Advertisement

Anthocyanins pp 258-281 | Cite as

Biosynthesis and Manipulation of Flavonoids in Forage Legumes

  • Susanne Rasmussen
Chapter

Abstract

Legumes are second only to the Gramineae in their importance to the food and pastoral industry, providing a large proportion of dietary proteins and oils to humans and animals. Their ability to associate with symbiotic rhizobia and the resulting fixation of atmospheric nitrogen makes legumes invaluable for the provision of nitrogen to agricultural systems. Two classes of flavonoids are of prominent importance in legumes: proanthocyanidins for their beneficial effects on animals and the environment; and isoflavonoids for their functions in plant protection and as symbiotic signaling molecules. This chapter presents an overview on the function, biosynthesis and structure of flavonols, anthocyanidins, proanthocyanidins and isoflavonoids in forage and other legumes. Strategies employing genetic modification or conventional breeding techniques to manipulate specific flavonoids in these plants are presented and discussed.

Keywords

Hairy Root Condensed Tannin Hairy Root Culture Anthocyanin Accumulation Forage Legume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abrahams, S., Tanner, G.J., Larkin, P.J. and Ashton, A.R. (2002) Identification and biochemical characterization of mutants in the proanthocyanidin pathway inArabidopsis. Plant Physiol. 130, 561–576.PubMedGoogle Scholar
  2. Achnine, L., Huhman, D.V., Farag, M.A., Sumner, L.W., Blount, J.W. and Dixon, R.A. (2005) Genomics-based selection and functional characterization of triterpene glycosyltransferases from the model legumeMedicago truncatula. Plant J. 41, 875–887.PubMedGoogle Scholar
  3. Adams, N.R. (1990) Permanent infertility in ewes exposed to plant oestrogens. Aust. Vet. J. 67, 197–201.PubMedGoogle Scholar
  4. Adams, N.R. (1995) Detection of the effects of phytoestrogens on sheep and cattle. J. Animal. Sci. 73, 1509–1515.Google Scholar
  5. Aerts, R.J., Barry, T.N. and McNabb, W.C. (1999) Polyphenols and agriculture: beneficial effects of proanthocyanidins in forages. Agricult. Ecosyst. Environm. 75, 1–12.Google Scholar
  6. Akashi, T., Aoki, T. and Ayabe, S. (1998) CYP81E1, a cytochrome P450 cDNA of licorice (Glycyrrhiza echinata L.) encodes isoflavone 2 -hydroxylase. Biochem. Biophys. Res. Commun. 251, 67–70.PubMedGoogle Scholar
  7. Akashi, T., Aoki, T. and Ayabe, S. (1999) Cloning and functional expression of a cytochrome P450 cDNA encoding 2-hydroxyisoflavanone synthase involved in biosynthesis of the isoflavonoid skeleton in licorice. Plant Physiol. 121, 821–828.PubMedGoogle Scholar
  8. Akashi, T., Sawada, Y., Shimada, N., Sakurai, N., Aoki, T. and Ayabe, S. (2003) cDNA cloning and biochemical characterization of S-adenosyl-L-methionine: 2, 7, 4-trihydroxyisoflavanone 4 -O-methyltransferase, a critical enzyme of the legume isoflavonoid phytoalexin pathway. Plant Cell Physiol. 44, 103–112.PubMedGoogle Scholar
  9. Akashi, T., Aoki, T. and Ayabe, S. (2005) Molecular and biochemical characterization of 2-hydroxyisoflavanone dehydratase. Involvement of carboxylesterase-like proteins in leguminous isoflavone biosynthesis. Plant Physiol. 137, 882–891.PubMedGoogle Scholar
  10. Akashi, T., Koshimizu, S., Aoki, T. and Ayabe, S. (2006) Identification of cDNAs encoding pterocarpan reductase involved in isoflavan phytoalexin biosynthesis inLotus japonicus by EST mining. FEBS Lett. 580, 5666–5670.PubMedGoogle Scholar
  11. Arioli, T., Howles, P.A., Weinman, J.J. and Rolfe, B.G. (1994) InTrifolium subterraneum, chalcone synthase is encoded by a multigene family. Gene. 138, 79–86.PubMedGoogle Scholar
  12. Austin, M.B. and Noel, J.P. (2003) The chalcone synthase superfamily of type III polyketide synthases. Nat. Prod. Rep. 20, 79–110.PubMedGoogle Scholar
  13. Baldridge, G.D., O’Neill, N.R., Samac, D.A. (1998) Alfalfa (Medicago sativa L.) resistance to the root lesion nematode, Pratylenchus pendrans: defense response gene mRVA and isoFlavonoid phytoaloxin levels in roots. Plant Mol Biol. 38, 999–1010.PubMedGoogle Scholar
  14. Ballance, G.M. and Dixon, R.A. (1995)Medicago sativa cDNAs encoding chalcone reductase. Plant Physiol. 107, 1027–1028.PubMedGoogle Scholar
  15. Bavage, A., Davies, I.G., Robbins, M.P. and Morris, P. (1997) Expression of anAntirrhinum dihydroflavonol reductase gene results in changes in condensed tannin structure and accumulation in root cultures ofLotus corniculatus (bird’s foot trefoil). Plant Mol. Biol. 35, 443–458.PubMedGoogle Scholar
  16. Beck, V., Rohr, U. and Jungbauer, A. (2005) Phytoestrogens derived from red clover: an alternative to estrogen replacement therapy? J. Steroid Biochem. Mol. Biol. 94, 499–518.PubMedGoogle Scholar
  17. Blyden, E.R., Doerner, P.W., Lamb, C.J. and Dixon, R.A. (1991) Sequence analysis of a chalcone isomerase cDNA ofPhaseolus vulgaris L. Plant Mol. Biol. 16, 167–169.PubMedGoogle Scholar
  18. Bomati, E.K., Austin, M.B., Bowman, M.E., Dixon, R.A. and Noel, J.P. (2005) Structural elucidation of chalcone reductase and implications for deoxychalcone biosynthesis. J. Biol. Chem. 280, 30496–30503.PubMedGoogle Scholar
  19. Bonde, M.R., Millar, R.L. and Ingham, J.L. (1973) Induction and identification of sativan and vestitol as two phytoalexins fromLotus corniculatus. Phytochemistry 12, 2957–2959.Google Scholar
  20. Borevitz, J., Xia, Y., Blount, J.W., Dixon, R.A. and Lamb, C. (2001) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12, 2383–2393.Google Scholar
  21. Bowles, D., Isayenkova, J., Lim, E.-K. and Poppenberger, B. (2005) Glycosyltransferases: managers of small molecules. Curr. Opin. Plant Biol. 8, 254–263.PubMedGoogle Scholar
  22. Broun, P. (2005) Transcriptional control of flavonoid biosynthesis: a complex network of conserved regulators involved in multiple aspects of differentiation in Arabidopsis. Curr. Opin. Plant Biol. 8, 272–279.PubMedGoogle Scholar
  23. Carron, T.R., Robbins, M.P. and Morris, P. (1994) Genetic modification of condensed tannin biosynthesis inLotus corniculatus. 1. Heterologous antisense dihydroflavonol reductase down-regulates tannin accumulation in ‘hairy root’ cultures. Theor. Appl. Genet. 87, 1006–1015.Google Scholar
  24. Charrier, B., Coronado, C, Kondorosi, A. and Ratet, P. (1995) Molecular characterization and expression of alfalfa (Medicago sativa L.) flavanone 3-hydroxylase and dihydroflavonol-4-reductase encoding genes. Plant Mol. Biol. 29, 773–786.PubMedGoogle Scholar
  25. Christensen, A.B., Gregersen, P.L., Schröder, J. and Collinge, D.B. (1998) A chalcone synthase with an unusual substrate preference is expressed in barley leaves in response to UV light and pathogen attack. Plant Mol. Biol. 37, 849–857.PubMedGoogle Scholar
  26. Colliver, S.P., Morris, P. and Robbins, M.P. (1997) Differential modification of flavonoid and isoflavonoid biosynthesis with an antisense chalcone synthase construct in transgenicLotus corniculatus. Plant Mol. Biol. 35, 509–522.PubMedGoogle Scholar
  27. Cooper, J.E. (2004) Multiple responses of rhizobia to flavonoids during legume root infection. Adv. Bot. Res. 41, 1–62.Google Scholar
  28. Cornwell, T., Cohick, W. and Raskin, I. (2004) Dietary phytoestrogens and health. Phytochemistry 65, 995–1016.PubMedGoogle Scholar
  29. Coronado, C., Zuanazzi, J.A.S., Sallaud, C., Quirion, J., Esnault, R., Husson, H., Kondorosi, A. and Ratet, P. (1995) Alfalfa root flavonoid production is nitrogen regulated. Plant Physiol. 108, 533–542.PubMedGoogle Scholar
  30. Coulman, B., Goplen, B., Majak, W., McAllister, T., Cheng, K.-J., Berg, B., Hall, J., McCartney, D. and Acharya, S. (2000) A review of the development of a bloat-reduced alfalfa cultivar. Can. J. Plant Sci. 80, 487–491.Google Scholar
  31. Crush, J.R., Gerard, P.J. and Rasmussen, S. (2006) Formononetin in clovers as a feeding deterrent against clover root weevil. . In: C.F. Mercer (Ed.)Breeding for Success: Diversity in Action. Proceedings of the 13th Australasian Plant Breeding Conference, Christchurch, New Zealand, pp. 1066–1072.Google Scholar
  32. Dae, K., Bong, K., Hyo, L., Yoongho, L., Hor, H. and Joong-Hoon, A. (2005) Enhancement of isoflavone synthase activity by co-expression of P450 reductase from rice. Biotechnol. Lett. 27, 1291–1294.Google Scholar
  33. Dakora, F.D. and Phillips, D.A. (1996) Diverse functions of isoflavonoids in legumes transcend anti-microbial definitions of phytoalexins. Physiol. Mol. Plant Pathol. 49, 1–20.Google Scholar
  34. Damiani, F., Paolocci, F., Cluster, P.D., Arcioni, S., Tanner, G.J., Joseph, R.G., Li, Y.G., de Majnik, J. and Larkin, P.J. (1999) The maize transcription factor Sn alters proanthocyanidin synthesis in transgenicLotus corniculatus plants. Aust. J. Plant Physiol. 26, 159–169.Google Scholar
  35. Deavours, B.E. and Dixon, R.A. (2005) Metabolic engineering of isoflavonoid biosynthesis in alfalfa. Plant Physiol. 138, 2245–2259.PubMedGoogle Scholar
  36. Debeaujon, I., Leon-Kloosterziel, K.M. and Koornneef, M. (2000) Influence of the testa on seed dormancy, germination and longevity inArabidopsis. Plant Physiol. 122, 403–413.PubMedGoogle Scholar
  37. Dewick, P.M. and Ward, D. (1978) Isoflavone precursors of the pterocarpans phytoalexin maackiain inTrifolium pratense. Phytochemistry 17, 1751–1754.Google Scholar
  38. Dixon, R.A., Blyden, E.R., Robbins, M.P., Van Tunen, A.J. and Mol, J.N. (1988) Comparative biochemistry of chalcone isomerases. Phytochemistry 27, 2801–2808.Google Scholar
  39. Dixon, R.A. (2004) Phytoestrogens. Annu. Rev. Plant Biol. 55, 225–261.PubMedGoogle Scholar
  40. Dixon, R.A., Xie, D.-Y. and Sharma, S.B. (2005) Proanthocyanidins – a final frontier in flavonoid research? New Phytol. 165, 9–28.PubMedGoogle Scholar
  41. Edwards, E.J., McCaffery, S. and Evans, J.R. (2006) Phosphorus availability and elevated CO2 affect biological nitrogen fixation and nutrient fluxes in a clover-dominated sward. New Phytol. 169, 157–167.PubMedGoogle Scholar
  42. Ellison, N.W., Liston, A., Steiner, J.J., Williams, W.M. and Taylor, N.L. (2006) Molecular phylogenetics of the clover genus (Trifolium – Leguminosae). Mol. Phylogenet. Evol. 39, 688–705.PubMedGoogle Scholar
  43. Fischer, D., Ebenau-Jehle, C. and Grisebach, H. (1990) Phytoalexin synthesis in soybean: purification and characterization of NADPH: 2 -hydroxydaidzein oxidoreductase from elicitor-challenged soybean cell cultures. Arch. Biochem. Biophys. 276, 390–395.PubMedGoogle Scholar
  44. Foo, L.Y., Lu, Y., Molan, A.L., Woodfield, D.R. and McNabb, W.C. (2000) The phenols and prodelphinidins of white clover flowers. Phytochemistry 54, 539–548.PubMedGoogle Scholar
  45. Fridman, E. and Pichersky, E. (2005) Metabolomics, genomics, proteomics, and the identification of enzymes and their substrates and products. Curr. Opin. Plant Biol. 8, 242–248.PubMedGoogle Scholar
  46. Gerard, P.J., Crush, J.R. and Hackell, D.I. (2005) Interaction betweenSitona lepidus and red clover lines selected for formononetin content. Ann. Appl. Biol. 147, 173–181.Google Scholar
  47. Geurts, R. and Bisseling, T. (2002)Rhizobium nod factor perception and signaling. Plant Cell 14, S239–S249.PubMedGoogle Scholar
  48. Goormachtig, S., Lievens, S., Herman, S., van Montagu, M. and Holsters, M. (1999) Chalcone reductase-homologous transcripts accumulate during development of stem-borne nodules on the tropical legumeSesbania rostrata. Planta 209, 45–52.PubMedGoogle Scholar
  49. Gould, K.S. (2004) Nature’s Swiss army knife: the diverse protective roles of anthocyanins in leaves. J. Biomed. Biotechnol. 5, 314–320.Google Scholar
  50. Graham, P.H. and Vance, C.P. (2000) Nitrogen fixation in perspective: an overview of research and extension needs. Field Crops Res. 65, 93–106.Google Scholar
  51. Graham, P.H. and Vance C.P. (2003) Legumes: importance and constraints to greater use. Plant Physiol. 131, 872–877.PubMedGoogle Scholar
  52. Guo, L., Dixon, R.A. and Paiva, N.L. (1994a) The ‘pterocarpan synthase’ of alfalfa: association and co-induction of vestitone reductase and 7,2 -dihydroxy-4 -methoxy-isoflavonol (DMI) dehydratase, the two final enzymes in medicarpin biosynthesis. FEBS Lett. 356, 221–225.Google Scholar
  53. Guo, L., Dixon, R.A. and Paiva, N.L. (1994b) Conversion of vestitone to medicarpin in alfalfa (Medicago sativa L.) is catalyzed by two independent enzymes. J. Biol. Chem. 269, 22372–22378.Google Scholar
  54. Guo, L. and Paiva, N.L. (1995) Molecular cloning and expression of alfalfa (Medicago sativa L.) vestitone reductase, the penultimate enzyme in medicarpin biosynthesis. Arch. Biochem. Biophys. 320, 353–360.PubMedGoogle Scholar
  55. Hamilton, J.G., Zangerl, A.R., DeLucia, E.H. and Berenbaum, M.R. (2001) The carbon-nutrient balance hypothesis: its rise and fall. Ecol. Lett. 4, 86–95.Google Scholar
  56. Hashim, M.F., Hakamatsuka, T., Ebizuka, Y. and Sankawa, U. (1999) Reaction mechanism of oxidative rearrangement of flavanone in isoflavone biosynthesis. FEBS Lett. 271, 219–222.Google Scholar
  57. He, X., Reddy, J.T. and Dixon, R.A. (1998) Stress responses in alfalfa (Medicago sativa L.). XXII. cDNA cloning and characterization of an elicitor-inducible isoflavone 7-O-methyltransferase. Plant Mol. Biol. 36, 43–54.PubMedGoogle Scholar
  58. He, X. and Dixon, R.A. (2000) Genetic manipulation of isoflavone 7-O-methyltransferase enhances biosynthesis of 4 -O-methylated isoflavonoid phytoalexins and disease resistance in alfalfa. Plant Cell 12, 1689–1702.PubMedGoogle Scholar
  59. Higgins, V.J. (1972) Role of the phytoalexin medicarpin in three leaf spot diseases of alfalfa. Physiol. Plant Pathol. 2, 289–300.Google Scholar
  60. Hofmann, R.W., Swinny, E.E., Bloor, S.J., Markham, K.R., Ryan, K.G., Campbell, B.D., Jordan, B.R. and Fountain, D.W. (2000) Responses of nineTrifolium repens L. populations to ultraviolet-B radiation: Differential flavonol glycoside accumulation and biomass production. Ann. Bot. 86, 527–537.Google Scholar
  61. Hofmann, R.W., Campbell, B.D., Fountain, D.W., Jordan, B.R., Greer, D.H., Hunt, D.Y. and Hunt, C.L. (2001) Multivariate analysis of intraspecific responses to UV-B radiation in white clover (Trifolium repens L.). Plant, Cell Environ. 24, 917–927.Google Scholar
  62. Hofmann, R.W., Campbell, B.D., Bloor, S.J., Swinny, E.E., Markham, K.R., Ryan, K.G. and Fountain, D.W. (2003) Responses to UV-B radiation inTrifolium repens L. – physiological links to plant productivity and water availability. Plant, Cell Environ. 26, 603–612.Google Scholar
  63. Horigome, T., Kumar, R. and Okamoto, K. (1988) Effects of condensed tannins prepared from leaves of fodder plants on digestive enzymesin vitro and in the intestine of rats. Br. J. Nutr. 60, 275–285.PubMedGoogle Scholar
  64. Hsieh, M.-C. and Graham, T.L. (2001) Partial purification and characterization of a soybeanβ-glucosidase with high specific activity towards isoflavone conjugates. Phytochemistry 58, 995–1005.PubMedGoogle Scholar
  65. Ingham, J.L. (1977) Isoflavan phytoalexins fromAnthyllis,Lotus andTetragonolobus. Phytochemistry 16, 1279–1282.Google Scholar
  66. Ito, M., Ichinose, Y., Kato, H., Shiraishi, T. and Yamada, T. (1997) Molecular evolution and functional relevance of the chalcone synthase genes of pea. Mol. Gen. Genet. 255, 28–37.PubMedGoogle Scholar
  67. Jez, J.M., Bowman, M.E. and Noel, J.P. (2002) Expanding the biosynthetic repertoire of plant type III polyketide synthases by altering starter molecule specificity. Proc. Natl. Acad. Sci. U.S.A. 99, 5319–5324.PubMedGoogle Scholar
  68. Jez, J.T. and Noel J.P. (2002) Reaction mechanism of chalcone isomerase – pH dependence, diffusion control, and product binding differences. J. Biol. Chem. 277, 1361–1369.PubMedGoogle Scholar
  69. Johnson, E.T., Ryu, S., Yi, H., Shin, B., Cheong, H. and Choi, G. (2001) Alteration of a single amino acid changes the substrate specificity of dihydroflavonol 4-reductase. Plant J. 25, 325–333.PubMedGoogle Scholar
  70. Johnson, S.N., Gregory, P.J., Greenham, J.R., Zhang, X. and Murray, P.J. (2005). Attractive properties of an isoflavonoid found in white clover root nodules on the clover root weevil. J. Chem. Ecol. 31, 2223–2229.PubMedGoogle Scholar
  71. Jones, C.S., Williams, W.M., Hancock, K.R., Ellison, N.E., Scott, A.G., Collette, V.E., Jahufer, M.Z.Z., Richardson, K.A., Hay, M.J.M., Rasmussen, S., Jones, C.G. and Griffiths, A.G. (2006) Pastoral genomics – a foray into the clover genome. In: C.F. Mercer (Ed.)Breeding for Success: Diversity in Action. Proceedings of the 13th Australasian Plant Breeding Conference, Christchurch, New Zealand, XXX.Google Scholar
  72. Jørgensen, K., Rasmussen, A.V., Morant, M., Nielsen, A.H., Bjarnholt, N., Zagrobelny, M., Bak, S. and Møller, B.L. (2005) Metabolon formation and metabolic channeling in the biosynthesis of plant natural products. Curr. Opin. Plant Biol. 8, 280–291.PubMedGoogle Scholar
  73. Joung, J., Kasthuri, G.M., Park, J., Kang, W., Kim, H., Yoon, B., Joung, H. and Jeon, J. (2003) An Overexpression of chalcone reductase ofPueraria montana var.lobata alters biosynthesis of anthocyanin and 5 -deoxyflavonoids in transgenic tobacco. Biochem. Biophys. Res. Commun. 303, 326–331.PubMedGoogle Scholar
  74. Jung, W., Yu, O., Lau, S.C., O’Keefe, D.P., Odell, J., Fader, G. and McGonigle, B. (2000) Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nature Biotech. 18, 208–212.Google Scholar
  75. Jung, W., Chung, I.-M. and Heo, H.-Y. (2003) Manipulating isoflavone levels in plants. Plant Biotechnol. J. 5, 149–155.Google Scholar
  76. Kape, R., Parniske, M., Brandt, S. and Werner, D. (1992) Isoliquiritigenin, a strong nod gene- and glyceollin resistance-inducing flavonoid from soybean root exudate. Appl. Environm. Microbiol. 58, 1705–1710.Google Scholar
  77. Karban, R., Agrawal, A.A. and Mangel, M. (1997) The benefits of induced defenses against herbivores. Ecol. 78, 1351–1355.Google Scholar
  78. Karban, R., Agrawal, A.A., Thaler, J.S. and Adler, L.S. (1999) Induced plant responses and information content about risk of herbivory. Trends Ecol. Evol. 14, 443–447.PubMedGoogle Scholar
  79. Koes, R., Verweij, W. and Quattrocchio, F. (2005) Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends in Plant Sci. 10, 236–242.Google Scholar
  80. Kubo, A., Arai, Y., Nagashima, S. and Yoshikawa, T. (2004) Alteration of sugar donor specificities of plant glycosyltransferases by a single point mutation. Arch. Biochem. Biophys. 429, 198–203.PubMedGoogle Scholar
  81. Kutchan, T.M. (2005) A role for intra- and intercellular translocation in natural product biosynthesis. Curr. Opin. Plant Biol. 8, 292–300.PubMedGoogle Scholar
  82. Li, Y.G., Tanner, G. and Larkin, P. (1996) The DMACA-HCl. Protocol and the threshold proanthocyanidin content for bloat safety in forage legumes. J. Sci. Food Agric. 70, 89–101.Google Scholar
  83. Li, Y.-G., Tanner, G.J., Delves, A.C. and Larkin, P.J. (1993) Asymmetric somatic hybrid plants betweenMedicago sativa L. (alfalfa, lucerne) and Onobrychis viciifolia Scop. sanfoin. Theor. Appl. Genet. 87, 455–463.Google Scholar
  84. Liao, H., Wan, H., Shaff, J., Wang, X., Yan, X. and Kochian, L.V. (2006) Phosphorus and aluminum interactions in soybean in relation to aluminum tolerance. Exudation of specific organic acids from different regions of the intact root system. Plant Physiol. 141, 674–684.PubMedGoogle Scholar
  85. Lin, L.-Z., He, X.-G., Lindenmaier, M., Yang, J., Cleary, M., Qiu, S.-X. and Cordell, G.A. (2000) LC-ESI-MS study of the flavonoid glycoside malonates of red clover (Trifolium pratense). J. Agric. Food Chem. 48, 354–365.PubMedGoogle Scholar
  86. Liu, C. and Dixon, R.A. (2001) Elicitor-induced association of isoflavone O-methyltransferase with endomembranes prevents the formation and 7-O-methylation of daidzein during isoflavonoid phytoalexin biosynthesis. Plant Cell 13, 2643–2658.PubMedGoogle Scholar
  87. Liu, C, Blount, J.W., Steele, C.L. and Dixon, R.A. (2002) Bottlenecks for metabolic engineering of isoflavone glycoconjugates in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 99, 14578–14583.PubMedGoogle Scholar
  88. Liu, C., Huhman, D., Sumner, L.W. and Dixon, R.A. (2003) Regiospecific hydroxylation of isoflavones by cytochrome P450 81E enzymes fromMedicago truncatula. Plant J. 36, 471–484.PubMedGoogle Scholar
  89. Ludwig, S.R., Habera, L.F., Dellaporta, S.L. and Wessler, S.R. (1989) Lc, a member of the maize R gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc-homology region. Proc. Natl. Acad. Sci. U.S.A. 86, 7092–7096.PubMedGoogle Scholar
  90. De Majnik, J., Weinman, J.J., Djordjevic, M.A., Rolfe, B.G., Tanner, G.J., Joseph, R.G. and Larkin, P.J. (2000) Anthocyanin regulatory gene expression in transgenic white clover can result in an altered pattern of pigmentation. Aust. J. Plant Physiol. 27, 659–667.Google Scholar
  91. Marles, M.A.S., Ray, H., Ad Gruber, M.Y. (2003) New perspectives on proanthocyanidin biochemistry and molecular regulation. Phytochemistry 64, 367–383.PubMedGoogle Scholar
  92. Marley, C.L., Cook, R., Barrett, J., Keatinge, R. and Lampkin, N.H. (2006) The effects of birdsfoot trefoil (Lotus corniculatus) and chicory (Cichorium intybus) when compared with perennial ryegrass (Lolium perenne) on ovine gastrointestinal parasite development, survival and migration. Vet. Parasitol. 138, 280–290.PubMedGoogle Scholar
  93. Martens, S., Teeri, T. and Forkmann, G. (2002) Heterologous expression of dihydroflavonol 4-reductases from various plants. FEBS Lett. 531, 453–458.PubMedGoogle Scholar
  94. Mathesius, U. (2001) Flavonoids induced in cells undergoing nodule organogenesis in white clover are regulators of auxin breakdown by peroxidase. J. Exp. Bot. 52, 419–426.PubMedGoogle Scholar
  95. Mauricio, R., Rausher, M.D. and Burdick, D.S. (1997) Variation in the defense strategies of plants: are resistance and tolerance mutually exclusive? Ecol. 78, 1301–1311.Google Scholar
  96. Maxwell, C.A. and Phillips, D.A. (1990) Concurrent synthesis and release ofnod-gene-inducing flavonoids from alfalfa roots. Plant Physiol. 93, 1551–1558.Google Scholar
  97. Maxwell, C.A., Harrison, M.J. and Dixon, R.A. (1993) Molecular characterization and expression of alfalfa isoliquiritigenin 2 -O-methyltransferase, an enzyme specifically involved in the biosynthesis of an inducer ofRhizobium meliloti nodulation genes. Plant J. 4, 971–981.PubMedGoogle Scholar
  98. Maxwell, C.A., Restrepo-Hartwig, M.A., Hession, A.O. and McGonigle, B. (2005) Metabolic Engineering of soybean for improved flavor and health benefits. In: J.T.Romeo (Ed.)Recent Advances in Phytochemistry- Vol. 38. Secondary Metabolism in Model Systems, pp. 153–176.Google Scholar
  99. McKhann, H.I. and Hirsch, A.M. (1994) Isolation of chalcone synthase and chalcone isomerase cDNAs from alfalfa (Medicago sativa L.): highest transcript levels occur in young roots and root tips. Plant Mol. Biol. 24, 767–777.PubMedGoogle Scholar
  100. McMahon, L.R., McAllister, T.A., Berg, B.P., Majak, W., Acharya, S.N., Popp, J.D., Coulman, B.E., Wang, Y. and Cheng, K.-J. (2000) A review of the effects of forage condensed tannins on ruminal fermentation and bloat in grazing cattle. Can. J. Plant Sci. 80, 469–485.Google Scholar
  101. Meagher, L.P., Widdup, K., Sivakumaran, S., Lucas, R. and Rumball, W. (2006) FloralTrifolium proanthocyanidins: Polyphenol formation and compositional diversity. J. Agric. Food Chem. 54, 5482–5488.PubMedGoogle Scholar
  102. Morreel, K., Goeminne, G., Storme, V., Sterck, L., Ralph, J., Coppieters, W., Breyne, P., Steenackers, M., Georges, M., Messens, E. and Boerjan, W. (2006) Genetical metabolomics of flavonoid biosynthesis inPopulus: a case study. Plant J. 47, 224–237.PubMedGoogle Scholar
  103. Nagashima, S., Inagaki, R., Kubo, A., Hirotani, M. and Yoshikawa, T. (2004) cDNA cloning and expression of isoflavonoid-specific glucosyltransferase fromGlycyrrhiza echinata cell-suspension cultures. Planta 218, 456–459.PubMedGoogle Scholar
  104. Nair, M.G., Safir, G.R. and Siqueira, J.O. (1991) Isolation and identification of vesicular-arbuscular mycorrhiza-stimulatory compounds from clover (Trifolium repens) roots. Appl. Environ. Microbiol. 57, 434–439.PubMedGoogle Scholar
  105. Nakajima, J., Tanaka, Y., Yamazaki, M. and Saito, K. (2001) Reaction mechanism from leucoanthocyanidin to anthocyanidin 3-glucoside, a key reaction for coloring in anthocyanin biosynthesis. J. Biol. Chem. 276, 25797–25803.PubMedGoogle Scholar
  106. Nakajima, J., Sato, Y., Hoshino, T., Yamazaki, M. and Saito, K. (2006) Mechanistic study on the oxidation of anthocyanidin synthase by quantum mechanical calculation. J. Biol. Chem. 281, 21387–21398.PubMedGoogle Scholar
  107. Nesi, N., Jond, C., Debeaujon, I., Caboche, M. and Lepiniec, L. (2001) TheArabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell 13, 2099–2114.PubMedGoogle Scholar
  108. Nguyen, T.M., van Binh, D. and ørskov, E.R. (2005) Effect of foliages containing condensed tannins on gastrointestinal parasites. Anim. Feed Sci. Techn. 121, 77–87.Google Scholar
  109. Nielsen, K.M. and Podivinsky, E. (1997) cDNA cloning and endogenous expression of a flavonoid 3 5 -hydroxylase from petals of lisianthus (Eustoma grandiflorum). Plant Sci. 129, 167–174.Google Scholar
  110. Paiva, N.L., Edwards, R., Sun, Y., Hrazdina, G. and Dixon, R.A. (1991) Stress responses in alfalfa (Medicago sativa L.) 11. Molecular cloning and expression of alfalfa isoflavone reductase, a key enzyme of isoflavonoid phytoalexin biosynthesis. Plant Mol. Biol. 17, 653–667.PubMedGoogle Scholar
  111. Paolocci, Bovone, Tosti, Arcioni and Damiani (2005) Light and an exogenous transcription factor qualitatively and quantitatively affect the biosynthetic pathway of condensed tannins inLotus corniculatus leaves. J. Exp. Bot. 56, 1093–1103.Google Scholar
  112. Paquette, S., Lindberg Møller, B. and Bak, S. (2003) On the origin of family 1 plant glycosyltransferases. Phytochemistry. 62, 399–413.PubMedGoogle Scholar
  113. Paz-Ares, J., Ghosal, D. and Saedler, H. (1990) Molecular analysis of the C1-l allele fromZea mays: a dominant mutant of the regulatory C1 locus. EMBO J. 9, 315–321.PubMedGoogle Scholar
  114. Peng, Y.Y. and Ye, J.N. (2006) Determination of isoflavones in red clover by capillary electrophoresis with electrochemical detection. Fitoter. 77, 171–178.Google Scholar
  115. Pfeiffer, J., Kühnel, C., Brandt, J., Duy, D., Punyasiri, P.A.N., Forkmann, G. and Fischer, T.C. (2006) Biosynthesis of flavan 3-ols by leucoanthocyanidin 4-reductases and anthocyanidin reductases in leaves of grape (Vitis vinifera L.), apple (Malus x domestica Borkh.) and other crops. Plant Physiol. Biochem. 44, 323–334.PubMedGoogle Scholar
  116. Piersen, C.E. (2003) Phytoestrogens in botanical dietary supplements: implications for cancer. Integrat. Cancer Therap. 2, 120–138.Google Scholar
  117. Pislewska, M., Bednarek, P., Stobiecki, M., Zielinski, M. and Wojtaszek, P. (2002) Cell wall-associated isoflavonoids and β -glucosidase activity inLupinus albus plants responding to environmental stimuli. Plant, Cell Environ. 25, 29–40.Google Scholar
  118. Porter, L.J. and Woodruffe, J. (1984) Haemanalysis: the relative astringency of proanthocyanidin polymers. Phytochemistry 23, 1255–1256.Google Scholar
  119. Quesenberry, K.H., Smith, R.R., Taylor, N.L., Baltensperger, D.D. and Parrott, W.A. (1991) Genetic nomenclature in clovers and special-purpose legumes: I. Red and white clover. Crop Sci. 31, 861–867.Google Scholar
  120. Radicella, J.P., Turks, D. and Chandler, V.L. (1991) Cloning and nucleotide sequence of a cDNA encoding B-Peru, a regulatory protein of the anthocyanin pathway in maize. Plant Mol. Biol. 17, 127–130.PubMedGoogle Scholar
  121. Ramírez-Restrepo, C.A. and Barry, T.N. (2005) Alternative temperate forages containing secondary compounds for improving sustainable productivity in grazing ruminants. Anim. Feed Sci. Techn. 120, 179–201.Google Scholar
  122. Rasmussen, S., Cao, M., Fraser, K., Koulman, A., Park-Ng, Z., Xue, H. and Lane, G. (2006) Cold stress in white clover – an integrated view of metabolome and transcriptome responses. In: C.F. Mercer (Ed.)Breeding for Success: Diversity in Action. Proceedings of the 13th Australasian Plant Breeding Conference, Christchurch, New Zealand, pp. 750–757.Google Scholar
  123. Ray, H., Yu, M., Auser, P., Blahut-Beatty, L., McKersie, B., Bowley, S., Westcott, N., Coulman, B., Lloyd, A. and Gruber, M.Y. (2003) Expression of anthocyanins and proanthocyanidins after transformation of alfalfa with maizeLc. Plant Physiol. 132, 1448–1463.PubMedGoogle Scholar
  124. Reynaud, J., Guilet, D., Terreux, R., Lussignol, M. and Walchshofer, N. (2005) Isoflavonoids in non-leguminous families: an update. Nat. Prod. Rep. 22, 504–515.PubMedGoogle Scholar
  125. Robbins, M.P. and Morris, P. (2000) Metabolic engineering of condensed tannins and other phenolic pathways in forage and fodder crops. In: R. Verpoorte, A.W. Alfermann (Eds.)Metabolic Engineering of Plant Secondary Metabolism. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 165–177.Google Scholar
  126. Robbins, M.P., Bavage, A.D., Strudwicke, C. and Morris, P. (1998) Genetic manipulation of condensed tannins in higher plants. II. Analysis of birdsfoot trefoil plants harboring antisense dihydroflavonol reductase constructs. Plant Physiol. 116, 1133–1144.PubMedGoogle Scholar
  127. Robbins, M.P., Paolocci, F., Hughes, J.W., Turchetti, V., Allison, G., Arcioni, S., Morris, P. and Damiani, F. (2003) Sn, a maize bHLH gene, modulates anthocyanin and condensed tannin pathways inLotus corniculatus. J. Exp. Bot. 54, 239–248.PubMedGoogle Scholar
  128. Robbins, M.P., Bavage, A.D., Allison, G., Davies, T., Hauck, B. and Morris, P. (2005) A comparison of two strategies to modify the hydroxylation of condensed tannin polymers inLotus corniculatus L. Phytochemistry 66, 991–999.PubMedGoogle Scholar
  129. Rumball, W., Keogh, R.G., Miller, J.E. and Claydon, R.B. (1997) ‘Grasslands G27’ red clover (Trifolium pratense L.). NZ J. Agricult. Res. 40, 369–372.Google Scholar
  130. Rumball, W., Keogh, R.G. and Sparks, G.A. (2005) ‘Grasslands HF1’ red clover (Trifolium pratense L.) – a cultivar bred for isoflavone content. NZ J. Agricult. Res. 48, 345–347.Google Scholar
  131. Ryder, T.B., Hedrick, S.A., Bell, J.N., Liang, X.W., Clouse, S.D. and Lamb C.J. (1987) Organization and differential activation of a gene family encoding the plant defense enzyme chalcone synthase inPhaseolus vulgaris. Mol. Gen. Genet. 210, 219–233.PubMedGoogle Scholar
  132. Sallaud, C., El-Turk, J., Bigarré, L., Sevin, H., Welle, R. and Esnault, R. (1995) Nucleotide sequences of three chalcone reductase genes from alfalfa. Plant Physiol. 108, 869–870.PubMedGoogle Scholar
  133. Sawada, Y., Kinoshita, K., Akashi, T., Aoki, T. and Ayabe, S. (2002) Key amino acid residues required for aryl migration catalysed by the cytochrome P450 2-hydroxyisoflavanone synthase. Plant J. 31, 555–564.PubMedGoogle Scholar
  134. Schwinning, S. and Parsons, A.J. (1996) Analysis of the coexistence mechanisms for grasses and legumes in grazing systems. J. Ecol. 84, 799–813.Google Scholar
  135. Seitz, C., Eder, C., Deiml, B., Kellner, S., Martens, S. and Forkmann, G. (2006) Cloning, functional identification and sequence analysis of flavonoid 3 -hydroxylase and flavonoid 3 , 5 -hydroxylase cDNAs reveals independent evolution of flavonoid 3 , 5-hydroxylase in the Asteraceae family. Plant Mol. Biol. 61, 365–381.PubMedGoogle Scholar
  136. Serraj, R. (2003) Effects of drought stress on legume symbiotic nitrogen fixation: physiological mechanisms. Indian J. Exp. Biol. 41, 1136–1141.PubMedGoogle Scholar
  137. Shao, H., He, X., Achnine, L., Blount, J.W., Dixon, R.A. and Wang, X. (2005) Crystal structures of a multifunctional triterpene/flavonoid glycosyltransferases fromMedicago truncatula. Plant Cell 17, 3141–3154.PubMedGoogle Scholar
  138. Sharma, S.B. and Dixon, R.A. (2005) Metabolic engineering of proanthocyanidins by ectopic expression of transcription factors inArabidopsis thaliana. Plant J. 44, 62–75.PubMedGoogle Scholar
  139. Shimada, N., Akashi, T., Aoki, T. and Ayabe, S. (2000) Induction of isoflavonoid pathway in the model legumeLotus japonicus: molecular characterization of enzymes involved in phytoalexin biosynthesis. Plant Sci. 160, 37–47.PubMedGoogle Scholar
  140. Shimada, N., Aoki, T., Sato, S., Nakamura, Y., Tabata, S. and Ayabe, S. (2003) A cluster of genes encodes the two types of chalcone isomerase involved in the biosynthesis of general flavonoids and legume-specific 5-deoxy(iso)flavonoidsin Lotus japonicus. Plant Physiol. 131, 941–951.PubMedGoogle Scholar
  141. Shimada, N., Sasaki, R., Sato, S., Kaneko, T., Tabata, S., Aoki, T. and Ayabe, S. (2005) A comprehensive analysis of six dihydroflavonol 4-reductases encoded by a gene cluster of theLotus japonicus genome. J. Exp. Bot. 56, 2573–2585.PubMedGoogle Scholar
  142. Sivakumaran, S., Rumball, W., Lane, G.A., Fraser, K., Foo, L.Y., Yu, M. and Meagher, L.P. (2006) Variation of proanthocyanidins inLotus species. J. Chem. Ecol. 32, 1797–1816PubMedGoogle Scholar
  143. Skadhauge, B., Gruber, M.Y., Thomsen, K.K. and von Wettstein, D. (1997) Leucocyanidin reductase activity of proanthocyanidins in developing legume tissues. Am. J. Bot. 84, 494–503.Google Scholar
  144. Smil, V. (1999) Nitrogen in crop production. Global Biogeochem. Cycles 13, 647–667.Google Scholar
  145. Sreevidya, V.S., Rao, C.S., Sullia, S.B., Ladha, J.K. and Reddy, P.M. (2006) Metabolic engineering of rice with soybean isoflavone synthase for promoting nodulation gene expression in rhizobia. J. Exp. Bot. 57, 1957–1969.PubMedGoogle Scholar
  146. Steele, C.L., Gijzen, M., Qutob, D. and Dixon, R.A. (1999) Molecular characterization of the enzyme catalyzing the aryl migration reaction of isoflavonoid biosynthesis in soybean. Arch. Biochem. Biophys. 367, 146–150.PubMedGoogle Scholar
  147. Subramanian, S., Stacey, G. and Yu, O. (2006) Endogenous isoflavones are essential for the establishment of symbiosis between soybean andBradyrhizobium japonicum. Plant J. 48, 261–273.PubMedGoogle Scholar
  148. Süβ, C., Hempel, J., Zehner, S., Krause, A., Patschkowski, T. and Göttfert, M. (2006) Identification of genistein-inducible and type III-secreted proteins ofBradyrhizobium japonicum. J. Biotechnol. 126, 69–77.Google Scholar
  149. Tanner, G.J., Francki, K.T., Abrahams, S., Watson, J.M., Larkins, P.J. and Ashton, A.R. (2003). Proanthocyanidin biosynthesis in plants. Purification of legume leucoanthocyanidin reductase and molecular cloning of its cDNA. J. Biol. Chem. 278, 31647–31656.PubMedGoogle Scholar
  150. Tavendale, M.H., Meagher, L.P., Pacheco, D., Walker, N., Attwood, G.T. and Sivakumaran, S. (2005) Methane production from in vitro rumen incubations withLotus pedunculatus andMedicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim. Feed Sci. Techn. 123–124, 403–419.Google Scholar
  151. Tebayashi, S., Ishihara, A. and Iwamura, H. (2001) Elicitor-induced changes in isoflavonoid metabolism in red clover roots. J. Exp. Bot. 52, 681–689.PubMedGoogle Scholar
  152. Tian, L. and Dixon, R.A. (2006) Engineering isoflavone metabolism with an artificial bifunctional enzyme. Planta 224, 496–507.PubMedGoogle Scholar
  153. Toda, K., Akasaka, M., Dubouzet, E.G., Kawasaki, S. and Takahashi, R. (2005) Structure of flavonoid 3 -hydroxylase gene for pubescence color in soybean. Crop Sci. 45, 2212–2217.Google Scholar
  154. Tonelli, C., Consonni, G., Dolfini, S.F., Dellaporta, S.L., Viotti, A. and Gavazzi, G. (1991) Genetic and molecular analysis of Sn, a light-inducible, tissue specific regulatory gene in maize. Mol. Gen. Genet. 225, 401–410.PubMedGoogle Scholar
  155. Turnbull, J.J., Sobey, W.J., Aplin, R.T., Hassan, A., Firmin, J.L., Schofield, C.J. and Prescott, A.G. (2000) Are anthocyanidins the immediate products of anthocyanidin synthase? Chem. Commun. 2000, 2473–2474.Google Scholar
  156. Turnbull, J.J., Nakajima, J., Welford, R.W.D., Yamazaki, M., Saito, K. and Schofield, C.J. (2004) Mechanistic studies on three 2-oxoglutarate-dependent oxygenases of flavonoid biosynthesis. J. Biol. Chem. 279, 1206–1216.PubMedGoogle Scholar
  157. Volpin, H., Phillips, D.A., Okon, Y. and Kapulnik, Y. (1995) Suppression of an isoflavonoid phytoalexin defense response in mycorrhizal alfalfa roots. Plant Physiol. 108, 1449–1454.PubMedGoogle Scholar
  158. Wasson, A.P., Pellerone, F.I. and Mathesius, U. (2006) Silencing the flavonoid pathway inMedicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. Plant Cell. 18, 1617–1629.PubMedGoogle Scholar
  159. Welle, R., Schröder, G., Schlitz, E., Grisebach, H. and Schröder, J. (1991) Induced plant responses to pathogen attack. Analysis and heterologous expression of the key enzyme in the biosynthesis of phytoalexins in soybean (Glycine max L. Merr. Cv. Harosoy 63). Eur. J. Biochem. 196, 423–430.PubMedGoogle Scholar
  160. Wellmann, F., Griesser, M., Schwab, W., Martens, S., Eisenreich, W., Matern, U. and Lukacin, R. (2006). Anthocyanidin synthase fromGerbera hybrida catalyzes the conversion of (+)-catechin to cyanidin and a novel procyanidin. FEBS Lett. 580, 1642–1648.PubMedGoogle Scholar
  161. Williams, W.M., Verry, I.M. and Ellison, N.W. (2006) A phylogenetic approach to germplasm use in clover breeding. In: C.F. Mercer (Ed.)Breeding for Success: Diversity in Action.Proceedings of the 13th Australasian Plant Breeding Conference, Christchurch, New Zealand, pp. 966–971.Google Scholar
  162. Wingender, R., Röhrig, H., Höricke, C., Wing, D. and Schell, J. (1989) Differential regulation of soybean chalcone synthase genes in plant defence, symbiosis and upon environmental stimuli. Mol. Gen. Genet. 218, 315–322.PubMedGoogle Scholar
  163. Winkel, B.S.J. (2004) Metabolic channeling in plants. Annu. Rev. Plant Biol. 55, 85–107.PubMedGoogle Scholar
  164. Winkel-Shirley, B. (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 126, 485–493.PubMedGoogle Scholar
  165. Wollenweber, B., Porter, J.R. and Lübberstedt, T. (2005) Need for multidisciplinary research towards a second green revolution. Curr. Opin. Plant Biol. 8, 337–341.PubMedGoogle Scholar
  166. Wood, A.J. and Davies, E. (1994) A cDNA encoding chalcone isomerase from aged pea epicotyls. Plant Physiol. 104, 1465–1466.PubMedGoogle Scholar
  167. Xie, D.Y., Sharma, S.B., Paiva, N.L., Ferreira, D. and Dixon, R.A. (2003) Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299, 396–399.PubMedGoogle Scholar
  168. Xie, D.Y., Jackson, L.A., Cooper, J.D., Ferreira, D. and Paiva, N.L. (2004a) Molecular and biochemical analysis of two cDNA clones encoding dihydroflavonol-4-reductase fromMedicago truncatula. Plant Physiol. 134, 979–994.Google Scholar
  169. Xie, D.Y., Sharma, S.B. and Dixon, R.A. (2004b) Anthocyanidin reductases fromMedicago truncatula andArabidopsis thaliana. Arch. Biochem. Biophys. 422, 91–102.Google Scholar
  170. Xie, D.Y., Sharma, S.B., Wright, E., Wang, Z.Y. and Dixon, R.A. (2006) Metabolic engineering of proanthocyanidins through co-expression of anthocyanidin reductase and the PAP1 MYB transcription factor. Plant J. 45, 895–907.PubMedGoogle Scholar
  171. Yu, O., Jung, W., Shi, J., Croes, R.A., Fader, G.M., McGonigle, B. and Odell, J.T. (2000) Production of the isoflavones genistein and daidzein in non-legume dicot and monocot tissues. Plant Physiol. 124, 781–793.PubMedGoogle Scholar
  172. Yu, O., Shi, J., Hession, A.O., Maxwell, C.A., McGonigle, B. and Odell, J.T. (2003) Metabolic engineering to increase isoflavone biosynthesis in soybean seed. Phytochemistry 63, 753–763.PubMedGoogle Scholar
  173. Zabala, G. and Vodkin, L.O. (2005). The wp mutation ofGlycine max carries a gene-fragment-rich transposon of the CACTA superfamily. Plant Cell 17, 2619–2632.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.AgResearch GrasslandsPalmerston North

Personalised recommendations