in alfalfa autotoxicity. Agron. J. 84, 940–946.Google Scholar
  44. Herrin, L.L., Collins, F.C. and Caviness, C.E. (1986) Techniques for identifying tolerance of soybean to phytotoxic substances in wheat straw. Crop Sci. 26,641–643.Google Scholar
  45. Hirano, T. (1940) Studies on soil sickness of tomatoes. Japan. J. Soil Sci. Plant Nutr. 14, 521–530.Google Scholar
  46. Hu, J.C. and Wang, S.J. (1996) Study on soil sickness by soybean continuous cropping I. Effect of mycotoxin produced by Penicillium purpurogenum. Chin. J. Appl. Ecol. 7(4), 396–400.Google Scholar
  47. Huang, F.P., Cai, C.X. and Li, X.D. (1995) Effect of leaves and roots aqueous extracts of Pinus massoniana on its seed germination and seedling growth. J. Guangxi Agric. Univ. 14(1), 65–70.Google Scholar
  48. Huang, Z.Q., Liao, L.P., Wang, S.L. and Cao, G.Q. (2000) Allelopathy of phenolics from decomposing stump-roots in replant Chinese fir woodland. J. Chem. Ecol. 26, 2211–2219.CrossRefGoogle Scholar
  49. Huang, Z.Q., Haig, T., Wang, S.L. and Han, S.J. (2002) Autotoxicity of Chinese fir on seed germination and seedling growth. Allelopathy J. 9, 187–193.Google Scholar
  50. Ikutaro, I., Katsuichiro, K. and Tadakatsu, Y. (1998) Fate of dehydromatricaria ester added to soil and its implications for the allelopathic effect of Solidago altissima L. Ann. Bot. 82, 625–630.CrossRefGoogle Scholar
  51. Inderjit and Callaway, R.M. (2003) Experimental designs for the study of allelopathy. Plant Soil 256, 1–11.CrossRefGoogle Scholar
  52. Inderjit, Rawat, D.S. and Foy, C.L. (2004) Multifaceted approach to determine rice straw phytotoxicity. Can. J. Bot. 82, 168–176.CrossRefGoogle Scholar
  53. Jackson, J.R. and Willemsen, R.W. (1976) Allelopathy in the first stages of secondary succession on the piedmont of New Jersey. Am. J. Bot. 63, 1015–1023.CrossRefGoogle Scholar
  54. Jennings, J.A. and Nelson, C.J. (1998) Influence of soil texture on alfalfa autotoxicity. Agron. J. 90, 54–58.Google Scholar
  55. Jensen, E.H., Hartman B.J., Lundin, F., Knapp, S. and Brookerd, B. (1981) Autotoxicity of Alfalfa. Max C. Fleischmann College of Agriculture, University of Nevada, Agricultural Experiment Station Bulletin Report 144.Google Scholar
  56. Johnson, R.M., Grimm, C.C. and Richard, E.P.J. (2006) Allelopathic, autotoxic, and hormetic effects of postharvest sugarcane residue. Agron. J. 98, 1526–1531.CrossRefGoogle Scholar
  57. Karin, K. and Kaui, K. (2000) Autotoxicity in Tagetes erecta L. on its own germination and seedling growth. Allelopathy J. 7(1), 109–113.Google Scholar
  58. Kato-Noguchi, H. (2004) Allelopathic substance in rice root exudates, rediscovery of momilactone B as an allelochemical. J. Plant Physiol. 161, 271–276.CrossRefGoogle Scholar
  59. Katznëlson, J. (1972) Studies in clover soil sickness I. The phenomenon of soil sickness in berseem and Persian clover. Plant Soil 36, 379–393.CrossRefGoogle Scholar
  60. Khafagi, I.K. (1998)Management of growth and autotoxicity of Cleome droserifolia heterotrophic and photomixotrophic cultures. Egypt J. Bot. 38(1–2), 151–171.Google Scholar
  61. Kim, Y.S. (1987) A bioassay on susceptivity of selected species to phytotoxic substances from potato plant. Korean J. Bot. 30, 59–68.Google Scholar
  62. Kim, Y.S. and Kil, B.S. (1989) Identification and growth inhibition of phytotoxic substances from tomato plants. Korean J. Bot. 32, 41–49.Google Scholar
  63. Kim, Y.S. and Kil, B.S. (2001) Allelopathic effects of some volatile substances from the tomato plant. In: R.K. Kohli, H.P. Singh and D.R. Batish (Eds.), Allelopathy in Agroecosystems. Food Products Press, New York, pp. 313.Google Scholar
  64. Kim, K.U. and Shin, D.H. (1998) Rice allelopathy research in Korea. In: M. Olofsdotter (Ed.), Allelopathy in Rice. IRRI, Los Banos, Philippines, pp. 39–44.Google Scholar
  65. Kimber, R.W.L. (1967) Phytotoxicity from plant residues. I. The influence of rotted wheat straw on seedling growth. Aust. J. Agric. Res. 18, 361–374.CrossRefGoogle Scholar
  66. Klein, R.R. and Miller, D.A. (1980) Allelopathy and its role in agriculture. Commun. Soil Sci. Plant Anal. 11, 435–436.CrossRefGoogle Scholar
  67. Li, M., Ma, Y.Q. and Shui, J.F. (2005) Allelopathic effects of cultured Cucurbita moschata root exudates. Chin. J. Appl. Ecol. 16(4), 744–749.Google Scholar
  68. Lin, W.X., Hong, W. and Ye, G.F. (2005a) Effect of water extract of Casuarina equisetifolia root on nutrient absorption and growth of the seedlings. J. Zhejiang For. Coll. 22, 170–175.Google Scholar
  69. Lin, W.X., Hong, W. and Ye, G.F. (2005b) Effects of water extract from Casuarina equisetifolia on its seedling growth. J. Jiangxi Agric. Univ. 27, 46–51.Google Scholar
  70. Liu, Y.H., Zeng, R.S., Chen, S., Liu, D.L., Luo, S.M., Wu, H. and An, M. (2007) Plant autotoxicity research in southern China. Allelopathy J. 19(1), 61–74.Google Scholar
  71. Lockerman, R.H. and Putnam, A.R. (1979) Evaluation of allelopathic cucumber (Cucumis sativus L.) as an aid to weed control. Weed Sci. 27, 54–57.Google Scholar
  72. Lockerman, R.H. and Putnam, A.R. (1981) Growth inhibitors in cucumber plants and seeds. J. Am. Soc. Hortic. Sci. 106, 418–422.Google Scholar
  73. Loffredo, E. and Senesi, N. (2006) Allelochemical activity of root exudates from horticultural plants hydroponically grown and the regulation role of humic substances. 18th World Congress of Soil Science, July 9–15, – Philadelphia, PA.Google Scholar
  74. Lu, W.G., Zhang, C.L., Yuan, F. and Peng, Y. (2002) Mechanism of organic manure relieving the autotoxicity to continuous cropping cucumber. Acta Agric. Shanghai 18(2), 52–56.Google Scholar
  75. Luo, S.M., Lin, X.L., Zeng, R.S., Kong, C.H., Cao, P.R., Wei, Q. and Deng, L.G. (1995) Allelopathy of typical plants in agroecosystem of South China. Ecol. Sci. 2, 114–128.Google Scholar
  76. Luo, X., Pan, C.D., Huang, M.M. and Liu, C.L. (2006) Autotoxicity of Picea schrenkiana litter aqueous extracts on seed germination and seedling growth. Xinjiang Agric. Sci. 43(1), 1–5.Google Scholar
  77. Martin, J.H. and Leonard, W.H. (1967) Principles of Field Crop Production. The Macmillan Co., New York.Google Scholar
  78. Maruthi, V. and Sankaran, N. (2001) Allelopathic effects of sunflower (Helianthus spp.) – a review. Agric. Rev. 22(1), 57–60.Google Scholar
  79. Miller, D.A. (1983) Allelopathic effects of alfalfa. J. Chem. Ecol. 9, 1059–1071.CrossRefGoogle Scholar
  80. Miller, D.A. (1996) Allelopathy in forage crop systems. Agron. J. 88, 854–859.Google Scholar
  81. Molisch, H. (1937) Der Einfluss einer Pflanze auf die andere Allelopathie. Fischer, Jena (in German).Google Scholar
  82. Perry, L.G., Thelen, G.C., Ridenour, W.M., Weir, T.L., Callaway, R.M., Paschke, M.W. and Vivanco, J.M. (2005) Dual role for an allelochemical, (± )-catechin from Centaurea maculosa root exudates regulates conspecific seedling establishment. J. Ecol. 93, 1126–1135.CrossRefGoogle Scholar
  83. Petterson, D.T. (1981) Effects of allelopathic cheimcals on growth and physiological responses of soybean. Weed Sci. 29(1), 53–58.Google Scholar
  84. Politycka, B., Wojcik-Wojtkowiak, D. and Pudelski, T. (1984) Phenolic compounds as a cause of phytotoxicity in green house substrates repeatedly used in cucumber growing. Acta Hortic. 156, 89–94.Google Scholar
  85. Pramanik, M.H.R., Nagai, M., Asao, T. and Matsui, Y. (2000) Effects of temperature and photoperiod on phytotoxic root exudates of cucumber (Cucumis sativus) in hydroponic culture. J. Chem. Ecol. 26, 1953–1967.CrossRefGoogle Scholar
  86. Putnam, A.R. (1985) Allelopathic research in agriculture, past highlights and potential. In: A.C. Thompson (Ed.), The Chemistry of Allelopathy. ACS Symposium Series, American Chemical Society, Washington, DC, pp. 1–8.Google Scholar
  87. Putnum, A.R. and Duke, W.B. (1974) Biological supprssion of weeds: evidence for allelopathy in accessions of cucumber. Science 185, 370–372.CrossRefGoogle Scholar
  88. Quinn, J.A. (1974) Convolvulus sepium in old field succession on the New Jersey piedmont. Bull. Torrey Bot. Club 101, 89–95.CrossRefGoogle Scholar
  89. Rice, E.L. (1984) Allelopathy, 2nd ed. Academic Press, New York.Google Scholar
  90. Sampietro, D.A. (2006) Sugarcane: soil sickness and autotoxicity. Allelopathy J. 17, 33–41.Google Scholar
  91. Seguin, P., Sheaffer, C.C., Schmitt, M.A., Russelle, M.P., Randall, G.W., Peterson, P.R., Hoverstad, T.R., Quiring, S.R. and Swanson, D.R. (2002) Alfalfa autotoxicity: effects of reseeding delay, original stand age, and cultivar. Agron. J. 94, 775–778.Google Scholar
  92. Singh, H.P., Batish, D.R. and Kohli, R.K. (1999) Autotoxicity: concept, organisms, and ecological significance. Crit. Rev. Plant Sci. 18, 757–772.CrossRefGoogle Scholar
  93. Suzuki, T. and Waller, G.R. (1987) Purine alkaloids in tea seeds during germination. In: G.R. Waller (Ed.), Allelochemicals: Role in Agriculture and Forestry. ACS Symposium Series No. 330, American Chemical Society, Washington, DC, pp. 289–294.Google Scholar
  94. Verpoorte, R., van der Heijden, R., ten Hoopen, H.J.G. and Memelink, J. (1999) Metabolic engineering of plant secondary metabolite pathways for the production of fine chemicals. Biotechnol. Lett. 21, 467–479.CrossRefGoogle Scholar
  95. Wang, X.P. (1990) Current status and control approaches of land degradation of tea plantation. In: X.P. Wang (Ed.), Land Degradation in China. China Science Press, Beijing, pp. 355–361.Google Scholar
  96. Wang, F. and Wang, J.G. (2005) Study on autotoxic effects of aqueous extracts from eggplant residues. Chin. J. Econ. Agric. 13, 51–53.Google Scholar
  97. Williams, A.H. (1960) The distribution of phenolic compounds in apple and pear trees. In: J.B. Pridham (Ed.), Phenolics in Plants in Health and Disease. Pergamon Press, New York, pp. 2–7.Google Scholar
  98. Wing, J.E. (1909) Alfalfa Farming in America. Sanders Publishing Co., Chicago, IL.Google Scholar
  99. Wu, F.Z. and Ma, F.M. (2006) Effect of exogenous cinnamic acid on structure and function of plasmalemma in cucumber seedlings. Allelopathy J. 18, 287–297.Google Scholar
  100. Wu, F.Z., Liu, D., Wang, D.K., Luan, F.S., Wang, W. and Kong, X.M. (1997) The effects of different years of continuous cropping on the vitality of root systems and their qualities in the plastic house tomatoes. J. Northeast Agric. Univ. 28, 33–38.Google Scholar
  101. Wu, F.Z., Zhao, F.Y. and Gu, S.Y. (2002) Effect of the continuous cultivating cucumber on the bio-chemical properties of soil in the plastic greenhouse. Syst. Sci. Compreh. Stud. Agric. 18(1), 20–22.Google Scholar
  102. Xuan, T.D., Tawata, S., Khanh, T.D. and Chung, I.M. (2005) Cropping and forage systems/crop ecology/organic farming. J. Agron. Crop Sci. 191, 162–171.Google Scholar
  103. Yang, G.C., Lu, W.G., Shen, Q.R. and Zhang, C.L. (2004a) Autointoxication of watermelon: effects of water and alcoholic abstracts of watermelon’s root, stem and leaf on seed germination. Acta Agric. Shanghai 20, 82–85.Google Scholar
  104. Yang, C.M., Chang, I.F., Lin, S.J. and Chou, C.H. (2004b) Effects of three allelopathic phenolics on chlorophyll accumulation of rice (Oryza sativa) seedlings, II. Stimulation of consumption-orientation. Bot. Bull. Acad. Sin. 45, 119–125.Google Scholar
  105. Yang, G.C., Lu, W.G., Zhu, J. and Zhang, C.L. (2005) Effects of water extracts of watermelon root, stem and leaf on seed germination and enzyme activities of seedlings. Acta Agric. Boreali Occidentalis Sin. 14(1), 46–51.Google Scholar
  106. Ye, S.F., Yu, J.Q., Peng, Y.H., Zheng, J.H. and Zou, L.Y. (2004) Incidence of Fusarium wilt in Cucumis sativus L. is promoted by cinnamic acid, an autotoxin in root exudates. Plant Soil 263, 143–150.CrossRefGoogle Scholar
  107. Yu, J.Q. (1999) Autotoxic potential in vegetable crops. In: S.S. Narwal (Ed.), Allelopathy Update: Basic and Applied Aspects. Science Publishers Inc., Enfiled, NH, pp. 149–162.Google Scholar
  108. Yu, J.Q. (2001) Autotoxic potential of cucurbit crops: phenomenon, chemicals, mechanisms and means to overcome. J. Crop Prod. 4, 335–348.CrossRefGoogle Scholar
  109. Yu, J.Q. and Matsui, Y.P. (1994) Phytotoxic substances in root exudates of cucumber (Cucumis sativus L.). J. Chem. Ecol. 20(l), 21–31.CrossRefGoogle Scholar
  110. Yu, G.R., Lu, X.L., Han, S.J. and Wang, D.S. (1988) Soil sickness due to continuous cropping and mechanism of rotational effects of sunflower, soybean and other crops. Chin. J. Ecol. 7(2), 1–8.Google Scholar
  111. Yu, J.Q. and Mataui, Y. (1997) Effects of root exudates fo cucumber lochemicals on on uptake by cucumber seedlings. J. Chem. Ecol. 23, 817–827.CrossRefGoogle Scholar
  112. Yu, J.Q., Shou, S.Y., Qian, Y.R., Zhu, Z.J. and Hu, W.H. (2000) Autotoxic potential of cucurbit crops. Plant Soil 223, 147–151.CrossRefGoogle Scholar
  113. Yu, J.Q., Ye, S.F., Zhang, M.F. and Hu, W.H. (2003) Effects of root exudates and aqueous root extracts of cucumber (Cucumis sativus) and allelochemicals, on photosynthesis and antioxidant enzymes in cucumber. Biochem. Syst. Ecol. 31, 129–139.CrossRefGoogle Scholar
  114. Zeng, R.S., Lin, L.X. and Luo, S.M. (1994) Studies on the allelopathic effects of Wedelia chinensis aqueous extraction. J. South China Agric. Univ. 15, 26–30.Google Scholar
  115. Zeng, R.S., Luo, S.M., Shi, Y.H., Shi, M.B. and Tu, C.Y. (2001) Physiological and biochemical mechanism of allelopathy of secalonic acid F on higher plants. Agron. J. 93(1), 72–79.Google Scholar
  116. Zhang, Q.S. (1993) Potential role of allelopathy in the soil and the decomposing root of Chinese-fir replant woodland. Plant Soil 151, 205–210.CrossRefGoogle Scholar
  117. Zhang, Q.S. (1997) Effects of soil extracts from repeated plantation woodland of Chinese-fir on microbial activities and soil nitrogen mineralization dynamics. Plant Soil 191, 205–212.CrossRefGoogle Scholar
  118. Zhang, Q. and Yu, X. (2001) Allelopathy in replant problem in forest soil. Allelopathy J. 8, 51–64.Google Scholar
  119. Zhang, F.L., Zhou, B.L., Wang, R.H. and He, Y. (2005) Allelopathic effects of grafted eggplant root exudates. Chin. J. Appl. Ecol. 16(4), 750–753.Google Scholar
  120. Zhen, W.C., Wang, X.Y., Cao, K.Q. and Jin, Z.J. (2004) Study on determination and allelopathy of amino acids in strawberry root exudates and decomposing products. J. Agric. Univ. Hebei 27(2), 76–80.Google Scholar
  121. Zhou, Z.H., Luo, S.M. and Mou, Z.P. (1997) Allelopathic effect of tomato. Chin. J. Appl. Ecol. 8(4), 445–449.Google Scholar

Copyright information

© Springer Science+Business Media LLC 2008

Authors and Affiliations

  • Ying Hu Liu
    • 1
  • Ren Sen Zeng
    • 1
  • Min An
    • 2
  • Azim U. Mallik
    • 3
  • Shi Ming Luo
    • 1
  1. 1.Institute of Tropical&Subtropical EcologySouth China Agricultural UniversityGuangzhouChina
  2. 2.E.H. Graham Center for Agricultural Innovation(a collaborative alliance between Charles Sturt University and NSW Department of Primary Industries)Wagga WaggaAustralia
  3. 3.Department of BiologyLakehead UniversityThunder BayCanada

Personalised recommendations