Anthocyanins pp 284-304 | Cite as

Anthocyanins as Food Colorants



The interest of the food industry in natural colorants replacing synthetic dyes has increased significantly over the last years, mainly due to safety issues. This chapter deals with the interest of using natural anthocyanins and their derivatives as food colorants. The importance of color for the acceptability of food products and the need for satisfying and attracting more consumers to a growing competitive market has resulted in the development of new pigments and new products. Several aspects are briefly discussed, such as anthocyanin natural sources, extraction and analytical methods, anthocyanin stability and color variations, and applications in food products. Also, the interest in anthocyanin derivatives is referred, reviewing the recent discoveries of new classes of anthocyanin-derived pigments presenting attracting color hues. Research in this field has been productive but industrial applications are yet to be made. Nevertheless, there are good perspectives for more applications of anthocyanins and derivatives in food products.


High Performance Liquid Chromatography Food Matrix Food Colorant Anthocyanin Extract Chromatic Feature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Andersen, O.M. and Jordheim, M. (2005) The anthocyanins. In: O.M. Andersen and K.R. Markham (Eds.),Flavonoids: Chemistry, Biochemistry and Applications. CRC Press, pp. 471–552.Google Scholar
  2. Bajaj, K. L., Kansal, B. D., Chadha, M. L. and Kaur, P. P. (1990) Chemical composition of some important varieties of egg plant (Solanum melongena L). Tropical Sci. 30, 255–261.Google Scholar
  3. Bakker, J. and Timberlake, C. F. (1985) The distribution and content of anthocyanins in young Port wines as determined by high performance liquid chromatography. J. Sci. Food Agr. 36, 1325–1333.CrossRefGoogle Scholar
  4. Bassa, I. A. and Francis, F. J. (1987) Stability of anthocyanins from sweet potatoes in model beverages. J. Food Sci. 52, 1753–1754.CrossRefGoogle Scholar
  5. Bellisle, F., Blundell, J. E., Dye, L., Fantino, M., Fern, E., Fletcher, R. J., Lambert, J., Roberfoid, M., Specter, S., Westenhofer, J. and Westerterp-Plantenga, M. S. (1998) Functional food science and behaviour and psychological functions. Brit. J. Nutr. 80, S173-S193.PubMedCrossRefGoogle Scholar
  6. Berké, B., Chèze, C., Vercauteren J. and Deffieux G. (1998) Bisulfite addition to anthocyanins: Revisited structures of colourless adducts. Tetrahedron Lett. 39, 5771–5774.CrossRefGoogle Scholar
  7. Bianchi, L., Lazzé, C., Pizzala, R., Stivala, L. A., Savio, M. and Prosperi, E. (2001) Anthocyanins protect against oxidative damage in cell cultures. In: W. Pfannhauser, G. R. Fenwick and S. Khokhar (Eds.),Biologically-Active Phytochemicals in Food. The Royal Society of Chemistry, Cambridge, pp. 311–318.Google Scholar
  8. Brouillard, R. (1982) Chemical structure of anthocyanins. In: P. Markakis (Ed.),Anthocyanins as Food Colors. Academic Press, New York, pp. 1–39.Google Scholar
  9. Brouillard, R. (1983) Thein vivo expression of anthocyanin colour in plants. Phytochemistry 22, 1311–1323.CrossRefGoogle Scholar
  10. Brouillard, R. and Dangles, O. (1994) Anthocyanin molecular interactions: the first step in the formation of new pigments during wine aging? Food Chem. 51, 365–371.CrossRefGoogle Scholar
  11. Brouillard, R. and Delaporte, B. (1977) Chemistry of anthocyanin pigments. 2. Kinetic and Thermodinamic study of proton transfer, hydration, and tautomeric reactions of malvidin 3-glucoside. J. Am. Chem. Soc. 99, 8461–8468.CrossRefGoogle Scholar
  12. Brouillard, R. and Dubois, J. E. (1977) Mechanism of the structural transformations of anthocyanins in acidic media. J. Am. Chem. Soc. 99, 1359–1364.CrossRefGoogle Scholar
  13. Brouillard, R. and Lang, J. (1990) The hemiacetal-cis-chalcone equilibrium of malvin, a natural anthocyanin. Canad. J. Chem. 68, 755–761.CrossRefGoogle Scholar
  14. Cameira-dos-Santos, P., Brillouet, J. M., Cheynier, V. and Moutounet, M. (1996) Detection and partial characterisation of new anthocyanin-derived pigments in wine. J. Sci. Food Agr. 70, 204–208.CrossRefGoogle Scholar
  15. Cao, G., Sofic, E. and Prior, R. L. (1997) Antioxidant and prooxidant behaviour of flavonoids: structure-activity relationships. Free Rad. Biol. Med. 22, 749–760.PubMedCrossRefGoogle Scholar
  16. Clifford, M. N. (2000) Anthocyanins – nature, occurrence and dietary burden. J. Sci. Food Agric. 80, 1063–1072.CrossRefGoogle Scholar
  17. Coisson, J. D., Travaglia, F., Piana, G., Capasso, M. and Arlorio, M. (2005)Euterpe oleracea juice as a functional pigment for yogurt. Food Res. Int. 38, 893–897.CrossRefGoogle Scholar
  18. da Costa, C. T., Horton, D. and Margolis, S. A. (2000) Analysis of anthocyanins in foods by liquid chromatography, liquid chromatography-mass spectrometry and capillary electrophoresis. J. Chromatogr. A. 881, 403–410.PubMedCrossRefGoogle Scholar
  19. Dambergs, R. G., Cozzolino, D., Cynkar, W. U., Janik, L. and Gishen, M. (2006) The determination of red grape quality parameters using the LOCAL algorithm. J. Near Infrared Spec. 14, 71–79.CrossRefGoogle Scholar
  20. Dangles, O., Saito, N. and Brouillard, R. (1993) Kinetic and thermodynamic control of flavylium hydration in the pelargonidin cinnamic acid complexation – origin of the extraordinary flower color diversity of Pharbitis- Nil. J. Am. Chem. Soc. 115, 3125–3132.CrossRefGoogle Scholar
  21. Davies, A. J. and Mazza, G. (1993) Copigmentation of simple and acylated anthocyanins with colourless phenolic compounds. J. Agr. Food Chem. 41, 716–720.CrossRefGoogle Scholar
  22. de Freitas, V. A. P. and Mateus, N. (2006) Chemical transformations of anthocyanins yielding a variety of colours (Review). Environm. Chem. Lett. 14, 175–183.CrossRefGoogle Scholar
  23. Degenhardt, A. and Winterhalter P. (2001) Isolation of natural pigments by high speed CCC. J. Liq. Chomatogr. 24, 1745–1764.CrossRefGoogle Scholar
  24. Dieci, E. (1967) Sull’enocianin tecnica. Riv. Vitic. Enol. 12, 567–573.Google Scholar
  25. Dyrby, M., Westergaard, N. and Stapelfeldt, H. (2001) Light and heat sensitivity of red cabbage extract in soft drink model systems. Food Chem. 72, 431–437.CrossRefGoogle Scholar
  26. Es-Safi, N. E., Cheynier, V. and Moutounet, M. (2002) Interactions between cyanidin 3-O-glucosides and furfural derivatives and their impact on food color change. J. Agr. Food Chem. 50, 5586–5595.CrossRefGoogle Scholar
  27. Favretto, D. and Flamini, R. (2000) Application of electrospray ionization mass spectrometry to the study of grape anthocyanins. Am. J. Enol. Viticult. 51, 55–64.Google Scholar
  28. Figueiredo, P., George, F., Tatsuzawa, F., Toki, K., Saito, N. and Brouillard, R. (1999) New features of intramolecular copigmentation by acetylated anthocyanins. Phytochemistry 1, 125–132.CrossRefGoogle Scholar
  29. Fossen, T. and Andersen, O. M. (1999) Delphinidin 3 ’-galloylgalactosides from blue flowers of Nymphaea caerulea. Phytochemistry 50, 1185–1188.CrossRefGoogle Scholar
  30. Foucault, A. P. and Chevolot, L. (1998) Counter-current chromatography: instrumentation, solvent selection and some recent applications to natural product purification. J. Chromatogr. A. 808, 3–22.CrossRefGoogle Scholar
  31. Francia-Aricha, E. M., Guerra, M. T., Rivas-Gonzalo, J. C. and Santos-Buelga, C. (1997) New anthocyanin pigments formed after condensation with flavanols. J. Agr. Food Chem. 45, 2262–2265.CrossRefGoogle Scholar
  32. Francis, F. J. (1982) Analysis of anthocyanins. In: P. Markakis (Ed.),Anthocyanins as Food Colors. Academic Press, New York, pp. 181–207.Google Scholar
  33. Francis, F. J. (1989). Food colorants: anthocyanins. Crit. Rev. Food Sci. 28, 273–314.CrossRefGoogle Scholar
  34. Fulcrand, H., Benabdeljalil, C., Rigaud, J., Cheynier, V. and Moutounet, M. (1998) A new class of wine pigments generated by reaction between pyruvic acid and grape anthocyanins. Phytochemistry 47, 1401–1407.PubMedCrossRefGoogle Scholar
  35. Fulcrand, H., Cameira dos Santos, P. J., Sarni-Manchado, P., Cheynier, V. and Bonvin, J. F. (1996) Structure of new anthocyanin-derived wine pigments. J. Chem. Soc. Perkin Trans. 1, 735–739.CrossRefGoogle Scholar
  36. Furtado, P., Figueiredo, P., Chaves das Neves, H. and Pina, F. (1993) Photochemical and thermal degradation of anthocyanidins. J. Photochem. Photobiol. A: Chem. 75, 113–118.CrossRefGoogle Scholar
  37. Gao, L. and Mazza, G. (1995) Characterization, quantitation and distribution of anthocyanins and colourless phenolics in sweet cherries. J. Agr. Food Chem. 43, 343–346.CrossRefGoogle Scholar
  38. Garcia-Viguera, C. and Bridle, P. (1999) Influence of structure on colour stability of anthocyanins and flavylium salts with ascorbic acid. Food Chem. 64, 21–26.CrossRefGoogle Scholar
  39. Garcia-Viguera, C., Zafrilla, P. and Tomas-Barberan, F. A. (1998) The use of acetone as an extraction solvent for anthocyanins from strawberry fruit. Phytochem. Anal. 9, 274–277.CrossRefGoogle Scholar
  40. Giusti, M. M., Rodriguez-Saona, L. E., Baggett, J. R., Reed, G. L., Durst, R. W. and Wrolstad, R. E. (1998) Anthocyanin pigment composition of red radish cultivars as potential food colorants. J. Food Sci. 63, 219–224.CrossRefGoogle Scholar
  41. Giusti, M. M., Rodriguez-Saona, L. E. and Wrolstad, R. E. (1999) Molar absorptivity and color characteristics of acylated and non-acylated pelargonidin-based anthocyanins. J. Agr. Food Chem. 47, 4631–4637.CrossRefGoogle Scholar
  42. Giusti, M. M. and Wrolstad, R. E. (1996a) Characterization of red radish anthocyanins. J. Food Sci. 61, 322–326.CrossRefGoogle Scholar
  43. Giusti, M. M. and Wrolstad, R. E. (1996b) Radish anthocyanin extract as a natural red colorant for Maraschino cherries. J. Food Sci. 61, 688–694.CrossRefGoogle Scholar
  44. Goto, T. and Kondo, T. (1991) Structure and molecular stacking of anthocyanins – flower color variation. Angew. Chem. Int. Ed. Engl. 30, 17–33.CrossRefGoogle Scholar
  45. Goto, T., Takase, S. and Kondo, T. (1978) PMR spectra of natural acylated antocyanins. Determination of stereostructure of awobanin, shisonin and violanin. Tetrahedron Lett. 27, 2413–2416.CrossRefGoogle Scholar
  46. Harborne, J. B. (1984)Phytochemical Methods. A Guide to Modern Techniques of Plant Analysis, 2nd Ed. Chapman & Hall, London.Google Scholar
  47. Haslam, E. (1980) In vino veritas: oligomeric procyanidins and the ageing of red wines. Phytochemistry 19, 2577–2582.CrossRefGoogle Scholar
  48. Haslam, E. (1988)Practical Polyphenolics. From Structure to Molecular Recognition and Physiological Action. Cambridge University Press, Cambridge, pp. 262–294.Google Scholar
  49. Henry, B. S. (1996) Natural food colors. In: G. A. F. Hendry and J. D. Houghton (Eds.),Natural Food Colorants, pp. 40–79.Google Scholar
  50. Hoffman, T. (1998) Studies on the influence of the solvent on the contribution of single Maillard reaction products to the total color of browned pentose/alanine solutions – a quantitative correlation using the color activity concept. J. Agr. Food Chem. 46, 3912–3917.CrossRefGoogle Scholar
  51. Ichiyanagi, T., Tateyama, C., Oikawa, K. and Konishi, T. (2000) Comparison of anthocyanin distribution in different blueberry sources by capillary zone electrophoresis. Biol. Pharm. Bull. 23, 492–497.PubMedCrossRefGoogle Scholar
  52. Inami, O., Tamura, I., Kikuzaki, H. and Nakatani, N (1996) Stability of anthocyanins ofSambucus candensis andSambucus nigra. J. Agr. Food Chem. 44, 3090–3096.Google Scholar
  53. Jackman, R. L. and Smith, J. L. (1996) Anthocyanins and betalains. In: G. A. F. Hendry and J. D. Houghton (Eds.),Natural Food Colorants, pp. 245–309.Google Scholar
  54. Jing, P. and Giusti, M. M. (2005) Characterization of anthocyanin-rich waste from purple corncobs (Zea mays L.) and its application to color milk. J. Agr. Food Chem. 53, 8775–8781.CrossRefGoogle Scholar
  55. Jurd, L. (1967) Catechin flavylium salt condensation reactions. Tetrahedron 23, 1057–1064.CrossRefGoogle Scholar
  56. Jurd, L. and Somers, T. C. (1970) The formation of xanthylium salts from proanthocyanidins. Phytochemistry 9, 419–427.CrossRefGoogle Scholar
  57. Kühnau, J. (1976) The flavonoids. A class of semi-essential food components: their role in human nutrition. World Rev. Nutr. Diet. 24, 117–191.PubMedGoogle Scholar
  58. Lewis, C. E., Walker, J. R. L. and Lancaster, J. E. (1995) Effect of polysacharides on the colour of anthocyanins. Food Chem. 54, 315–319.CrossRefGoogle Scholar
  59. Lopes-da-Silva, F., de Pascual-Teresa, S., Rivas-Gonzalo, J. and Santos-Buelga, C. (2002) Identification of anthocyanin pigments in strawberry (cv Camarosa) by LC using DAD and ESI-MS detection. Eur. Food Res. Technol. 214, 248–253.CrossRefGoogle Scholar
  60. Malien-Aubert, C., Dangles, O. and Amiot, M. J. (2001) Color stability of commercial anthocyanin-based extracts in relation to the phenolic composition. Protective effects by intra- and inter-molecular copigmentation. J. Agr. Food Chem. 49, 170–176.CrossRefGoogle Scholar
  61. Markakis, P. (1982)Anthocyanins as Food Colors. Academic Press, London.Google Scholar
  62. Mateus, N., Carvalho, E., Carvalho, A., Melo, A., Santos-Buelga, C, Silva, A. M. S. and de Freitas, V. A. P. (2003a) Isolation and structural characterization of New Acylated Anthocyanin-Vinyl-Flavanol pigments occurring in aging red wines. J. Agr. Food Chem. 51, 277–282.CrossRefGoogle Scholar
  63. Mateus, N., Oliveira, J., González-Paramás, A. M., Santos-Buelga, C. and de Freitas, V. A. P. (2005) Screening of portisins (vinylpyranoanthocyanin pigments) in Port wines by LC/DAD-MS. Food Sci. Technol. Int. 11, 353–358.CrossRefGoogle Scholar
  64. Mateus N., Oliveira, J., Haettich-Motta, M. and de Freitas, V. A. P. (2004a) New family of bluish pyranoanthocyanins J. Biomed. Biotechnol. 299–305.Google Scholar
  65. Mateus, N., Oliveira, J. Pissarra, J. González-Paramás, A. M., Rivas-Gonzalo, J. C., Santos-Buelga, C. and de Freitas, V. A. P. (2006) A new vinylpyranoanthocyanin pigment occurring in ageing red wine. Food Chem. 97, 689–695.CrossRefGoogle Scholar
  66. Mateus, N., Oliveira, J., Santos-Buelga, C., Silva, A. M. S. and de Freitas, V. A. P. (2004) NMR structure characterization of a new vinylpyranoanthocyanin-catechin pigment (a portisin). Tetrahedron Lett. 45, 3455–3457.CrossRefGoogle Scholar
  67. Mateus, N., Pascual-Teresa, S., Rivas-Gonzalo, J. C., Santos-Buelga, C. and de Freitas, V. A. P. (2002a) Structural diversity of anthocyanin-derived pigments detected in Port wines. Food Chem. 76, 335–342.CrossRefGoogle Scholar
  68. Mateus, N., Silva, A. M. S., Rivas-Gonzalo, J. C., Santos-Buelga, C. and de Freitas, V. A. P. (2003b) A new class of blue anthocyanins-derived pigments isolated from red wines. J. Agr. Food Chem. 51, 1919–1923.CrossRefGoogle Scholar
  69. Mateus, N., Silva, A. M. S., Rivas-Gonzalo, J. C., Santos-Buelga, C. and de Freitas, V. A. P. (2002b) Identification of anthocyanin-flavanol pigments in red wines by NMR and mass spectrometry. J. Agr. Food Chem. 50, 2110–2116.CrossRefGoogle Scholar
  70. Mazza, G. and Miniati, E. (1993)Anthocyanins in Fruits, Vegetables and Grains. CRC press, London.Google Scholar
  71. Mazza, G. and Brouillard, R. (1990) The mechanism of copigmentation of anthocyanins in aqueous solutions. Phytochemistry 29, 1097–1102.CrossRefGoogle Scholar
  72. Mistry, T. V., Cai, Y., Lilley, T. H. and Haslam, E. (1991) Polyphenol interactions. Part 5 Anthocyanin co-pigmentation. J. Chem. Soc. Perkin Trans. 2, 1287–1296.Google Scholar
  73. Odake, K., Terahara, N., Saito, N., Toki, K. and Honda, T. (1992) Chemical structures of two anthocyanins from purple sweet potato,Ipomoe batatas. Phytochemistry 31, 2127–2130.CrossRefGoogle Scholar
  74. Oliveira, J., de Freitas, V. A. P., Santos-Buelga, C., Silva, A. and Mateus, N. (2006) Chromatic and structural features of blue anthocyanin-derived pigments present in Port wine. Anal. Chim. Acta 563, 2–9.CrossRefGoogle Scholar
  75. Otsuki, T., Matsufuji, H., Takeda, M., Goda, Y. Acylated anthocyanins from red radish (Rap-hanus sativus L.). Phythochemistry 60(1), 79–87.Google Scholar
  76. Pazmiño-Durán, E. A., Giusti, M. M., Wrolstad, R. E. and Gloria, M. B. A. (2001a) Anthocyanins from banana bracts (Musa X paradisiaca) as potential food colorants. Food Chem. 73, 327–332.CrossRefGoogle Scholar
  77. Pazmiño-Durán, E. A., Giusti, M. M., Wrolstad, R. E. and Gloria, M. B. A. (2001b) Anthocyanins fromOxalis triangularis as potential food colorants. Food Chem. 73, 211–216.CrossRefGoogle Scholar
  78. Prior, R. L. (2003) Absorption and metabolism of anthocyanins: potential health effects. In:Phytochemicals: Mechanisms of Action. Boca Raton, Fla., CRC press, London.Google Scholar
  79. Remy, S., Fulcrand, H., Labarbe, B., Cheynier, V. and Moutounet, M. (2000) First confirmation in red wine of products resulting from direct anthocyanin-tannin reactions. J. Sci. Food Agric. 80, 745–751.CrossRefGoogle Scholar
  80. Rivas-Gonzalo, J. C. (2003) Analysis of anthocyanins. In: C. Santos-Buelga and G. Williamson (Eds.),Methods in Polyphenol analysis. The Royal Society of Chemistry, Cambridge, pp. 338–353.Google Scholar
  81. Rivas-Gonzalo, J. C., Bravo-Haro, S. and Santos-Buelga, C. (1995) Detection of compounds formed through the reaction of malvidin-3-monoglucoside and catechin in the presence of acetaldehyde. J. Agr. Food Chem. 43, 1444–1449.CrossRefGoogle Scholar
  82. Robinson, G. M. and Robinson, R. A. (1931). A survey of anthocyanins. Biochem. J. 25, 1687–1705.PubMedGoogle Scholar
  83. Rodriguez-Saona, L. E., Giusti M. M. and Wrolstad, R. E. (1998) Anthocyanin pigment composition of red-fleshed potatoes. J. Food Sci. 63, 458–465.CrossRefGoogle Scholar
  84. Rodriguez-Saona, L. E., Giusti M. M. and Wrolstad, R. E. (1999) Color and pigment stability of red radish and red-fleshed potato anthocyanins in juice model sytems. J. Food Sci. 64, 451–456.CrossRefGoogle Scholar
  85. Rodriguez-Saona, L. E., Giusti, M. M., Durst, R. W. and Wrolstad, R. E. (2001) Development and process optimization of red radish concentrate extract as potential natural red colorant. J. Food Process. Pres. 25, 165–182.CrossRefGoogle Scholar
  86. Rommel, A., Wrolstad, R. E. and Heatherbell, D. A. (1992) Blackberry juice and wine: processing and storage effects on anthocyanin composition, color and appearance. J. Food Sci. 57, 385–391.CrossRefGoogle Scholar
  87. Saito, N., Tatsuzawa, F., Yoda, K., Yokoi, M., Kasahara, K., Lida, S, Shigihara, A. and Honda, T. (1995) Acylated cyanidin glycosides in the violet-blue flowers ofIpomoea purpurea. Phytochemistry 40, 1283–1289.PubMedCrossRefGoogle Scholar
  88. Sarni-Manchado, P., Cheynier, V. and Moutounet, M. (1997) Reaction of enzymatically generated quinones with malvidin-3-glucoside. Phytochemistry 45, 1365–1369.CrossRefGoogle Scholar
  89. Scalbert, A. and Williamson, G. (2000) Dietary intake and bioavailability of polyphenols. J. Nutr. 130, 2073–2085.Google Scholar
  90. Schwarz, M., Hillebrand, S., Habben, S., Degenhardt, A. and Winterhalter, P. (2003) Application of high-speed countercurrent chromatography to the large-scale isolation of anthocyanins. Biochem. Eng. J. 14, 179–189.CrossRefGoogle Scholar
  91. Schwarz, M., Wabnitz, T. C. and Winterhalter P. (2003) Pathway leading to the formation of anthocyanin-vinylphenol adducts and related pigments in red wines J. Agr. Food Chem. 51, 3682–3687.CrossRefGoogle Scholar
  92. Shimizu, T., Muroi, T., Ichi, T., Nakamura, M. and Yoshihira, K. (1997) Analysis of red cabbage colors in commercial food using high performance liquid chromatography with photodiode array detection-mass spectrometry. J. Food Hyg. Soc. Jap. 38, 34–38.Google Scholar
  93. Skrede, G., Wrolstad, R. E., Lea, P. and Enersen, G. (1992) Color stability of strawberry and blackcurrant syrups. J. Food Sci. 57, 172–177.CrossRefGoogle Scholar
  94. Somers, T. C. (1971) The polymeric nature of wine pigments. Phytochemistry 10, 2175–2186.CrossRefGoogle Scholar
  95. Somers, T. C. (1966) Wine tannins isolation of condensed flavanoid pigments by gel-filtration. Nature 209, 368–370.PubMedCrossRefGoogle Scholar
  96. Stintzing, F. C., Conrad, J., Iris, K., Beifuss, U. and Carle R. (2004) Structural investigations on betacyanin pigments by LC NMR and 2D NMR spectroscopy. Phytochemistry 65, 415–422.PubMedCrossRefGoogle Scholar
  97. Stintzing, F. C., Stintzing, A. S., Carle, R., Frei, B. and Wrolstad, R. E. (2002) Color and antioxidant properties of cyaniding-based anthocyanin pigments. J. Agr. Food Chem. 50, 6172–6181.CrossRefGoogle Scholar
  98. Strack, D. and Wray V. (1989) Anthocyanins. In: P. M. Dey and J. B. Harborne (Eds.)Methods in Plant Biochemistry-Vol 1, Academic Press, New York, pp. 325–356.Google Scholar
  99. Teh, L. S. and Francis, F. J. (1988) Stability of anthocyanins fromZebrina pendula andIpomoe tricolor in a model beverage. J. Food Sci. 53, 1580–1581.CrossRefGoogle Scholar
  100. Terahara, N., Shimizu, T., Kato, Y., Nakamura, M., Maitani, T., Yamaguchi M.-A. and Goda, Y. (1999) Six diacylated anthocyanins from the storage root of purple sweet potato,Ipomoe batatas. Biosci. Biotechnol. Biochem. 63, 1420–1424.CrossRefGoogle Scholar
  101. Timberlake, C. F. and Bridle, P. (1976) Interactions between anthocyanins, phenolic com-pounds and acetaldehyde and their significance in red wines. Am. J. Enol. Vitic. 27, 97–105.Google Scholar
  102. Torre, L. C. and Barrit, B. H. (1977) Quantitative evaluation ofRubus fruit anthocyanins pigments. J. Food Sci. 42, 488–490.CrossRefGoogle Scholar
  103. Vivar-Quintana, A. M., Santos-Buelga, C., Francia-Aricha, E. and Rivas-Gonzalo, J. C. (1999) Formation of anthocyanin-derived pigments in experimental red wines. Food Sci. Technol. Int. 5, 347–352.CrossRefGoogle Scholar
  104. Wang, H., Cao, G. and Prior, R. L. (1997) Oxygen radical absorbing capacity of anthocyanins. J. Agr. Food Chem. 45, 304–309.CrossRefGoogle Scholar
  105. Wildenradt, H. L. and Singleton, V. L. (1974) The production of aldehydes as a result of oxidation of polyphenolic compounds and its relation to wine aging. Am. J. Enol. Vitic. 26, 25–29.Google Scholar
  106. Willstatter, R. and Zollinger, E. H. (1916) Uber die Farbstoffe der Weintraube und der Heidelbeere II. Justus Liebig’s Annalen. Chem. 412, 195–216.CrossRefGoogle Scholar
  107. Wilska-Jeszka, J., Bos, J. and Pawlak, M. (1992) Wild plant fruits as a source of catechins and proanthocyanidins. In: XVIe Journées Internationales Groupe Polyphenols and The Royal Society of Chemistry, Lisbon. DTA, Lisbon, pp. 246–250.Google Scholar
  108. Wolfender, J.-L., Ndjoko, K. and Hostettmann, K. (2003) Application of LC-NMR in the structure elucidation of polyphenols. In: C. Santos-Buelga and G. Williamson (Eds.),Methods in Polyphenol Analysis, Royal Society of Chemistry, Cambridge, Chapter 6.Google Scholar
  109. Wolfender, J.-L., Ndjoko, K. and Hostettmann, K. (1998) LC/NMR in natural products chemistry. Curr. Org. Chem. 2, 575.Google Scholar
  110. Wrolstad, R. E., Skrede, G., Lea, P. and Enersen, G. (1990) Influence of sugar on anthocyanin pigment stability in frozen strawberries. J. Food Sci. 55, 1209–1212.CrossRefGoogle Scholar
  111. Wulf, L. W. and Nagel, C. W. (1978) High-pressure liquid chromatographic separation of anthocyanins of Vitis vinifera. Am. J. Enol. Vitic. 29, 42–49.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Chemistry CIQUniversity of PortoPortugal

Personalised recommendations