Skip to main content

Biosynthesis and Manipulation of Flavonoids in Forage Legumes

  • Chapter
  • First Online:
Book cover Anthocyanins
  • 3457 Accesses

Abstract

Legumes are second only to the Gramineae in their importance to the food and pastoral industry, providing a large proportion of dietary proteins and oils to humans and animals. Their ability to associate with symbiotic rhizobia and the resulting fixation of atmospheric nitrogen makes legumes invaluable for the provision of nitrogen to agricultural systems. Two classes of flavonoids are of prominent importance in legumes: proanthocyanidins for their beneficial effects on animals and the environment; and isoflavonoids for their functions in plant protection and as symbiotic signaling molecules. This chapter presents an overview on the function, biosynthesis and structure of flavonols, anthocyanidins, proanthocyanidins and isoflavonoids in forage and other legumes. Strategies employing genetic modification or conventional breeding techniques to manipulate specific flavonoids in these plants are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahams, S., Tanner, G.J., Larkin, P.J. and Ashton, A.R. (2002) Identification and biochemical characterization of mutants in the proanthocyanidin pathway inArabidopsis. Plant Physiol. 130, 561–576.

    PubMed  CAS  Google Scholar 

  • Achnine, L., Huhman, D.V., Farag, M.A., Sumner, L.W., Blount, J.W. and Dixon, R.A. (2005) Genomics-based selection and functional characterization of triterpene glycosyltransferases from the model legumeMedicago truncatula. Plant J. 41, 875–887.

    PubMed  CAS  Google Scholar 

  • Adams, N.R. (1990) Permanent infertility in ewes exposed to plant oestrogens. Aust. Vet. J. 67, 197–201.

    PubMed  CAS  Google Scholar 

  • Adams, N.R. (1995) Detection of the effects of phytoestrogens on sheep and cattle. J. Animal. Sci. 73, 1509–1515.

    CAS  Google Scholar 

  • Aerts, R.J., Barry, T.N. and McNabb, W.C. (1999) Polyphenols and agriculture: beneficial effects of proanthocyanidins in forages. Agricult. Ecosyst. Environm. 75, 1–12.

    CAS  Google Scholar 

  • Akashi, T., Aoki, T. and Ayabe, S. (1998) CYP81E1, a cytochrome P450 cDNA of licorice (Glycyrrhiza echinata L.) encodes isoflavone 2 -hydroxylase. Biochem. Biophys. Res. Commun. 251, 67–70.

    PubMed  CAS  Google Scholar 

  • Akashi, T., Aoki, T. and Ayabe, S. (1999) Cloning and functional expression of a cytochrome P450 cDNA encoding 2-hydroxyisoflavanone synthase involved in biosynthesis of the isoflavonoid skeleton in licorice. Plant Physiol. 121, 821–828.

    PubMed  CAS  Google Scholar 

  • Akashi, T., Sawada, Y., Shimada, N., Sakurai, N., Aoki, T. and Ayabe, S. (2003) cDNA cloning and biochemical characterization of S-adenosyl-L-methionine: 2, 7, 4-trihydroxyisoflavanone 4 -O-methyltransferase, a critical enzyme of the legume isoflavonoid phytoalexin pathway. Plant Cell Physiol. 44, 103–112.

    PubMed  CAS  Google Scholar 

  • Akashi, T., Aoki, T. and Ayabe, S. (2005) Molecular and biochemical characterization of 2-hydroxyisoflavanone dehydratase. Involvement of carboxylesterase-like proteins in leguminous isoflavone biosynthesis. Plant Physiol. 137, 882–891.

    PubMed  CAS  Google Scholar 

  • Akashi, T., Koshimizu, S., Aoki, T. and Ayabe, S. (2006) Identification of cDNAs encoding pterocarpan reductase involved in isoflavan phytoalexin biosynthesis inLotus japonicus by EST mining. FEBS Lett. 580, 5666–5670.

    PubMed  CAS  Google Scholar 

  • Arioli, T., Howles, P.A., Weinman, J.J. and Rolfe, B.G. (1994) InTrifolium subterraneum, chalcone synthase is encoded by a multigene family. Gene. 138, 79–86.

    PubMed  CAS  Google Scholar 

  • Austin, M.B. and Noel, J.P. (2003) The chalcone synthase superfamily of type III polyketide synthases. Nat. Prod. Rep. 20, 79–110.

    PubMed  CAS  Google Scholar 

  • Baldridge, G.D., O’Neill, N.R., Samac, D.A. (1998) Alfalfa (Medicago sativa L.) resistance to the root lesion nematode, Pratylenchus pendrans: defense response gene mRVA and isoFlavonoid phytoaloxin levels in roots. Plant Mol Biol. 38, 999–1010.

    PubMed  CAS  Google Scholar 

  • Ballance, G.M. and Dixon, R.A. (1995)Medicago sativa cDNAs encoding chalcone reductase. Plant Physiol. 107, 1027–1028.

    PubMed  CAS  Google Scholar 

  • Bavage, A., Davies, I.G., Robbins, M.P. and Morris, P. (1997) Expression of anAntirrhinum dihydroflavonol reductase gene results in changes in condensed tannin structure and accumulation in root cultures ofLotus corniculatus (bird’s foot trefoil). Plant Mol. Biol. 35, 443–458.

    PubMed  CAS  Google Scholar 

  • Beck, V., Rohr, U. and Jungbauer, A. (2005) Phytoestrogens derived from red clover: an alternative to estrogen replacement therapy? J. Steroid Biochem. Mol. Biol. 94, 499–518.

    PubMed  CAS  Google Scholar 

  • Blyden, E.R., Doerner, P.W., Lamb, C.J. and Dixon, R.A. (1991) Sequence analysis of a chalcone isomerase cDNA ofPhaseolus vulgaris L. Plant Mol. Biol. 16, 167–169.

    PubMed  CAS  Google Scholar 

  • Bomati, E.K., Austin, M.B., Bowman, M.E., Dixon, R.A. and Noel, J.P. (2005) Structural elucidation of chalcone reductase and implications for deoxychalcone biosynthesis. J. Biol. Chem. 280, 30496–30503.

    PubMed  CAS  Google Scholar 

  • Bonde, M.R., Millar, R.L. and Ingham, J.L. (1973) Induction and identification of sativan and vestitol as two phytoalexins fromLotus corniculatus. Phytochemistry 12, 2957–2959.

    CAS  Google Scholar 

  • Borevitz, J., Xia, Y., Blount, J.W., Dixon, R.A. and Lamb, C. (2001) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12, 2383–2393.

    Google Scholar 

  • Bowles, D., Isayenkova, J., Lim, E.-K. and Poppenberger, B. (2005) Glycosyltransferases: managers of small molecules. Curr. Opin. Plant Biol. 8, 254–263.

    PubMed  CAS  Google Scholar 

  • Broun, P. (2005) Transcriptional control of flavonoid biosynthesis: a complex network of conserved regulators involved in multiple aspects of differentiation in Arabidopsis. Curr. Opin. Plant Biol. 8, 272–279.

    PubMed  CAS  Google Scholar 

  • Carron, T.R., Robbins, M.P. and Morris, P. (1994) Genetic modification of condensed tannin biosynthesis inLotus corniculatus. 1. Heterologous antisense dihydroflavonol reductase down-regulates tannin accumulation in ‘hairy root’ cultures. Theor. Appl. Genet. 87, 1006–1015.

    CAS  Google Scholar 

  • Charrier, B., Coronado, C, Kondorosi, A. and Ratet, P. (1995) Molecular characterization and expression of alfalfa (Medicago sativa L.) flavanone 3-hydroxylase and dihydroflavonol-4-reductase encoding genes. Plant Mol. Biol. 29, 773–786.

    PubMed  CAS  Google Scholar 

  • Christensen, A.B., Gregersen, P.L., Schröder, J. and Collinge, D.B. (1998) A chalcone synthase with an unusual substrate preference is expressed in barley leaves in response to UV light and pathogen attack. Plant Mol. Biol. 37, 849–857.

    PubMed  CAS  Google Scholar 

  • Colliver, S.P., Morris, P. and Robbins, M.P. (1997) Differential modification of flavonoid and isoflavonoid biosynthesis with an antisense chalcone synthase construct in transgenicLotus corniculatus. Plant Mol. Biol. 35, 509–522.

    PubMed  CAS  Google Scholar 

  • Cooper, J.E. (2004) Multiple responses of rhizobia to flavonoids during legume root infection. Adv. Bot. Res. 41, 1–62.

    CAS  Google Scholar 

  • Cornwell, T., Cohick, W. and Raskin, I. (2004) Dietary phytoestrogens and health. Phytochemistry 65, 995–1016.

    PubMed  CAS  Google Scholar 

  • Coronado, C., Zuanazzi, J.A.S., Sallaud, C., Quirion, J., Esnault, R., Husson, H., Kondorosi, A. and Ratet, P. (1995) Alfalfa root flavonoid production is nitrogen regulated. Plant Physiol. 108, 533–542.

    PubMed  CAS  Google Scholar 

  • Coulman, B., Goplen, B., Majak, W., McAllister, T., Cheng, K.-J., Berg, B., Hall, J., McCartney, D. and Acharya, S. (2000) A review of the development of a bloat-reduced alfalfa cultivar. Can. J. Plant Sci. 80, 487–491.

    Google Scholar 

  • Crush, J.R., Gerard, P.J. and Rasmussen, S. (2006) Formononetin in clovers as a feeding deterrent against clover root weevil. . In: C.F. Mercer (Ed.)Breeding for Success: Diversity in Action. Proceedings of the 13th Australasian Plant Breeding Conference, Christchurch, New Zealand, pp. 1066–1072.

    Google Scholar 

  • Dae, K., Bong, K., Hyo, L., Yoongho, L., Hor, H. and Joong-Hoon, A. (2005) Enhancement of isoflavone synthase activity by co-expression of P450 reductase from rice. Biotechnol. Lett. 27, 1291–1294.

    Google Scholar 

  • Dakora, F.D. and Phillips, D.A. (1996) Diverse functions of isoflavonoids in legumes transcend anti-microbial definitions of phytoalexins. Physiol. Mol. Plant Pathol. 49, 1–20.

    CAS  Google Scholar 

  • Damiani, F., Paolocci, F., Cluster, P.D., Arcioni, S., Tanner, G.J., Joseph, R.G., Li, Y.G., de Majnik, J. and Larkin, P.J. (1999) The maize transcription factor Sn alters proanthocyanidin synthesis in transgenicLotus corniculatus plants. Aust. J. Plant Physiol. 26, 159–169.

    CAS  Google Scholar 

  • Deavours, B.E. and Dixon, R.A. (2005) Metabolic engineering of isoflavonoid biosynthesis in alfalfa. Plant Physiol. 138, 2245–2259.

    PubMed  CAS  Google Scholar 

  • Debeaujon, I., Leon-Kloosterziel, K.M. and Koornneef, M. (2000) Influence of the testa on seed dormancy, germination and longevity inArabidopsis. Plant Physiol. 122, 403–413.

    PubMed  CAS  Google Scholar 

  • Dewick, P.M. and Ward, D. (1978) Isoflavone precursors of the pterocarpans phytoalexin maackiain inTrifolium pratense. Phytochemistry 17, 1751–1754.

    CAS  Google Scholar 

  • Dixon, R.A., Blyden, E.R., Robbins, M.P., Van Tunen, A.J. and Mol, J.N. (1988) Comparative biochemistry of chalcone isomerases. Phytochemistry 27, 2801–2808.

    CAS  Google Scholar 

  • Dixon, R.A. (2004) Phytoestrogens. Annu. Rev. Plant Biol. 55, 225–261.

    PubMed  CAS  Google Scholar 

  • Dixon, R.A., Xie, D.-Y. and Sharma, S.B. (2005) Proanthocyanidins – a final frontier in flavonoid research? New Phytol. 165, 9–28.

    PubMed  CAS  Google Scholar 

  • Edwards, E.J., McCaffery, S. and Evans, J.R. (2006) Phosphorus availability and elevated CO2 affect biological nitrogen fixation and nutrient fluxes in a clover-dominated sward. New Phytol. 169, 157–167.

    PubMed  CAS  Google Scholar 

  • Ellison, N.W., Liston, A., Steiner, J.J., Williams, W.M. and Taylor, N.L. (2006) Molecular phylogenetics of the clover genus (Trifolium – Leguminosae). Mol. Phylogenet. Evol. 39, 688–705.

    PubMed  CAS  Google Scholar 

  • Fischer, D., Ebenau-Jehle, C. and Grisebach, H. (1990) Phytoalexin synthesis in soybean: purification and characterization of NADPH: 2 -hydroxydaidzein oxidoreductase from elicitor-challenged soybean cell cultures. Arch. Biochem. Biophys. 276, 390–395.

    PubMed  CAS  Google Scholar 

  • Foo, L.Y., Lu, Y., Molan, A.L., Woodfield, D.R. and McNabb, W.C. (2000) The phenols and prodelphinidins of white clover flowers. Phytochemistry 54, 539–548.

    PubMed  CAS  Google Scholar 

  • Fridman, E. and Pichersky, E. (2005) Metabolomics, genomics, proteomics, and the identification of enzymes and their substrates and products. Curr. Opin. Plant Biol. 8, 242–248.

    PubMed  CAS  Google Scholar 

  • Gerard, P.J., Crush, J.R. and Hackell, D.I. (2005) Interaction betweenSitona lepidus and red clover lines selected for formononetin content. Ann. Appl. Biol. 147, 173–181.

    Google Scholar 

  • Geurts, R. and Bisseling, T. (2002)Rhizobium nod factor perception and signaling. Plant Cell 14, S239–S249.

    PubMed  CAS  Google Scholar 

  • Goormachtig, S., Lievens, S., Herman, S., van Montagu, M. and Holsters, M. (1999) Chalcone reductase-homologous transcripts accumulate during development of stem-borne nodules on the tropical legumeSesbania rostrata. Planta 209, 45–52.

    PubMed  CAS  Google Scholar 

  • Gould, K.S. (2004) Nature’s Swiss army knife: the diverse protective roles of anthocyanins in leaves. J. Biomed. Biotechnol. 5, 314–320.

    Google Scholar 

  • Graham, P.H. and Vance, C.P. (2000) Nitrogen fixation in perspective: an overview of research and extension needs. Field Crops Res. 65, 93–106.

    Google Scholar 

  • Graham, P.H. and Vance C.P. (2003) Legumes: importance and constraints to greater use. Plant Physiol. 131, 872–877.

    PubMed  CAS  Google Scholar 

  • Guo, L., Dixon, R.A. and Paiva, N.L. (1994a) The ‘pterocarpan synthase’ of alfalfa: association and co-induction of vestitone reductase and 7,2 -dihydroxy-4 -methoxy-isoflavonol (DMI) dehydratase, the two final enzymes in medicarpin biosynthesis. FEBS Lett. 356, 221–225.

    CAS  Google Scholar 

  • Guo, L., Dixon, R.A. and Paiva, N.L. (1994b) Conversion of vestitone to medicarpin in alfalfa (Medicago sativa L.) is catalyzed by two independent enzymes. J. Biol. Chem. 269, 22372–22378.

    CAS  Google Scholar 

  • Guo, L. and Paiva, N.L. (1995) Molecular cloning and expression of alfalfa (Medicago sativa L.) vestitone reductase, the penultimate enzyme in medicarpin biosynthesis. Arch. Biochem. Biophys. 320, 353–360.

    PubMed  CAS  Google Scholar 

  • Hamilton, J.G., Zangerl, A.R., DeLucia, E.H. and Berenbaum, M.R. (2001) The carbon-nutrient balance hypothesis: its rise and fall. Ecol. Lett. 4, 86–95.

    Google Scholar 

  • Hashim, M.F., Hakamatsuka, T., Ebizuka, Y. and Sankawa, U. (1999) Reaction mechanism of oxidative rearrangement of flavanone in isoflavone biosynthesis. FEBS Lett. 271, 219–222.

    Google Scholar 

  • He, X., Reddy, J.T. and Dixon, R.A. (1998) Stress responses in alfalfa (Medicago sativa L.). XXII. cDNA cloning and characterization of an elicitor-inducible isoflavone 7-O-methyltransferase. Plant Mol. Biol. 36, 43–54.

    PubMed  CAS  Google Scholar 

  • He, X. and Dixon, R.A. (2000) Genetic manipulation of isoflavone 7-O-methyltransferase enhances biosynthesis of 4 -O-methylated isoflavonoid phytoalexins and disease resistance in alfalfa. Plant Cell 12, 1689–1702.

    PubMed  CAS  Google Scholar 

  • Higgins, V.J. (1972) Role of the phytoalexin medicarpin in three leaf spot diseases of alfalfa. Physiol. Plant Pathol. 2, 289–300.

    CAS  Google Scholar 

  • Hofmann, R.W., Swinny, E.E., Bloor, S.J., Markham, K.R., Ryan, K.G., Campbell, B.D., Jordan, B.R. and Fountain, D.W. (2000) Responses of nineTrifolium repens L. populations to ultraviolet-B radiation: Differential flavonol glycoside accumulation and biomass production. Ann. Bot. 86, 527–537.

    CAS  Google Scholar 

  • Hofmann, R.W., Campbell, B.D., Fountain, D.W., Jordan, B.R., Greer, D.H., Hunt, D.Y. and Hunt, C.L. (2001) Multivariate analysis of intraspecific responses to UV-B radiation in white clover (Trifolium repens L.). Plant, Cell Environ. 24, 917–927.

    Google Scholar 

  • Hofmann, R.W., Campbell, B.D., Bloor, S.J., Swinny, E.E., Markham, K.R., Ryan, K.G. and Fountain, D.W. (2003) Responses to UV-B radiation inTrifolium repens L. – physiological links to plant productivity and water availability. Plant, Cell Environ. 26, 603–612.

    CAS  Google Scholar 

  • Horigome, T., Kumar, R. and Okamoto, K. (1988) Effects of condensed tannins prepared from leaves of fodder plants on digestive enzymesin vitro and in the intestine of rats. Br. J. Nutr. 60, 275–285.

    PubMed  CAS  Google Scholar 

  • Hsieh, M.-C. and Graham, T.L. (2001) Partial purification and characterization of a soybeanβ-glucosidase with high specific activity towards isoflavone conjugates. Phytochemistry 58, 995–1005.

    PubMed  CAS  Google Scholar 

  • Ingham, J.L. (1977) Isoflavan phytoalexins fromAnthyllis,Lotus andTetragonolobus. Phytochemistry 16, 1279–1282.

    CAS  Google Scholar 

  • Ito, M., Ichinose, Y., Kato, H., Shiraishi, T. and Yamada, T. (1997) Molecular evolution and functional relevance of the chalcone synthase genes of pea. Mol. Gen. Genet. 255, 28–37.

    PubMed  CAS  Google Scholar 

  • Jez, J.M., Bowman, M.E. and Noel, J.P. (2002) Expanding the biosynthetic repertoire of plant type III polyketide synthases by altering starter molecule specificity. Proc. Natl. Acad. Sci. U.S.A. 99, 5319–5324.

    PubMed  CAS  Google Scholar 

  • Jez, J.T. and Noel J.P. (2002) Reaction mechanism of chalcone isomerase – pH dependence, diffusion control, and product binding differences. J. Biol. Chem. 277, 1361–1369.

    PubMed  CAS  Google Scholar 

  • Johnson, E.T., Ryu, S., Yi, H., Shin, B., Cheong, H. and Choi, G. (2001) Alteration of a single amino acid changes the substrate specificity of dihydroflavonol 4-reductase. Plant J. 25, 325–333.

    PubMed  CAS  Google Scholar 

  • Johnson, S.N., Gregory, P.J., Greenham, J.R., Zhang, X. and Murray, P.J. (2005). Attractive properties of an isoflavonoid found in white clover root nodules on the clover root weevil. J. Chem. Ecol. 31, 2223–2229.

    PubMed  CAS  Google Scholar 

  • Jones, C.S., Williams, W.M., Hancock, K.R., Ellison, N.E., Scott, A.G., Collette, V.E., Jahufer, M.Z.Z., Richardson, K.A., Hay, M.J.M., Rasmussen, S., Jones, C.G. and Griffiths, A.G. (2006) Pastoral genomics – a foray into the clover genome. In: C.F. Mercer (Ed.)Breeding for Success: Diversity in Action. Proceedings of the 13th Australasian Plant Breeding Conference, Christchurch, New Zealand, XXX.

    Google Scholar 

  • Jørgensen, K., Rasmussen, A.V., Morant, M., Nielsen, A.H., Bjarnholt, N., Zagrobelny, M., Bak, S. and Møller, B.L. (2005) Metabolon formation and metabolic channeling in the biosynthesis of plant natural products. Curr. Opin. Plant Biol. 8, 280–291.

    PubMed  Google Scholar 

  • Joung, J., Kasthuri, G.M., Park, J., Kang, W., Kim, H., Yoon, B., Joung, H. and Jeon, J. (2003) An Overexpression of chalcone reductase ofPueraria montana var.lobata alters biosynthesis of anthocyanin and 5 -deoxyflavonoids in transgenic tobacco. Biochem. Biophys. Res. Commun. 303, 326–331.

    PubMed  CAS  Google Scholar 

  • Jung, W., Yu, O., Lau, S.C., O’Keefe, D.P., Odell, J., Fader, G. and McGonigle, B. (2000) Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nature Biotech. 18, 208–212.

    CAS  Google Scholar 

  • Jung, W., Chung, I.-M. and Heo, H.-Y. (2003) Manipulating isoflavone levels in plants. Plant Biotechnol. J. 5, 149–155.

    Google Scholar 

  • Kape, R., Parniske, M., Brandt, S. and Werner, D. (1992) Isoliquiritigenin, a strong nod gene- and glyceollin resistance-inducing flavonoid from soybean root exudate. Appl. Environm. Microbiol. 58, 1705–1710.

    CAS  Google Scholar 

  • Karban, R., Agrawal, A.A. and Mangel, M. (1997) The benefits of induced defenses against herbivores. Ecol. 78, 1351–1355.

    Google Scholar 

  • Karban, R., Agrawal, A.A., Thaler, J.S. and Adler, L.S. (1999) Induced plant responses and information content about risk of herbivory. Trends Ecol. Evol. 14, 443–447.

    PubMed  Google Scholar 

  • Koes, R., Verweij, W. and Quattrocchio, F. (2005) Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends in Plant Sci. 10, 236–242.

    CAS  Google Scholar 

  • Kubo, A., Arai, Y., Nagashima, S. and Yoshikawa, T. (2004) Alteration of sugar donor specificities of plant glycosyltransferases by a single point mutation. Arch. Biochem. Biophys. 429, 198–203.

    PubMed  CAS  Google Scholar 

  • Kutchan, T.M. (2005) A role for intra- and intercellular translocation in natural product biosynthesis. Curr. Opin. Plant Biol. 8, 292–300.

    PubMed  CAS  Google Scholar 

  • Li, Y.G., Tanner, G. and Larkin, P. (1996) The DMACA-HCl. Protocol and the threshold proanthocyanidin content for bloat safety in forage legumes. J. Sci. Food Agric. 70, 89–101.

    CAS  Google Scholar 

  • Li, Y.-G., Tanner, G.J., Delves, A.C. and Larkin, P.J. (1993) Asymmetric somatic hybrid plants betweenMedicago sativa L. (alfalfa, lucerne) and Onobrychis viciifolia Scop. sanfoin. Theor. Appl. Genet. 87, 455–463.

    Google Scholar 

  • Liao, H., Wan, H., Shaff, J., Wang, X., Yan, X. and Kochian, L.V. (2006) Phosphorus and aluminum interactions in soybean in relation to aluminum tolerance. Exudation of specific organic acids from different regions of the intact root system. Plant Physiol. 141, 674–684.

    PubMed  CAS  Google Scholar 

  • Lin, L.-Z., He, X.-G., Lindenmaier, M., Yang, J., Cleary, M., Qiu, S.-X. and Cordell, G.A. (2000) LC-ESI-MS study of the flavonoid glycoside malonates of red clover (Trifolium pratense). J. Agric. Food Chem. 48, 354–365.

    PubMed  CAS  Google Scholar 

  • Liu, C. and Dixon, R.A. (2001) Elicitor-induced association of isoflavone O-methyltransferase with endomembranes prevents the formation and 7-O-methylation of daidzein during isoflavonoid phytoalexin biosynthesis. Plant Cell 13, 2643–2658.

    PubMed  CAS  Google Scholar 

  • Liu, C, Blount, J.W., Steele, C.L. and Dixon, R.A. (2002) Bottlenecks for metabolic engineering of isoflavone glycoconjugates in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 99, 14578–14583.

    PubMed  CAS  Google Scholar 

  • Liu, C., Huhman, D., Sumner, L.W. and Dixon, R.A. (2003) Regiospecific hydroxylation of isoflavones by cytochrome P450 81E enzymes fromMedicago truncatula. Plant J. 36, 471–484.

    PubMed  CAS  Google Scholar 

  • Ludwig, S.R., Habera, L.F., Dellaporta, S.L. and Wessler, S.R. (1989) Lc, a member of the maize R gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc-homology region. Proc. Natl. Acad. Sci. U.S.A. 86, 7092–7096.

    PubMed  CAS  Google Scholar 

  • De Majnik, J., Weinman, J.J., Djordjevic, M.A., Rolfe, B.G., Tanner, G.J., Joseph, R.G. and Larkin, P.J. (2000) Anthocyanin regulatory gene expression in transgenic white clover can result in an altered pattern of pigmentation. Aust. J. Plant Physiol. 27, 659–667.

    Google Scholar 

  • Marles, M.A.S., Ray, H., Ad Gruber, M.Y. (2003) New perspectives on proanthocyanidin biochemistry and molecular regulation. Phytochemistry 64, 367–383.

    PubMed  CAS  Google Scholar 

  • Marley, C.L., Cook, R., Barrett, J., Keatinge, R. and Lampkin, N.H. (2006) The effects of birdsfoot trefoil (Lotus corniculatus) and chicory (Cichorium intybus) when compared with perennial ryegrass (Lolium perenne) on ovine gastrointestinal parasite development, survival and migration. Vet. Parasitol. 138, 280–290.

    PubMed  CAS  Google Scholar 

  • Martens, S., Teeri, T. and Forkmann, G. (2002) Heterologous expression of dihydroflavonol 4-reductases from various plants. FEBS Lett. 531, 453–458.

    PubMed  CAS  Google Scholar 

  • Mathesius, U. (2001) Flavonoids induced in cells undergoing nodule organogenesis in white clover are regulators of auxin breakdown by peroxidase. J. Exp. Bot. 52, 419–426.

    PubMed  CAS  Google Scholar 

  • Mauricio, R., Rausher, M.D. and Burdick, D.S. (1997) Variation in the defense strategies of plants: are resistance and tolerance mutually exclusive? Ecol. 78, 1301–1311.

    Google Scholar 

  • Maxwell, C.A. and Phillips, D.A. (1990) Concurrent synthesis and release ofnod-gene-inducing flavonoids from alfalfa roots. Plant Physiol. 93, 1551–1558.

    Google Scholar 

  • Maxwell, C.A., Harrison, M.J. and Dixon, R.A. (1993) Molecular characterization and expression of alfalfa isoliquiritigenin 2 -O-methyltransferase, an enzyme specifically involved in the biosynthesis of an inducer ofRhizobium meliloti nodulation genes. Plant J. 4, 971–981.

    PubMed  CAS  Google Scholar 

  • Maxwell, C.A., Restrepo-Hartwig, M.A., Hession, A.O. and McGonigle, B. (2005) Metabolic Engineering of soybean for improved flavor and health benefits. In: J.T.Romeo (Ed.)Recent Advances in Phytochemistry- Vol. 38. Secondary Metabolism in Model Systems, pp. 153–176.

    Google Scholar 

  • McKhann, H.I. and Hirsch, A.M. (1994) Isolation of chalcone synthase and chalcone isomerase cDNAs from alfalfa (Medicago sativa L.): highest transcript levels occur in young roots and root tips. Plant Mol. Biol. 24, 767–777.

    PubMed  CAS  Google Scholar 

  • McMahon, L.R., McAllister, T.A., Berg, B.P., Majak, W., Acharya, S.N., Popp, J.D., Coulman, B.E., Wang, Y. and Cheng, K.-J. (2000) A review of the effects of forage condensed tannins on ruminal fermentation and bloat in grazing cattle. Can. J. Plant Sci. 80, 469–485.

    CAS  Google Scholar 

  • Meagher, L.P., Widdup, K., Sivakumaran, S., Lucas, R. and Rumball, W. (2006) FloralTrifolium proanthocyanidins: Polyphenol formation and compositional diversity. J. Agric. Food Chem. 54, 5482–5488.

    PubMed  CAS  Google Scholar 

  • Morreel, K., Goeminne, G., Storme, V., Sterck, L., Ralph, J., Coppieters, W., Breyne, P., Steenackers, M., Georges, M., Messens, E. and Boerjan, W. (2006) Genetical metabolomics of flavonoid biosynthesis inPopulus: a case study. Plant J. 47, 224–237.

    PubMed  CAS  Google Scholar 

  • Nagashima, S., Inagaki, R., Kubo, A., Hirotani, M. and Yoshikawa, T. (2004) cDNA cloning and expression of isoflavonoid-specific glucosyltransferase fromGlycyrrhiza echinata cell-suspension cultures. Planta 218, 456–459.

    PubMed  CAS  Google Scholar 

  • Nair, M.G., Safir, G.R. and Siqueira, J.O. (1991) Isolation and identification of vesicular-arbuscular mycorrhiza-stimulatory compounds from clover (Trifolium repens) roots. Appl. Environ. Microbiol. 57, 434–439.

    PubMed  CAS  Google Scholar 

  • Nakajima, J., Tanaka, Y., Yamazaki, M. and Saito, K. (2001) Reaction mechanism from leucoanthocyanidin to anthocyanidin 3-glucoside, a key reaction for coloring in anthocyanin biosynthesis. J. Biol. Chem. 276, 25797–25803.

    PubMed  CAS  Google Scholar 

  • Nakajima, J., Sato, Y., Hoshino, T., Yamazaki, M. and Saito, K. (2006) Mechanistic study on the oxidation of anthocyanidin synthase by quantum mechanical calculation. J. Biol. Chem. 281, 21387–21398.

    PubMed  CAS  Google Scholar 

  • Nesi, N., Jond, C., Debeaujon, I., Caboche, M. and Lepiniec, L. (2001) TheArabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell 13, 2099–2114.

    PubMed  CAS  Google Scholar 

  • Nguyen, T.M., van Binh, D. and ørskov, E.R. (2005) Effect of foliages containing condensed tannins on gastrointestinal parasites. Anim. Feed Sci. Techn. 121, 77–87.

    CAS  Google Scholar 

  • Nielsen, K.M. and Podivinsky, E. (1997) cDNA cloning and endogenous expression of a flavonoid 3 5 -hydroxylase from petals of lisianthus (Eustoma grandiflorum). Plant Sci. 129, 167–174.

    CAS  Google Scholar 

  • Paiva, N.L., Edwards, R., Sun, Y., Hrazdina, G. and Dixon, R.A. (1991) Stress responses in alfalfa (Medicago sativa L.) 11. Molecular cloning and expression of alfalfa isoflavone reductase, a key enzyme of isoflavonoid phytoalexin biosynthesis. Plant Mol. Biol. 17, 653–667.

    PubMed  CAS  Google Scholar 

  • Paolocci, Bovone, Tosti, Arcioni and Damiani (2005) Light and an exogenous transcription factor qualitatively and quantitatively affect the biosynthetic pathway of condensed tannins inLotus corniculatus leaves. J. Exp. Bot. 56, 1093–1103.

    Google Scholar 

  • Paquette, S., Lindberg Møller, B. and Bak, S. (2003) On the origin of family 1 plant glycosyltransferases. Phytochemistry. 62, 399–413.

    PubMed  CAS  Google Scholar 

  • Paz-Ares, J., Ghosal, D. and Saedler, H. (1990) Molecular analysis of the C1-l allele fromZea mays: a dominant mutant of the regulatory C1 locus. EMBO J. 9, 315–321.

    PubMed  CAS  Google Scholar 

  • Peng, Y.Y. and Ye, J.N. (2006) Determination of isoflavones in red clover by capillary electrophoresis with electrochemical detection. Fitoter. 77, 171–178.

    CAS  Google Scholar 

  • Pfeiffer, J., Kühnel, C., Brandt, J., Duy, D., Punyasiri, P.A.N., Forkmann, G. and Fischer, T.C. (2006) Biosynthesis of flavan 3-ols by leucoanthocyanidin 4-reductases and anthocyanidin reductases in leaves of grape (Vitis vinifera L.), apple (Malus x domestica Borkh.) and other crops. Plant Physiol. Biochem. 44, 323–334.

    PubMed  CAS  Google Scholar 

  • Piersen, C.E. (2003) Phytoestrogens in botanical dietary supplements: implications for cancer. Integrat. Cancer Therap. 2, 120–138.

    CAS  Google Scholar 

  • Pislewska, M., Bednarek, P., Stobiecki, M., Zielinski, M. and Wojtaszek, P. (2002) Cell wall-associated isoflavonoids and β -glucosidase activity inLupinus albus plants responding to environmental stimuli. Plant, Cell Environ. 25, 29–40.

    CAS  Google Scholar 

  • Porter, L.J. and Woodruffe, J. (1984) Haemanalysis: the relative astringency of proanthocyanidin polymers. Phytochemistry 23, 1255–1256.

    CAS  Google Scholar 

  • Quesenberry, K.H., Smith, R.R., Taylor, N.L., Baltensperger, D.D. and Parrott, W.A. (1991) Genetic nomenclature in clovers and special-purpose legumes: I. Red and white clover. Crop Sci. 31, 861–867.

    Google Scholar 

  • Radicella, J.P., Turks, D. and Chandler, V.L. (1991) Cloning and nucleotide sequence of a cDNA encoding B-Peru, a regulatory protein of the anthocyanin pathway in maize. Plant Mol. Biol. 17, 127–130.

    PubMed  CAS  Google Scholar 

  • Ramírez-Restrepo, C.A. and Barry, T.N. (2005) Alternative temperate forages containing secondary compounds for improving sustainable productivity in grazing ruminants. Anim. Feed Sci. Techn. 120, 179–201.

    Google Scholar 

  • Rasmussen, S., Cao, M., Fraser, K., Koulman, A., Park-Ng, Z., Xue, H. and Lane, G. (2006) Cold stress in white clover – an integrated view of metabolome and transcriptome responses. In: C.F. Mercer (Ed.)Breeding for Success: Diversity in Action. Proceedings of the 13th Australasian Plant Breeding Conference, Christchurch, New Zealand, pp. 750–757.

    Google Scholar 

  • Ray, H., Yu, M., Auser, P., Blahut-Beatty, L., McKersie, B., Bowley, S., Westcott, N., Coulman, B., Lloyd, A. and Gruber, M.Y. (2003) Expression of anthocyanins and proanthocyanidins after transformation of alfalfa with maizeLc. Plant Physiol. 132, 1448–1463.

    PubMed  CAS  Google Scholar 

  • Reynaud, J., Guilet, D., Terreux, R., Lussignol, M. and Walchshofer, N. (2005) Isoflavonoids in non-leguminous families: an update. Nat. Prod. Rep. 22, 504–515.

    PubMed  CAS  Google Scholar 

  • Robbins, M.P. and Morris, P. (2000) Metabolic engineering of condensed tannins and other phenolic pathways in forage and fodder crops. In: R. Verpoorte, A.W. Alfermann (Eds.)Metabolic Engineering of Plant Secondary Metabolism. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 165–177.

    Google Scholar 

  • Robbins, M.P., Bavage, A.D., Strudwicke, C. and Morris, P. (1998) Genetic manipulation of condensed tannins in higher plants. II. Analysis of birdsfoot trefoil plants harboring antisense dihydroflavonol reductase constructs. Plant Physiol. 116, 1133–1144.

    PubMed  CAS  Google Scholar 

  • Robbins, M.P., Paolocci, F., Hughes, J.W., Turchetti, V., Allison, G., Arcioni, S., Morris, P. and Damiani, F. (2003) Sn, a maize bHLH gene, modulates anthocyanin and condensed tannin pathways inLotus corniculatus. J. Exp. Bot. 54, 239–248.

    PubMed  CAS  Google Scholar 

  • Robbins, M.P., Bavage, A.D., Allison, G., Davies, T., Hauck, B. and Morris, P. (2005) A comparison of two strategies to modify the hydroxylation of condensed tannin polymers inLotus corniculatus L. Phytochemistry 66, 991–999.

    PubMed  CAS  Google Scholar 

  • Rumball, W., Keogh, R.G., Miller, J.E. and Claydon, R.B. (1997) ‘Grasslands G27’ red clover (Trifolium pratense L.). NZ J. Agricult. Res. 40, 369–372.

    Google Scholar 

  • Rumball, W., Keogh, R.G. and Sparks, G.A. (2005) ‘Grasslands HF1’ red clover (Trifolium pratense L.) – a cultivar bred for isoflavone content. NZ J. Agricult. Res. 48, 345–347.

    CAS  Google Scholar 

  • Ryder, T.B., Hedrick, S.A., Bell, J.N., Liang, X.W., Clouse, S.D. and Lamb C.J. (1987) Organization and differential activation of a gene family encoding the plant defense enzyme chalcone synthase inPhaseolus vulgaris. Mol. Gen. Genet. 210, 219–233.

    PubMed  CAS  Google Scholar 

  • Sallaud, C., El-Turk, J., Bigarré, L., Sevin, H., Welle, R. and Esnault, R. (1995) Nucleotide sequences of three chalcone reductase genes from alfalfa. Plant Physiol. 108, 869–870.

    PubMed  CAS  Google Scholar 

  • Sawada, Y., Kinoshita, K., Akashi, T., Aoki, T. and Ayabe, S. (2002) Key amino acid residues required for aryl migration catalysed by the cytochrome P450 2-hydroxyisoflavanone synthase. Plant J. 31, 555–564.

    PubMed  CAS  Google Scholar 

  • Schwinning, S. and Parsons, A.J. (1996) Analysis of the coexistence mechanisms for grasses and legumes in grazing systems. J. Ecol. 84, 799–813.

    Google Scholar 

  • Seitz, C., Eder, C., Deiml, B., Kellner, S., Martens, S. and Forkmann, G. (2006) Cloning, functional identification and sequence analysis of flavonoid 3 -hydroxylase and flavonoid 3 , 5 -hydroxylase cDNAs reveals independent evolution of flavonoid 3 , 5-hydroxylase in the Asteraceae family. Plant Mol. Biol. 61, 365–381.

    PubMed  CAS  Google Scholar 

  • Serraj, R. (2003) Effects of drought stress on legume symbiotic nitrogen fixation: physiological mechanisms. Indian J. Exp. Biol. 41, 1136–1141.

    PubMed  CAS  Google Scholar 

  • Shao, H., He, X., Achnine, L., Blount, J.W., Dixon, R.A. and Wang, X. (2005) Crystal structures of a multifunctional triterpene/flavonoid glycosyltransferases fromMedicago truncatula. Plant Cell 17, 3141–3154.

    PubMed  CAS  Google Scholar 

  • Sharma, S.B. and Dixon, R.A. (2005) Metabolic engineering of proanthocyanidins by ectopic expression of transcription factors inArabidopsis thaliana. Plant J. 44, 62–75.

    PubMed  CAS  Google Scholar 

  • Shimada, N., Akashi, T., Aoki, T. and Ayabe, S. (2000) Induction of isoflavonoid pathway in the model legumeLotus japonicus: molecular characterization of enzymes involved in phytoalexin biosynthesis. Plant Sci. 160, 37–47.

    PubMed  CAS  Google Scholar 

  • Shimada, N., Aoki, T., Sato, S., Nakamura, Y., Tabata, S. and Ayabe, S. (2003) A cluster of genes encodes the two types of chalcone isomerase involved in the biosynthesis of general flavonoids and legume-specific 5-deoxy(iso)flavonoidsin Lotus japonicus. Plant Physiol. 131, 941–951.

    PubMed  CAS  Google Scholar 

  • Shimada, N., Sasaki, R., Sato, S., Kaneko, T., Tabata, S., Aoki, T. and Ayabe, S. (2005) A comprehensive analysis of six dihydroflavonol 4-reductases encoded by a gene cluster of theLotus japonicus genome. J. Exp. Bot. 56, 2573–2585.

    PubMed  CAS  Google Scholar 

  • Sivakumaran, S., Rumball, W., Lane, G.A., Fraser, K., Foo, L.Y., Yu, M. and Meagher, L.P. (2006) Variation of proanthocyanidins inLotus species. J. Chem. Ecol. 32, 1797–1816

    PubMed  CAS  Google Scholar 

  • Skadhauge, B., Gruber, M.Y., Thomsen, K.K. and von Wettstein, D. (1997) Leucocyanidin reductase activity of proanthocyanidins in developing legume tissues. Am. J. Bot. 84, 494–503.

    CAS  Google Scholar 

  • Smil, V. (1999) Nitrogen in crop production. Global Biogeochem. Cycles 13, 647–667.

    CAS  Google Scholar 

  • Sreevidya, V.S., Rao, C.S., Sullia, S.B., Ladha, J.K. and Reddy, P.M. (2006) Metabolic engineering of rice with soybean isoflavone synthase for promoting nodulation gene expression in rhizobia. J. Exp. Bot. 57, 1957–1969.

    PubMed  CAS  Google Scholar 

  • Steele, C.L., Gijzen, M., Qutob, D. and Dixon, R.A. (1999) Molecular characterization of the enzyme catalyzing the aryl migration reaction of isoflavonoid biosynthesis in soybean. Arch. Biochem. Biophys. 367, 146–150.

    PubMed  CAS  Google Scholar 

  • Subramanian, S., Stacey, G. and Yu, O. (2006) Endogenous isoflavones are essential for the establishment of symbiosis between soybean andBradyrhizobium japonicum. Plant J. 48, 261–273.

    PubMed  CAS  Google Scholar 

  • Süβ, C., Hempel, J., Zehner, S., Krause, A., Patschkowski, T. and Göttfert, M. (2006) Identification of genistein-inducible and type III-secreted proteins ofBradyrhizobium japonicum. J. Biotechnol. 126, 69–77.

    Google Scholar 

  • Tanner, G.J., Francki, K.T., Abrahams, S., Watson, J.M., Larkins, P.J. and Ashton, A.R. (2003). Proanthocyanidin biosynthesis in plants. Purification of legume leucoanthocyanidin reductase and molecular cloning of its cDNA. J. Biol. Chem. 278, 31647–31656.

    PubMed  CAS  Google Scholar 

  • Tavendale, M.H., Meagher, L.P., Pacheco, D., Walker, N., Attwood, G.T. and Sivakumaran, S. (2005) Methane production from in vitro rumen incubations withLotus pedunculatus andMedicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim. Feed Sci. Techn. 123–124, 403–419.

    Google Scholar 

  • Tebayashi, S., Ishihara, A. and Iwamura, H. (2001) Elicitor-induced changes in isoflavonoid metabolism in red clover roots. J. Exp. Bot. 52, 681–689.

    PubMed  CAS  Google Scholar 

  • Tian, L. and Dixon, R.A. (2006) Engineering isoflavone metabolism with an artificial bifunctional enzyme. Planta 224, 496–507.

    PubMed  CAS  Google Scholar 

  • Toda, K., Akasaka, M., Dubouzet, E.G., Kawasaki, S. and Takahashi, R. (2005) Structure of flavonoid 3 -hydroxylase gene for pubescence color in soybean. Crop Sci. 45, 2212–2217.

    CAS  Google Scholar 

  • Tonelli, C., Consonni, G., Dolfini, S.F., Dellaporta, S.L., Viotti, A. and Gavazzi, G. (1991) Genetic and molecular analysis of Sn, a light-inducible, tissue specific regulatory gene in maize. Mol. Gen. Genet. 225, 401–410.

    PubMed  CAS  Google Scholar 

  • Turnbull, J.J., Sobey, W.J., Aplin, R.T., Hassan, A., Firmin, J.L., Schofield, C.J. and Prescott, A.G. (2000) Are anthocyanidins the immediate products of anthocyanidin synthase? Chem. Commun. 2000, 2473–2474.

    Google Scholar 

  • Turnbull, J.J., Nakajima, J., Welford, R.W.D., Yamazaki, M., Saito, K. and Schofield, C.J. (2004) Mechanistic studies on three 2-oxoglutarate-dependent oxygenases of flavonoid biosynthesis. J. Biol. Chem. 279, 1206–1216.

    PubMed  CAS  Google Scholar 

  • Volpin, H., Phillips, D.A., Okon, Y. and Kapulnik, Y. (1995) Suppression of an isoflavonoid phytoalexin defense response in mycorrhizal alfalfa roots. Plant Physiol. 108, 1449–1454.

    PubMed  CAS  Google Scholar 

  • Wasson, A.P., Pellerone, F.I. and Mathesius, U. (2006) Silencing the flavonoid pathway inMedicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. Plant Cell. 18, 1617–1629.

    PubMed  CAS  Google Scholar 

  • Welle, R., Schröder, G., Schlitz, E., Grisebach, H. and Schröder, J. (1991) Induced plant responses to pathogen attack. Analysis and heterologous expression of the key enzyme in the biosynthesis of phytoalexins in soybean (Glycine max L. Merr. Cv. Harosoy 63). Eur. J. Biochem. 196, 423–430.

    PubMed  CAS  Google Scholar 

  • Wellmann, F., Griesser, M., Schwab, W., Martens, S., Eisenreich, W., Matern, U. and Lukacin, R. (2006). Anthocyanidin synthase fromGerbera hybrida catalyzes the conversion of (+)-catechin to cyanidin and a novel procyanidin. FEBS Lett. 580, 1642–1648.

    PubMed  CAS  Google Scholar 

  • Williams, W.M., Verry, I.M. and Ellison, N.W. (2006) A phylogenetic approach to germplasm use in clover breeding. In: C.F. Mercer (Ed.)Breeding for Success: Diversity in Action.Proceedings of the 13th Australasian Plant Breeding Conference, Christchurch, New Zealand, pp. 966–971.

    Google Scholar 

  • Wingender, R., Röhrig, H., Höricke, C., Wing, D. and Schell, J. (1989) Differential regulation of soybean chalcone synthase genes in plant defence, symbiosis and upon environmental stimuli. Mol. Gen. Genet. 218, 315–322.

    PubMed  CAS  Google Scholar 

  • Winkel, B.S.J. (2004) Metabolic channeling in plants. Annu. Rev. Plant Biol. 55, 85–107.

    PubMed  CAS  Google Scholar 

  • Winkel-Shirley, B. (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 126, 485–493.

    PubMed  CAS  Google Scholar 

  • Wollenweber, B., Porter, J.R. and Lübberstedt, T. (2005) Need for multidisciplinary research towards a second green revolution. Curr. Opin. Plant Biol. 8, 337–341.

    PubMed  Google Scholar 

  • Wood, A.J. and Davies, E. (1994) A cDNA encoding chalcone isomerase from aged pea epicotyls. Plant Physiol. 104, 1465–1466.

    PubMed  CAS  Google Scholar 

  • Xie, D.Y., Sharma, S.B., Paiva, N.L., Ferreira, D. and Dixon, R.A. (2003) Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299, 396–399.

    PubMed  CAS  Google Scholar 

  • Xie, D.Y., Jackson, L.A., Cooper, J.D., Ferreira, D. and Paiva, N.L. (2004a) Molecular and biochemical analysis of two cDNA clones encoding dihydroflavonol-4-reductase fromMedicago truncatula. Plant Physiol. 134, 979–994.

    CAS  Google Scholar 

  • Xie, D.Y., Sharma, S.B. and Dixon, R.A. (2004b) Anthocyanidin reductases fromMedicago truncatula andArabidopsis thaliana. Arch. Biochem. Biophys. 422, 91–102.

    CAS  Google Scholar 

  • Xie, D.Y., Sharma, S.B., Wright, E., Wang, Z.Y. and Dixon, R.A. (2006) Metabolic engineering of proanthocyanidins through co-expression of anthocyanidin reductase and the PAP1 MYB transcription factor. Plant J. 45, 895–907.

    PubMed  CAS  Google Scholar 

  • Yu, O., Jung, W., Shi, J., Croes, R.A., Fader, G.M., McGonigle, B. and Odell, J.T. (2000) Production of the isoflavones genistein and daidzein in non-legume dicot and monocot tissues. Plant Physiol. 124, 781–793.

    PubMed  CAS  Google Scholar 

  • Yu, O., Shi, J., Hession, A.O., Maxwell, C.A., McGonigle, B. and Odell, J.T. (2003) Metabolic engineering to increase isoflavone biosynthesis in soybean seed. Phytochemistry 63, 753–763.

    PubMed  CAS  Google Scholar 

  • Zabala, G. and Vodkin, L.O. (2005). The wp mutation ofGlycine max carries a gene-fragment-rich transposon of the CACTA superfamily. Plant Cell 17, 2619–2632.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Rasmussen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rasmussen, S. (2008). Biosynthesis and Manipulation of Flavonoids in Forage Legumes. In: Winefield, C., Davies, K., Gould, K. (eds) Anthocyanins. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77335-3_8

Download citation

Publish with us

Policies and ethics