Anthocyanins pp 191-255 | Cite as

Flavonoid Biotransformations in Microorganisms

  • Joseph A. Chemler
  • Effendi Leonard
  • Mattheos A.G. Koffas


Flavonoids are a diverse group of secondary metabolites found ubiquitously in the plant kingdom. Their associated health benefits have gained these fascinating compounds an increasing amount of attention towards their use as medicinal agents, supplements and natural colorants. With the rapid progress in unraveling the flavonoid biosynthetic pathways, the first part of this chapter presents the recent advances and challenges in utilizing recombinant bacteria and yeast to produce a number of different classes of flavonoid compounds including stilbenes, flavanones, isoflavones, flavones and anthocyanins. The second part presents a review on the iomodifications of flavonoids by non-recombinant microorganisms that result in an array of natural products, with special emphasis on the metabolism of flavonoids by intestinal microflora.


Caffeic Acid Pyruvic Acid Protocatechuic Acid Pyrane Ring Cunninghamella Elegans 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abdelrahim, I. and Y. J. Abulhajj (1990). Microbiological transformation of (+/–)-flavanone and (+/–)-isoflavanone. J. Nat. Prod. 53(3): 644–656.Google Scholar
  2. Adlercreutz, H., K. Hockerstedt, C. Bannwart, S. Bloigu, E. Hamalainen, T. Fotsis and A. Ollus (1987). Effect of dietary-components, including lignans and phytoestrogens, on enterohepatic circulation and liver-metabolism of estrogens and on sex-hormone binding globulin (Shbg). J. Steroid Biochem. 27(4–6): 1135–1144.PubMedGoogle Scholar
  3. Adlercreutz, H., P. I. Musey, T. Fotsis, C. Bannwart, K. Wahala, T. Makela, G. Brunow and T. Hase (1986). Identification of lignans and phytoestrogens in urine of chimpanzees. Clin. Chim. Acta 158(2): 147–154.PubMedGoogle Scholar
  4. Akaza, H., N. Miyanaga, N. Takashima, S. Naito, Y. Hirao, T. Tsukamoto and M. Mori (2002). Is daidzein non-metabolizer a high risk for prostate cancer? A case-controlled study of serum soybean isoflavone concentration. Jpn. J. Clin. Oncol. 32(8): 296–300.PubMedGoogle Scholar
  5. Alcalde-Eon, C., M. T. Escribano-Bailon, C. Santos-Buelga and J. C. Rivas-Gonzalo (2004). Separation of pyranoanthocyanins from red wine by column chromatography. Anal. Chim. Acta 513(1): 305–318.Google Scholar
  6. Anyanwutaku, I. O., E. Zirbes and J. P. N. Rosazza (1992). Isoflavonoids fromStreptomycetes: origins of genistein, 8-chlorogenistein, and 6,8-dichlorogenistein. J. Nat. Prod. 55(10): 1498–1504.Google Scholar
  7. Arai, Y., M. Uehara, Y. Sato, M. Kimira, A. Eboshida, H. Adlercreutz and S. Watanabe (2000). Comparison of isoflavones among dietary intake, plasma concentration and urinary excretion for accurate estimation of phytoestrogen intake. J. Epidemiol. 10(2): 127–135.PubMedGoogle Scholar
  8. Arora, A., M. G. Nair and G. M. Strasburg (1998). Antioxidant activities of isoflavones and their biological metabolites in a liposomal system. Arch. Biochem. Biophys. 356(2): 133–141.PubMedGoogle Scholar
  9. Asenstorfer, R. E., Y. Hayasaka and G. P. Jones (2001). Isolation and structures of oligomeric wine pigments by bisulfite-mediated ion-exchange chromatography. J. Agr. Food Chem. 49(12): 5957–5963.Google Scholar
  10. Asenstorfer, R. E., A. J. Markides, P. G. Iland and G. P. Jones (2003). Formation of vitisin A during red wine fermentation and maturation. Aust. J. Grape Wine Res. 9(1): 40–46.Google Scholar
  11. Atanasova, V., H. Fulcrand, W. Cheynier and M. Moutounet (2002). Effect of oxygenation on polyphenol changes occurring in the course of wine-making. Anal. Chim. Acta 458(1): 15–27.Google Scholar
  12. Atkinson, C., S. Berman, O. Humbert and J. W. Lampe (2004).In vitro incubation of human feces with daidzein and antibiotics suggests interindividual differences in the bacteria responsible for equol production. J. Nutr. 134(3): 596–599.PubMedGoogle Scholar
  13. Aura, A. M., P. Martin-Lopez, K. A. O’Leary, G. Williamson, K. M. Oksman-Caldentey, K. Poutanen and C. Santos-Buelga (2005).In vitro metabolism of anthocyanins by human gut microflora. Eur. J. Nutr. 44(3): 133–142.PubMedGoogle Scholar
  14. Aura, A. M., K. A. O’Leary, G. Williamson, M. Ojala, M. Bailey, R. Puupponen-Pimia, A. M. Nuutila, K. M. Oksman-Caldentey and K. Poutanen (2002). Quercetin derivatives are deconjugated and converted to hydroxyphenylacetic acids but not methylated by human fecal florain vitro. J. Agr. Food Chem. 50(6): 1725–1730.Google Scholar
  15. Aura, A. M., T. Seppänen-Laakso, I. Mattila, S. Guyot, C. M. G. C. Renard, J.-M. Souquet, V. Cheynier and K.-M. Oksman-Caldentey (2006). Microbial metabolism of (+)-catechin, (–)-epicatechin and proanthocyanidins by human fecal microbiotain vitro. Poly. Comm. 2006, 43–44.Google Scholar
  16. Axelson, M., D. N. Kirk, R. D. Farrant, G. Cooley, A. M. Lawson and K. D. R. Setchell (1982). The identification of the weak estrogen equol [7-hydroxy-3-(4’-hydroxyphenyl)chroman] in human-urine. Biochem. J. 201(2): 353–357.PubMedGoogle Scholar
  17. Bakker, J. and C. F. Timberlake (1997). Isolation, identification, and characterization of new color-stable anthocyanins occurring in some red wines. J. Agr. Food Chem. 45(1): 35–43.Google Scholar
  18. Barnes, H. J., M. P. Arlotto and M. R. Waterman (1991). Expression and enzymatic activity of recombinant cytochrome P450 17 alpha-hydroxylase inEscherichia coli. Proc. Natl. Acad. Sci. USA 88(13): 5597–5601.PubMedGoogle Scholar
  19. Barnes, S. (2003). Phyto-oestrogens and osteoporosis: what is a safe dose? Brit. J. Nutr. 89: S101-S108.PubMedGoogle Scholar
  20. Baumes, R., R. Cordonnier, S. Nitz and F. Drawert (1986). Identification and determination of volatile constituents in wines from different vine cultivars. J. Sci. Food Agr. 37(9): 927–943.Google Scholar
  21. Baur, J. A., K. J. Pearson, N. L. Price, H. A. Jamieson, C. Lerin, A. Kalra, V. V. Prabhu, J. S. Allard, G. Lopez-Lluch, K. Lewis, P. J. Pistell, S. Poosala, K. G. Becker, O. Boss, D. Gwinn, M. Wang, S. Ramaswamy, K. W. Fishbein, R. G. Spencer, E. G. Lakatta, D. Le Couteur, R. J. Shaw, P. Navas, P. Puigserver, D. K. Ingram, R. de Cabo and D. A. Sinclair (2006). Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444(7117): 337–342.PubMedGoogle Scholar
  22. Becker, J. V. W., G. O. Armstrong, M. J. Van der Merwe, M. G. Lambrechts, M. A. Vivier and I. S. Pretorius (2003). Metabolic engineering ofSaccharomyces cerevisiae for the synthesis of the wine-related antioxidant resveratrol. FEMS Yeast Res. 4(1): 79–85.PubMedGoogle Scholar
  23. Beld, M., C. Martin, H. Huits, A. R. Stuitje and A. G. Gerats (1989). Flavonoid synthesis inPetunia hybrida: partial characterization of dihydroflavonol-4-reductase genes. Plant Mol. Biol. 13(5): 491–502.PubMedGoogle Scholar
  24. Birt, D. F., S. Hendrich and W. Wang (2001). Dietary agents in cancer prevention: flavonoids and isoflavonoids. Pharmacol Therapeut. 90(2–3): 157–177.Google Scholar
  25. Bitsch, I., M. Janssen, M. Netzel, G. Strass and T. Frank (2004). Bioavailability of anthocyanidin-3-glycosides following consumption of elderberry extract and blackcurrant juice. Int. J Clin. Pharm. Th. 42(5): 293–300.Google Scholar
  26. Blair, R. M., S. E. Appt, A. A. Franke and T. B. Clarkson (2003). Treatment with antibiotics reduces plasma equol concentration in cynomolgus monkeys (Macaca fascicularis). J. Nutr. 133(7): 2262–2267.PubMedGoogle Scholar
  27. Block, G., B. Patterson and A. Subar (1992). Fruit, vegetables, and cancer prevention: a review of the epidemiological evidence. Nutr. Cancer 18(1): 1–29.PubMedGoogle Scholar
  28. Bois, F., C. Beney, A. Boumendjel, A. M. Mariotte, G. Conseil and A. Di Pietro (1998). Halogenated chalcones with high-affinity binding to P-glycoprotein: Potential modulators of multidrug resistance. J. Med. Chem. 41(21): 4161–4164.PubMedGoogle Scholar
  29. Bomser, J., D. L. Madhavi, K. Singletary and M. A. L. Smith (1996).In vitro anticancer activity of fruit extracts fromVaccinium species. Planta Med. 62(3): 212–216.PubMedGoogle Scholar
  30. Boulton, R. B., V. L. Singleton, L. F. Bisson and R. E. Kunkee (1996). Yeast and biochemistry of ethanol fermentation.Principles and Practices of Winemaking. New York, Chapman and Hall: 127–137.Google Scholar
  31. Bowey, E., H. Adlercreutz and I. Rowland (2003). Metabolism of isoflavones and lignans by the gut microflora: a study in germ-free and human flora associated rats. Food Chem. Toxicol. 41(5): 631–636.PubMedGoogle Scholar
  32. Boyd, W. (2000). Natural colors as functional ingredients in healthy food. Cereal Foods World 45: 221–222.Google Scholar
  33. Braune, A., M. Gutschow, W. Engst and M. Blaut (2001). Degradation of quercetin and luteolin byEubacterium ramulus. Appl. Environ. Microb. 67(12): 5558–5567.Google Scholar
  34. Brouillard, R. (1982). Chemical structure of anthocyanins.Anthocyanins as food colors. P. Markakis. New York, NY, Academic Press, Inc.Google Scholar
  35. Brown, N. M. and K. D. R. Setchell (2001). Animal models impacted by phytoestrogens in commercial chow: Implications for pathways influenced by hormones. Lab. Invest. 81(5): 735–747.PubMedGoogle Scholar
  36. Bub, A., B. Watzl, D. Heeb, G. Rechkemmer and K. Briviba (2001). Malvidin-3-glucoside bioavailability in humans after ingestion of red wine, dealcoholized red wine and red grape juice. Eur. J. Nutr. 40(3): 113–120.PubMedGoogle Scholar
  37. Burbulis, I. E. and B. Winkel-Shirley (1999). Interactions among enzymes of the Arabidopsis flavonoid biosynthetic pathway. Proc. Natl. Acad. Sci. USA 96(22): 12929–12934.PubMedGoogle Scholar
  38. Caltagirone, S., C. Rossi, A. Poggi, F. O. Ranelletti, P. G. Natali, M. Brunetti, F. B. Aiello and M. Piantelli (2000). Flavonoids apigenin and quercetin inhibit melanoma growth and metastatic potential. Int. J. Cancer 87(4): 595–600.PubMedGoogle Scholar
  39. CameiradosSantos, P. J., J. M. Brillouet, V. Cheynier and M. Moutounet (1996). Detection and partial characterisation of new anthocyanin-derived pigments in wine. J. Sci. Food Agr. 70(2): 204–208.Google Scholar
  40. Cao, M. A., X. B. Sun, P. H. Zhao and C. S. Yuan (2006). Two new antibacterial flavanones fromSophora flavescens. Chinese Chem. Lett. 17(8): 1048–1050.Google Scholar
  41. Cao, Y. H. and R. H. Cao (1999). Angiogenesis inhibited by drinking tea. Nature 398(6726): 381–381.PubMedGoogle Scholar
  42. Cassidy, A., S. Bingham, J. Carlson and K. D. R. Setchell (1993). Biological effects of plant estrogens in premenopausal women. Faseb J. 7(4): A866–A866.Google Scholar
  43. Chang, Y. C. and M. G. Nair (1995). Metabolism of daidzein and genistein by intestinal bacteria. J. Nat. Prod. 58(12): 1892–1896.PubMedGoogle Scholar
  44. Chatonnet, P., D. Dubourdieu, J. N. Boidron and V. Lavigne (1993). Synthesis of volatile phenols bySaccharomyces cerevisiae in wines. J. Sci. Food Agr. 62(2): 191–202.Google Scholar
  45. Cho, J. (2006). Antioxidant and neuroprotective effects of hesperidin and its aglycone hesperetin. Arch. Pharm. Res. 29(8): 699–706.PubMedGoogle Scholar
  46. Clausen, M., C. J. Lamb, R. Megnet and P. W. Doerner (1994).Pad1 encodes phenylacrylic acid decarboxylase which confers resistance to cinnamic acid inSaccharomyces cerevisiae. Gene 142(1): 107–112.PubMedGoogle Scholar
  47. Clifford, M. N. (2000). Anthocyanins – nature, occurrence and dietary burden. J. Sci. Food Agr. 80(7): 1063–1072.Google Scholar
  48. Colantuoni, A., S. Bertuglia, M. J. Magistretti and L. Donato (1991). Effects ofVaccinium myrtillus anthocyanosides on arterial vasomotion. Drug Res. 41–2(9): 905–909.Google Scholar
  49. Coldham, N. G., C. Darby, M. Hows, L. J. King, A. Q. Zhang and M. J. Sauer (2002). Comparative metabolism of genistin by human and rat gut microflora: detection and identification of the end-products of metabolism. Xenobiotica 32(1): 45–62.PubMedGoogle Scholar
  50. Contreras, D. M., C. M. A. Ramírez, S. Guyot, I. Perraud-Gaime, S. Roussos and C. Augur (2006). Enzymatic degradation of catechin and procyanidin B2 by filamentous fungi. Poly. Comm. 2006, 77–78.Google Scholar
  51. Cotelle, N., J. L. Bernier, J. P. Catteau, J. Pommery, J. C. Wallet and E. M. Gaydou (1996). Antioxidant properties of hydroxy-flavones. Free Radical Bio. Med. 20(1): 35–43.Google Scholar
  52. Critchfield, J. W., J. E. Coligan, T. M. Folks and S. T. Butera (1997). Casein kinase II is a selective target of HIV-1 transcriptional inhibitors. Proc. Natl. Acad. Sci. USA 94(12): 6110–6115.PubMedGoogle Scholar
  53. Czeczot, H., B. Tudek, J. Kusztelak, T. Szymczyk, B. Dobrowolska, G. Glinkowska, J. Malinowski and H. Strzelecka (1990). Isolation and studies of the mutagenic activity in the ames test of flavonoids naturally-occurring in medical herbs. Mutat. Res. 240(3): 209–216.PubMedGoogle Scholar
  54. Das, S. and J. P. N. Rosazza (2006). Microbial and enzymatic transformations of flavonoids. J. Nat. Prod. 69(3): 499–508.PubMedGoogle Scholar
  55. Day, A. J., F. J. Canada, J. C. Diaz, P. A. Kroon, R. Mclauchlan, C. B. Faulds, G. W. Plumb, M. R. A. Morgan and G. Williamson (2000). Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Lett. 468(2–3): 166–170.PubMedGoogle Scholar
  56. Decroos, K., S. Vanhemmens, S. Cattoir, N. Boon and W. Verstraete (2005). Isolation and characterisation of an equol-producing mixed microbial culture from a human faecal sample and its activity under gastrointestinal conditions. Arch. Microbiol. 183(1): 45–55.PubMedGoogle Scholar
  57. Deweerd, K. A., A. Saxena, D. P. Nagle and J. M. Suflita (1988). Metabolism of the 18-O-methoxy substituent of 3-methoxybenzoic acid and other unlabeled methoxybenzoic acids by anaerobic-bacteria. Appl. Environ. Microb. 54(5): 1237–1242.Google Scholar
  58. Dhar, K. and J. P. N. Rosazza (2000). Purification and characterization ofStreptomyces griseus catechol O-methyltransferase. Appl. Environ. Microb. 66(11): 4877–4882.Google Scholar
  59. Dixon, R. A. and L. W. Sumner (2003). Legume natural products: understanding and manipulating complex pathways for human and animal health. Plant Physiol. 131(3): 878–885.PubMedGoogle Scholar
  60. Dong, X. Y., E. L. Braun and E. Grotewold (2001). Functional conservation of plant secondary metabolic enzymes revealed by complementation of Arabidopsis flavonoid mutants with maize genes. Plant Physiol. 127(1): 46–57.PubMedGoogle Scholar
  61. Dugelay, I., Z. Gunata, J. C. Sapis, R. Baumes and C. Bayonove (1993). Role of cinnamoyl esterase-activities from enzyme preparations on the formation of volatile phenols during winemaking. J. Agr. Food Chem. 41(11): 2092–2096.Google Scholar
  62. Duncan, A. M., B. E. Merz-Demlow, X. Xu, W. R. Phipps and M. S. Kurzer (2000). Premenopausal equol excretors show plasma hormone profiles associated with lowered risk of breast cancer. Cancer Epidem. Biomar. 9(6): 581–586.Google Scholar
  63. Dupin, I. V. S., B. M. McKinnon, C. Ryan, M. Boulay, A. J. Markides, G. P. Jones, P. J. Williams and E. J. Waters (2000).Saccharomyces cerevisiae mannoproteins that protect wine from protein haze: Their release during fermentation and lees contact and a proposal for their mechanism of action. J. Agr. Food Chem. 48(8): 3098–3105.Google Scholar
  64. Es-Safi, N. E., H. Fulcrand, V. Cheynier and M. Moutounet (1999). Competition between (+)-catechin and (–)-epicatechin in acetaldehyde-induced polymerization of flavanols. J. Agr. Food Chem. 47(5): 2088–2095.Google Scholar
  65. Etievant, P. X. (1981). Volatile phenol determination in wine. J. Agr. Food. Chem. 29(1): 65–67.Google Scholar
  66. Ferrandiz, M. L. and M. J. Alcaraz (1991). Antiinflammatory Activity and Inhibition of Arachidonic-Acid Metabolism by Flavonoids. Agents Actions 32(3–4): 283–288.PubMedGoogle Scholar
  67. Feuillat, M. (2003). Yeast macromolecules: origin, composition, and enological interest. Am. J. Enol. Viticult. 54(3): 211–213.Google Scholar
  68. Fischer, D., K. Stich, L. Britsch and H. Grisebach (1988). Purification and characterization of (+)dihydroflavonol (3-hydroxyflavanone) 4-reductase from flowers ofDahlia variabilis. Arch. Biochem. Biophys. 264(1): 40–47.PubMedGoogle Scholar
  69. Fischer, T. C., H. Halbwirth, B. Meisel, K. Stich and G. Forkmann (2003). Molecular cloning, substrate specificity of the functionally expressed dihydroflavonol 4-reductases fromMalus domestica andPyrus communis cultivars and the consequences for flavonoid metabolism. Arch. Biochem. Bioph. 412(2): 223–230.Google Scholar
  70. Fleschhut, J., F. Kratzer, G. Rechkemmer and S. E. Kulling (2006). Stability and biotransformation of various dietary anthocyaninsin vitro. Eur. J. Nutr. 45(1): 7–18.PubMedGoogle Scholar
  71. Forkmann, G. and W. Heller (1999).Comprehensive Natural Products Chemistry. Amsterdam, Elsevier.Google Scholar
  72. Formica, J. V. and W. Regelson (1995). Review of the biology of quercetin and related bioflavonoids. Food Chem. Toxicol. 33(12): 1061–1080.PubMedGoogle Scholar
  73. FranciaAricha, E. M., M. T. Guerra, J. C. RivasGonzalo and C. SantosBuelga (1997). New anthocyanin pigments formed after condensation with flavanols. J. Agr. Food Chem. 45(6): 2262–2266.Google Scholar
  74. Frank, T., M. Netzel, G. Strass, R. Bitsch and I. Bitsch (2003). Bioavailability of anthocyanidin-3-glucosides following consumption of red wine and red grape juice. Can. J. Physiol. Pharm. 81(5): 423–435.Google Scholar
  75. Frankenfeld, C. L., C. Atkinson, W. K. Thomas, E. L. Goode, A. Gonzalez, T. Jokela, K. Wahala, S. M. Schwartz, S. S. Li and J. W. Lampe (2004a). Familial correlations, segregation analysis, and nongenetic correlates of soy isoflavone-metabolizing phenotypes. Exp. Biol. Med. 229(9): 902–913.Google Scholar
  76. Frankenfeld, C. L., A. McTiernan, S. S. Tworoger, C. Atkinson, W. K. Thomas, F. Z. Stanczyk, S. M. Marcovina, D. S. Weigle, N. S. Weiss, V. L. Holt, S. M. Schwartz and J. W. Lampe (2004b). Serum steroid hormones, sex hormone-binding globulin concentrations, and urinary hydroxylated estrogen metabolites in post-menopausal women in relation to daidzein-metabolizing phenotypes. J. Steroid Biochem. 88(4–5): 399–408.Google Scholar
  77. Fulcrand, H., C. Benabdeljalil, J. Rigaud, V. Cheynier and M. Moutounet (1998). A new class of wine pigments generated by reaction between pyruvic acid and grape anthocyanins. Phytochemistry 47(7): 1401–1407.PubMedGoogle Scholar
  78. Fulcrand, H., T. Doco, N. E. EsSafi, V. Cheynier and M. Moutounet (1996a). Study of the acetaldehyde induced polymerisation of flavan-3-ols by liquid chromatography ion spray mass spectrometry. J. Chromatogr. A 752(1–2): 85–91.Google Scholar
  79. Fulcrand, H., P. J. C. dosSantos, P. SarniManchado, V. Cheynier and J. FavreBonvin (1996b). Structure of new anthocyanin-derived wine pigments. J. Chem. Soc. Perk. Trans. 1(7): 735–739.Google Scholar
  80. Genthner, B. R. S., C. L. Davis and M. P. Bryant (1981). Features of rumen and sewage-sludge strains ofEubacterium limosum, a methanol-utilizing and H2-CO2-utilizing species. Appl. Environ. Microb. 42(1): 12–19.Google Scholar
  81. Gerhauser, C. (2005). Beer constituents as potential cancer chemopreventive agents. Eur. J. Cancer 41(13): 1941–1954.PubMedGoogle Scholar
  82. Gerhauser, C., A. Alt, E. Heiss, A. Gamal-Eldeen, K. Klimo, J. Knauft, I. Neumann, H. R. Scherf, N. Frank, H. Bartsch and H. Becker (2002). Cancer chemopreventive activity of Xanthohumol, a natural product derived from hop. Mol. Cancer Ther. 1(11): 959–969.PubMedGoogle Scholar
  83. Ghiselli, A., M. Nardini, A. Baldi and C. Scaccini (1998). Antioxidant activity of different phenolic fractions separated from an Italian red wine. J. Agr. Food Chem. 46(2): 361–367.Google Scholar
  84. Gil, B., M. J. Sanz, M. C. Terencio, M. L. Ferrandiz, G. Bustos, M. Paya, R. Gunasegaran and M. J. Alcaraz (1994). Effects of flavonoids on Naja-Naja and human recombinant synovial phospholipases a(2) and inflammatory responses in mice. Life Sci. 54(20): Pl333-Pl338.Google Scholar
  85. Goldin, B. R. (1990). Intestinal microflora - metabolism of drugs and carcinogens. Ann. Med. 22(1): 43–48.PubMedGoogle Scholar
  86. Hagiwara, A., K. Miyashita, T. Nakanishi, M. Sano, S. Tamano, T. Kadota, T. Koda, M. Nakamura, K. Imaida, N. Ito and T. Shirai (2001). Pronounced inhibition by a natural anthocyanin, purple corn color, of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)associated colorectal carcinogenesis in male F344 rats pretreated with 1,2-dimethylhydrazine. Cancer Lett. 171(1): 17–25.PubMedGoogle Scholar
  87. Hakansson, A. E., K. Pardon, Y. Hayasaka, M. de Sa and M. Herderich (2003). Structures and colour properties of new red wine pigments. Tetrahedron Lett. 44(26): 4887–4891.Google Scholar
  88. Hall, R. D. and M. M. Yeoman (1986). Temporal and spatial heterogeneity in the accumulation of anthocyanins in cell-cultures ofCatharanthus roseus (L) Don,G. J. Exp. Bot. 37(174): 48–60.Google Scholar
  89. Hanagata, N., A. Ito, H. Uehara, F. Asari, T. Takeuchi and I. Karube (1993). Behavior of cell aggregate ofCarthamus tinctorius L. cultured-cells and correlation with red pigment formation. J. Biotechnol. 30(3): 259–269.Google Scholar
  90. Harborne, J. B. and C. A. Williams (2000). Advances in flavonoid research since 1992. Phytochemistry 55(6): 481–504.PubMedGoogle Scholar
  91. Harris, G. K., A. Gupta, R. G. Nines, L. A. Kresty, S. G. Habib, W. L. Frankel, K. LaPerle, D. D. Gallaher, S. J. Schwartz and G. D. Stoner (2001). Effects of lyophilized black raspberries on azoxymethane-induced colon cancer and 8-hydroxy-2′-deoxyguanosine levels in the Fischer 344 rat. Nutr. Cancer 40(2): 125–133.PubMedGoogle Scholar
  92. Haudenschild, C., M. Schalk, F. Karp and R. Croteau (2000). Functional expression of regiospecific cytochrome P450 limonene hydroxylases from mint (Mentha spp.) inEscherichia coli andSaccharomyces cerevisiae. Arch. Biochem. Biophys. 379(1): 127–136.PubMedGoogle Scholar
  93. Havsteen, B. (1983). Flavonoids, a class of natural-products of high pharmacological potency. Biochem. Pharmacol. 32(7): 1141–1148.PubMedGoogle Scholar
  94. Hayasaka, Y. and R. E. Asenstorfer (2002). Screening for potential pigments derived from anthocyanins in red wine using nanoelectrospray tandem mass spectrometry. J. Agr. Food Chem. 50(4): 756–761.Google Scholar
  95. Heier, A., W. Blaas, A. Dross and R. Wittkowski (2002). Anthocyanin analysis by HPLC/ESI-MS. Am. J. Enol. Viticult. 53(1): 78–86.Google Scholar
  96. Heinonen, S., K. Wahala and H. Adlercreutz (1999). Identification of isoflavone metabolites dihydrodaidzein, dihydrogenistein, 6′-OH-O-dma, andcis-4-OH-equol in human urine by gas chromatography-mass spectroscopy using authentic reference compounds. Anal. Biochem. 274(2): 211–219.PubMedGoogle Scholar
  97. Heinonen, S. M., A. Hoikkala, K. Wahala and H. Adlercreutz (2003). Metabolism of the soy isoflavones daidzein, genistein and glycitein in human subjects. Identification of new metabolites having an intact isoflavonoid skeleton. J. Steroid Biochem. 87(4–5): 285–299.Google Scholar
  98. Hellwig, S., J. Drossard, R. M. Twyman and R. Fischer (2004). Plant cell cultures for the production of recombinant proteins. Nat. Biotechnol. 22(11): 1415–1422.PubMedGoogle Scholar
  99. Herath, W. H. M. W., D. Ferreira and I. A. Khan (2003). Microbial transformation of xanthohumol. Phytochemistry 62(5): 673–677.PubMedGoogle Scholar
  100. Hollman, P. C. H. and I. C. W. Arts (2000). Flavonols, flavones and flavanols – nature, occurrence and dietary burden. J. Sci. Food Agr. 80(7): 1081–1093.Google Scholar
  101. Hollman, P. C. H., J. M. P. vanTrijp, M. N. C. P. Buysman, M. S. VanderGaag, M. J. B. Mengelers, J. H. M. deVries and M. B. Katan (1997). Relative bioavailability of the antioxidant flavonoid quercetin from various foods in man. Febs Lett. 418(1–2): 152–156.PubMedGoogle Scholar
  102. Hosny, M., K. Dhar and J. P. N. Rosazza (2001). Hydroxylations and methylations of quercetin, fisetin, and catechin byStreptomyces griseus. J. Nat. Prod. 64(4): 462–465.PubMedGoogle Scholar
  103. Hosny, M. and J. P. N. Rosazza (1999). Novel isoflavone, cinnamic acid, and triterpenoid glycosides in soybean molasses. J. Nat. Prod. 62(6): 853–858.PubMedGoogle Scholar
  104. Hotze, M., G. Schroder and J. Schroder (1995). Cinnamate 4-hydroxylase fromCatharanthus roseus, and a strategy for the functional expression of plant cytochrome P-450 proteins as translational fusions with P-450 reductase inEscherichia coli. Febs Lett. 374(3): 345–350.PubMedGoogle Scholar
  105. Howitz, K. T., K. J. Bitterman, H. Y. Cohen, D. W. Lamming, S. Lavu, J. G. Wood, R. E. Zipkin, P. Chung, A. Kisielewski, L. L. Zhang, B. Scherer and D. A. Sinclair (2003). Small molecule activators of sirtuins extendSaccharomyces cerevisiae lifespan. Nature 425(6954): 191–196.PubMedGoogle Scholar
  106. Hur, H. G., R. D. Beger, T. M. Heinze, J. O. Lay, J. P. Freeman, J. Dore and F. Rafii (2002). Isolation of an anaerobic intestinal bacterium capable of cleaving the C-ring of the isoflavonoid daidzein. Arch. Microbiol. 178(1): 8–12.PubMedGoogle Scholar
  107. Hur, H. G., J. O. Lay, R. D. Beger, J. P. Freeman and F. Rafii (2000). Isolation of human intestinal bacteria metabolizing the natural isoflavone glycosides daidzin and genistin. Arch. Microbiol. 174(6): 422–428.PubMedGoogle Scholar
  108. Hur, H. G. and F. Rafii (2000). Biotransformation of the isoflavonoids biochanin A, formononetin, and glycitein byEubacterium limosum. FEMS Microbiol. Lett. 192(1): 21–25.PubMedGoogle Scholar
  109. Hutchins, A. M., J. L. Slavin and J. W. Lampe (1995). Urinary isoflavonoid phytoestrogen and lignan excretion after consumption of fermented and unfermented soy products. J. Am. Diet Assoc. 95(5): 545–551.PubMedGoogle Scholar
  110. Hwang, E. I., M. Kaneko, Y. Ohnishi and S. Horinouchi (2003). Production of plant-specific flavanones byEscherichia coli containing an artificial gene cluster. Appl. Environ. Microb. 69(5): 2699–2706.Google Scholar
  111. Ibrahim, A. R. and Y. J. Abulhajj (1989). Aromatic hydroxylation and sulfation of 5-hydroxyflavone byStreptomyces fulvissimus. Appl. Environ. Microb. 55(12): 3140–3142.Google Scholar
  112. Ibrahim, A. R. S. (2000). Sulfation of naringenin byCunninghamella elegans. Phytochemistry 53(2): 209–212.PubMedGoogle Scholar
  113. Ibrahim, A. R. S. and Y. J. Abulhajj (1990). Microbiological transformation of flavone and isoflavone. Xenobiotica 20(4): 363–373.PubMedGoogle Scholar
  114. Ibrahim, A. R. S., A. M. Galal, J. S. Mossa and F. S. El-Feraly (1997). Glucose-conjugation of the flavones ofPsiadia arabica byCunninghamella elegans. Phytochemistry 46(7): 1193–1195.PubMedGoogle Scholar
  115. Ingram, D., K. Sanders, M. Kolybaba and D. Lopez (1997). Case-control study of phyto-oestrogens and breast cancer. Lancet 350(9083): 990–994.PubMedGoogle Scholar
  116. Inoue, M., K. Tajima, K. Hirose, N. Hamajima, T. Takezaki, T. Kuroishi and S. Tominaga (1998). Tea and coffee consumption and the risk of digestive tract cancers: data from a comparative case-referent study in Japan. Cancer Causes Control 9(2): 209–216.PubMedGoogle Scholar
  117. Jankun, J., S. H. Selman, R. Swiercz and E. SkrzypczakJankun (1997). Why drinking green tea could prevent cancer. Nature 387(6633): 561–561.PubMedGoogle Scholar
  118. Jeon, K. S., G. E. Ji and I. K. Kwang (2002). Assay of beta-glucosidase activity of bifidobacteria and the hydrolysis of isoflavone glycosides byBifidobacterium sp Int-57 in soymilk fermentation. J. Microbiol. Biotechn. 12(1): 8–13.Google Scholar
  119. Jez, J. M., J. L. Ferrer, M. E. Bowman, R. A. Dixon and J. P. Noel (2000). Dissection of malonyl-coenzyme A decarboxylation from polyketide formation in the reaction mechanism of a plant polyketide synthase. Biochemistry-US 39(5): 890–902.Google Scholar
  120. Jiang, H. X., K. V. Wood and J. A. Morgan (2005). Metabolic engineering of the phenylpropanoid pathway inSaccharomyces cerevisiae. Appl. Environ. Microb. 71(6): 2962–2969.Google Scholar
  121. Joannou, G. E., G. E. Kelly, A. Y. Reeder, M. Waring and C. Nelson (1995). A urinary profile study of dietary phytoestrogens – the identification and mode of metabolism of new isoflavonoids. J. Steroid Biochem. Mol. Biol. 54(3–4): 167–184.PubMedGoogle Scholar
  122. Johnson, E. T., S. Ryu, H. K. Yi, B. Shin, H. Cheong and G. Choi (2001). Alteration of a single amino acid changes the substrate specificity of dihydroflavonol 4-reductase. Plant J. 25(3): 325–333.PubMedGoogle Scholar
  123. Jung, W., O. Yu, S. M. Lau, D. P. O’Keefe, J. Odell, G. Fader and B. McGonigle (2000). Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nat. Biotechnol. 18(2): 208–212.PubMedGoogle Scholar
  124. Juniewicz, P. E., S. P. Morell, A. Moser and L. L. Ewing (1988). Identification of phytoestrogens in the urine of male dogs. J. Steroid Biochem. Mol. Biol. 31(6): 987–994.Google Scholar
  125. Justesen, U., E. Arrigoni, B. R. Larsen and R. Amado (2000). Degradation of flavonoid glycosides and aglycones duringin vitro fermentation with human faecal flora. Food Sci. Technol. 33(6): 424–430.Google Scholar
  126. Kahkonen, M. P. and M. Heinonen (2003). Antioxidant activity of anthocyanins and their aglycons. J. Agr. Food Chem. 51(3): 628–633.Google Scholar
  127. Kamei, H., T. Kojima, M. Hasegawa, T. Koide, T. Umeda, T. Yukawa and K. Terabe (1995). Suppression of tumor-cell growth by anthocyaninsin vitro. Cancer Invest. 13(6): 590–594.PubMedGoogle Scholar
  128. Kang, S. Y., N. P. Seeram, M. G. Nair and L. D. Bourquin (2003). Tart cherry anthocyanins inhibit tumor development in Apc(Min) mice and reduce proliferation of human colon cancer cells. Cancer Lett. 194(1): 13–19.PubMedGoogle Scholar
  129. Katsube, N., K. Iwashita, T. Tsushida, K. Yamaki and M. Kobori (2003). Induction of apoptosis in cancer cells by bilberry (Vaccinium myrtillus) and the anthocyanins. J. Agr. Food Chem. 51(1): 68–75.Google Scholar
  130. Kawabata, J., Y. Okamoto, A. Kodama, T. Makimoto and T. Kasai (2002). Oxidative dimers produced from protocatechuic and gallic esters in the DPPH radical scavenging reaction. J. Agr. Food Chem. 50(19): 5468–5471.Google Scholar
  131. Kelly, G. E., G. E. Joannou, A. Y. Reeder, C. Nelson and M. A. Waring (1995). The variable metabolic response to dietary isoflavones in humans. Proc. Soc. Exp. Biol. Med. 208(1): 40–43.PubMedGoogle Scholar
  132. Keppler, K. and H. U. Humpf (2005). Metabolism of anthocyanins and their phenolic degradation products by the intestinal microflora. Bioorgan. Med. Chem. 13(17): 5195–5205.Google Scholar
  133. Khan, M. S. Y. and S. M. Hasan (2003). Synthesis, antiinflammatory and antibacterial activity of some new flavonoidal derivatives. Indian J. Chem. B 42(8): 1970–1974.Google Scholar
  134. Kim, D. H., E. A. Jung, I. S. Sohng, J. A. Han, T. H. Kim and M. J. Han (1998). Intestinal bacterial metabolism of flavonoids and its relation to some biological activities. Arch. Pharm. Res. 21(1): 17–23.PubMedGoogle Scholar
  135. Kim, H. J. and I. S. Lee (2006). Microbial metabolism of the prenylated chalcone xanthohumol. J. Nat. Prod. 69(10): 1522–1524.PubMedGoogle Scholar
  136. Klus, K. and W. Barz (1998). Formation of polyhydroxylated isoflavones from the isoflavones genistein and biochanin A by bacteria isolated from tempe. Phytochemistry 47(6): 1045–1048.Google Scholar
  137. Kobayashi, Y., M. Akita, K. Sakamoto, H. F. Liu, T. Shigeoka, T. Koyano, M. Kawamura and T. Furuya (1993). Large-scale production of anthocyanin byAralia cordata cell-suspension cultures. Appl. Microbiol. Biot. 40(2–3): 215–218.Google Scholar
  138. Koide, T., U. Hashimoto, H. Kamei, T. Kojima, M. Hasegawa and K. Terabe (1997). Antitumor effect of anthocyanin fractions extracted from red soybeans and red beansin vitro andin vivo. Cancer Biother. Radio. 12(4): 277–280.Google Scholar
  139. Koide, T., H. Kamei, Y. Hashimoto, T. Kojima and M. Hasegawa (1996). Antitumor effect of hydrolyzed anthocyanin from grape rinds and red rice. Cancer Biother. Radio. 11(4): 273–277.Google Scholar
  140. Kostrzewa-Suslow, E., J. Dmochowska-Gladysz, A. Bialonska, Z. Ciunik and W. Rymowicz (2006). Microbial transformations of flavanone and 6-hydroxyflavanone byAspergillus niger strains. J. Mol. Catal. B-Enzym. 39(1–4): 18–23.Google Scholar
  141. Krishnamurty, H. G., K. J. Cheng, G. A. Jones, F. J. Simpson and J. E. Watkin (1970). Identification of products produced by the anaerobic degradation of rutin and related flavonoids byButyrivibrio sp. C3. Can. J. Microb. 16(8): 759–767.Google Scholar
  142. Kuhnau, J. (1976). The flavonoids. A class of semi-essential food components. Their role in human nutrition. World Rev. Nutr. Diet 24: 117–191.PubMedGoogle Scholar
  143. Kuiper, G. G. J. M., J. G. Lemmen, B. Carlsson, J. C. Corton, S. H. Safe, P. T. van der Saag, P. van der Burg and J. A. Gustafsson (1998). Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 139(10): 4252–4263.PubMedGoogle Scholar
  144. Lala, G., M. Malik, C. Zhao, J. He, Y. Kwon, M. M. Giusti and B. A. Magnuson (2006). Anthocyanin-rich extracts inhibit multiple biomarkers of colon cancer in rats. Nutr. Cancer 54(1): 84–93.PubMedGoogle Scholar
  145. Lamartiniere, C. A., J. Wang, M. Smith-Johnson and I. E. Eltoum (2002). Daidzein: bioavailability, potential for reproductive toxicity, and breast cancer chemoprevention in female rats. Toxicol. Sci. 65(2): 228–238.PubMedGoogle Scholar
  146. Lampe, J. W., S. C. Karr, A. M. Hutchins and J. L. Slavin (1998). Urinary equol excretion with a soy challenge: influence of habitual diet. Proc. Soc. Exp. Biol. Med. 217(3): 335–339.PubMedGoogle Scholar
  147. Lamson, D. W. and M. S. Brignall (2000). Antioxidants and cancer, part 3: quercetin. Altern. Med. Rev. 5(3): 196–208.PubMedGoogle Scholar
  148. Lao, C. L., E. Lopez-Tamames, R. M. Lamuela-Raventos, S. Buxaderas and M. D. C. De La Torre-Boronat (1997). Pectic enzyme treatment effects on quality of white grape musts and wines. J. Food Sci. 62(6): 1142–1144.Google Scholar
  149. Lapidot, T., S. Harel, R. Granit and J. Kanner (1998). Bioavailability of red wine anthocyanins as detected in human urine. J. Agr. Food Chem. 46(10): 4297–4302.Google Scholar
  150. Larsson, S., N. O. Nilvebrant and L. J. Jonsson (2001). Effect of overexpression ofSaccharomyces cerevisiae Pad1p on the resistance to phenylacrylic acids and lignocellulose hydrolysates under aerobic and oxygen-limited conditions. Appl. Microbiol. Biot. 57(1–2): 167–174.Google Scholar
  151. Lee, D. F., E. E. Swinny and G. P. Jones (2004). NMR identification of ethyl-linked anthocyanin-flavanol pigments formed in model wine ferments. Tetrahedron Lett. 45(8): 1671–1674.Google Scholar
  152. Leonard, E., J. Chemler, K. H. Lim and M. A. Koffas (2006a). Expression of a soluble flavone synthase allows the biosynthesis of phytoestrogen derivatives inEscherichia coli. Appl. Microbiol. Biotech. 70(1): 85–91.Google Scholar
  153. Leonard, E., Y. Yan and M. A. Koffas (2006b). Functional expression of a P450 flavonoid hydroxylase for the biosynthesis of plant-specific hydroxylated flavonols inEscherichia coli. Meta. Eng. 8(2): 172–181.Google Scholar
  154. Leonard, E., Y. J. Yan, K. H. Lim and M. A. G. Koffas (2005). Investigation of two distinct flavone synthases for plant-specific flavone biosynthesis inSaccharomyces cerevisiae. Appl. Environ. Microb. 71(12): 8241–8248.Google Scholar
  155. Li, G., B. S. Min, C. J. Zheng, J. Lee, S. R. Oh, K. S. Ahn and H. K. Lee (2005). Neuroprotective and free radical scavenging activities of phenolic compounds fromHovenia dulcis. Arch. Pharm. Res. 28(7): 804–809.PubMedGoogle Scholar
  156. Lietti, A., A. Cristoni and M. Picci (1976). Studies onVaccinium myrtillus anthocyanosides .I. vasoprotective and antiinflammatory activity. Drug Res. 26(5): 829–832.Google Scholar
  157. Liu, C. J., J. W. Blount, C. L. Steele and R. A. Dixon (2002). Bottlenecks for metabolic engineering of isoflavone glycoconjugates in Arabidopsis. Proc. Natl. Acad. Sci. USA 99(22): 14578–14583.PubMedGoogle Scholar
  158. Liu, S. Q. and G. J. Pilone (2000). An overview of formation and roles of acetaldehyde in winemaking with emphasis on microbiological implications. Int. J. Food Sci. Tech. 35(1): 49–61.Google Scholar
  159. Looman, A. C., J. Bodlaender, L. J. Comstock, D. Eaton, P. Jhurani, H. A. de Boer and P. H. van Knippenberg (1987). Influence of the codon following the AUG initiation codon on the expression of a modifiedlacZ gene inEscherichia coli. EMBO J. 6(8): 2489–2492.Google Scholar
  160. Lozoya, E., H. Hoffmann, C. Douglas, W. Schulz, D. Scheel and K. Hahlbrock (1988). Primary structures and catalytic properties of isoenzymes encoded by the two 4-coumarate-CoA ligase genes in parsley. Eur. J. Biochem. 176(3): 661–667.PubMedGoogle Scholar
  161. Lundh, T. (1995). Metabolism of estrogenic isoflavones in domestic-animals. Proc. Soc. Exp. Biol. Med. 208(1): 33–39.PubMedGoogle Scholar
  162. Maatooq, G. T. and J. P. N. Rosazza (2005). Metabolism of daidzein byNocardia species NRRL 5646 andMortierella isabellina ATCC 38063. Phytochemistry 66(9): 1007–1011.PubMedGoogle Scholar
  163. Macdonald, I. A., J. A. Mader and R. G. Bussard (1983). The role of rutin and quercitrin in stimulating flavonol glycosidase activity by cultured cell-free microbial preparations of human feces and saliva. Mutat. Res. 122(2): 95–102.PubMedGoogle Scholar
  164. Magee, P. J. and I. R. Rowland (2004). Phyto-oestrogens, their mechanism of action: current evidence for a role in breast and prostate cancer. Brit. J. Nutr. 91(4): 513–531.PubMedGoogle Scholar
  165. Martens, S. and G. Forkmann (1999). Cloning and expression of flavone synthase II fromGerbera hybrids. Plant J. 20(5): 611–618.PubMedGoogle Scholar
  166. Martens, S., G. Forkmann, U. Matern and R. Lukacin (2001). Cloning of parsley flavone synthase I. Phytochemistry 58(1): 43–46.PubMedGoogle Scholar
  167. Martens, S., T. Teeri and G. Forkmann (2002). Heterologous expression of dihydroflavonol 4-reductases from various plants. FEBS Lett. 531(3): 453–458.PubMedGoogle Scholar
  168. Marullo, P., M. Bely, I. Masneuf-Pomarede, M. Pons, M. Aigle and D. Dubourdieu (2006). Breeding strategies for combining fermentative qualities and reducing off-flavor production in a wine yeast model. Fems Yeast Res. 6(2): 268–279.PubMedGoogle Scholar
  169. Mateus, N., S. de Pascual-Teresa, J. C. Rivas-Gonzalo, C. Santos-Buelga and V. de Freitas (2002a). Structural diversity of anthocyanin-derived pigments in port wines. Food Chem. 76(3): 335–342.Google Scholar
  170. Mateus, N., J. Oliveira, J. Pissarra, A. M. Gonzalez-Paramas, J. C. Rivas-Gonzalo, C. Santos-Buelga, A. M. S. Silva and V. de Freitas (2006). A new vinylpyranoanthocyanin pigment occurring in aged red wine. Food Chem. 97(4): 689–695.Google Scholar
  171. Mateus, N., J. Oliveira, C. Santos-Buelga, A. M. S. Silva and V. de Freitas (2004). NMR structure characterization of a new vinylpyranoanthocyanin-catechin pigment (a portisin). Tetrahedron Lett. 45(17): 3455–3457.Google Scholar
  172. Mateus, N., A. M. S. Silva, J. C. Rivas-Gonzalo, C. Santos-Buelga and V. De Freitas (2003). A new class of blue anthocyanin-derived pigments isolated from red wines. J. Agr. Food Chem. 51(7): 1919–1923.Google Scholar
  173. Mateus, N., A. M. S. Silva, C. Santos-Buelga, J. C. Rivas-Gonzalo and V. de Freitas (2002b). Identification of anthocyanin-flavanol pigments in red wines by NMR and mass spectrometry. J .Agr. Food Chem. 50(7): 2110–2116.Google Scholar
  174. Mateus, N., A. M. S. Silva, J. Vercauteren and V. de Freitas (2001). Occurrence of anthocyanin-derived pigments in red wines. J. Agr. Food Chem. 49(10): 4836–4840.Google Scholar
  175. Matsumoto, H., H. Inaba, M. Kishi, S. Tominaga, M. Hirayama and T. Tsuda (2001). Orally administered delphinidin 3-rutinoside and cyanidin 3-rutinoside are directly absorbed in rats and humans and appear in the blood as the intact forms. J. Agr. Food Chem. 49(3): 1546–1551.Google Scholar
  176. Mauricio, J. C., J. Moreno, L. Zea, J. M. Ortega and M. Medina (1997). The effects of grape must fermentation conditions on volatile alcohols and esters formed bySaccharomyces cerevisiae. J. Sci. Food Agr. 75(2): 155–160.Google Scholar
  177. Mazza, G., C. D. Kay, T. Cottrell and B. J. Holub (2002). Absorption of anthocyanins from blueberries and serum antioxidant status in human subjects. J. Agr. Food Chem. 50(26): 7731–7737.Google Scholar
  178. Mazza, G. and E. Miniati (1993).Anthocyanins in Fruits, Vegetables, and Grains. Boca Raton, FL, CRC Press.Google Scholar
  179. McDougall, G. J., S. Fyffe, P. Dobson and D. Stewart (2005). Anthocyanins from red wine – their stability under simulated gastrointestinal digestion. Phytochemistry 66(21): 2540–2548.PubMedGoogle Scholar
  180. Mclellan, M. R., R. W. Kime, C. Y. Lee and T. M. Long (1995). Effect of honey as an antibrowning agent in light raisin processing. J. Food Process. Pres. 19(1): 1–8.Google Scholar
  181. Meselhy, M. R., N. Nakamura and M. Hattori (1997). Biotransformation of (–)-epicatecbin 3-O-gallate by human intestinal bacteria. Chem. Pharm. Bull. 45(5): 888–893.PubMedGoogle Scholar
  182. Meyer, J. E., M. F. Pepin and M. A. L. Smith (2002). Anthocyanin production fromVaccinium pahalae: limitations of the physical micro environment. J. Biotechnol. 93(1): 45–57.PubMedGoogle Scholar
  183. Michnick, S., J. L. Roustan, F. Remize, P. Barre and S. Dequin (1997). Modulation of glycerol and ethanol yields during alcoholic fermentation inSaccharomyces cerevisiae strains overexpressed or disrupted for GPD1 encoding glycerol 3-phosphate dehydrogenase. Yeast 13(9): 783–793.PubMedGoogle Scholar
  184. Middleton, E. and C. Kandaswami (1992). Effects of flavonoids on immune and inflammatory cell functions. Biochem. Pharmacol. 43(6): 1167–1179.PubMedGoogle Scholar
  185. Milligan, S., J. Kalita, V. Pocock, A. Heyerick, L. De Cooman, H. Rong and D. De Keukeleire (2002). Oestrogenic activity of the hop phyto-oestrogen, 8-prenylnaringenin. Reproduction 123(2): 235–242.PubMedGoogle Scholar
  186. Milligan, S. R., J. C. Kalita, A. Heyerick, H. Rong, L. De Cooman and D. De Keukeleire (1999). Identification of a potent phytoestrogen in hops (Humulus lupulus L.) and beer. J. Clin. Endocr. Metab. 84(6): 2249–2252.PubMedGoogle Scholar
  187. Miyake, Y., K. Yamamoto and T. Osawa (1997). Metabolism of antioxidant in lemon fruit (Citrus limon B-URM. f.) by human intestinal bacteria. J. Agr. Food Chem. 45(10): 3738–3742.Google Scholar
  188. Miyazawa, T., K. Nakagawa, M. Kudo, K. Muraishi and K. Someya (1999). Direct intestinal absorption of red fruit anthocyanins, cyanidin-3-glucoside and cyanidin-3,5-diglucoside, into rats and humans. J. Agr. Food Chem. 47(3): 1083–1091.Google Scholar
  189. Mol, J., E. Grotewold and R. Koes (1998). How genes paint flowers and seeds. Trends Plant Sci. 3(6): 212–217.Google Scholar
  190. Molly, K., M. V. Woestyne and W. Verstraete (1993). Development of a 5-step multichamber reactor as a simulation of the human intestinal microbial ecosystem. Appl. Microbiol. Biotech. 39(2): 254–258.Google Scholar
  191. Monagas, M., B. Bartolome and C. Gomez-Cordoves (2005). Updated knowledge about the presence of phenolic compounds in wine. Crit. Rev. Food Sci. 45(2): 85–118.Google Scholar
  192. Monagas, M., V. Nunez, B. Bartolome and C. Gomez-Cordoves (2003). Anthocyanin-derived pigments in Graciano, Tempranillo, and Cabernet Sauvignon wines produced in Spain. Am. J. Enol. Viticult. 54(3): 163–169.Google Scholar
  193. Monfort, S. L., M. A. Thompson, N. M. Czekala, L. H. Kasman, C. H. L. Shackleton and B. L. Lasley (1984). Identification of a non-steroidal estrogen, equol, in the urine of pregnant macaques – correlation with steroidal estrogen excretion. J. Steroid Biochem. 20(4): 869–876.PubMedGoogle Scholar
  194. Moorthy, N. S. H. N., R. J. Singh, H. P. Singh and S. D. Gupta (2006). Synthesis, biological evaluation andin silico metabolic and toxicity prediction of some flavanone derivatives. Chem. Pharm. Bull. 54(10): 1384–1390.PubMedGoogle Scholar
  195. Morata, A., A. C. Gomez-Cordoves, B. Colomo and J. A. Suarez (2003). Pyruvic acid and acetaldehyde production by different strains ofSaccharomyces cerevisiae: relationship with vitisin A and B formation in red wines. J. Agr. Food Chem. 51(25): 7402–7409.Google Scholar
  196. Morata, A., M. C. Gomez-Cordoves, F. Calderon and J. A. Suarez (2006). Effects of pH, temperature and SO2 on the formation of pyranoanthocyanins during red wine fermentation with two species ofSaccharomyces. Int. J. Food Microbiol. 106(2): 123–129.PubMedGoogle Scholar
  197. Nakayama, T., T. Sato, Y. Fukui, K. Yonekura-Sakakibara, H. Hayashi, Y. Tanaka, T. Kusumi and T. Nishino (2001). Specificity analysis and mechanism of aurone synthesis catalyzed by aureusidin synthase, a polyphenol oxidase homolog responsible for flower coloration. FEBS Lett. 499(1–2): 107–111.PubMedGoogle Scholar
  198. Natella, F., M. Nardini, M. Di Felice and C. Scaccini (1999). Benzoic and cinnamic acid derivatives as antioxidants: structure-activity relation. J. Agr. Food Chem. 47(4): 1453–1459.Google Scholar
  199. Noda, Y., T. Kneyuki, K. Igarashi, A. Mori and L. Packer (2000). Antioxidant activity of nasunin, an anthocyanin in eggplant peels. Toxicology 148(2–3): 119–123.PubMedGoogle Scholar
  200. Ohnishi, M., N. Yoshimi, T. Kawamori, N. Ino, Y. Hirose, T. Tanaka, J. Yamahara, H. Miyata and H. Mori (1997). Inhibitory effects of dietary protocatechuic acid and costunolide on 7,12-dimethylbenz[α]anthracene-induced hamster cheek pouch carcinogenesis. Jpn. J. Cancer Res. 88(2): 111–119.PubMedGoogle Scholar
  201. Ohta, A., M. Uehara, K. Sakai, M. Takasaki, H. Adlercreutz, T. Morohashi and Y. Ishimi (2002). A combination of dietary fructooligosaccharides and isoflavone conjugates increases femoral bone mineral density and equol production in ovariectomized mice. J. Nutr. 132(7): 2048–2054.PubMedGoogle Scholar
  202. Okuno, Y. and M. Miyazawa (2006). Microbial O-demethylation of sinesetin and antimutagenic activity of the metabolite. J. Chem. Technol. Biot. 81(1): 29–33.Google Scholar
  203. Omori, T., K. Ogawa, Y. Umemoto, K. Yuki, Y. Kajihara, M. Shimoda and H. Wada (1996). Enhancement of glycerol production by brewing yeast (Saccharomyces cerevisiae) with heat shock treatment. J. Ferment. Bioeng. 82(2): 187–190.Google Scholar
  204. Oszmianski, J. and C. Y. Lee (1990). Inhibition of polyphenol oxidase activity and browning by honey. J. Agr. Food Chem. 38(10): 1892–1895.Google Scholar
  205. Pan, X. J., G. G. Niu and H. Z. Liu (2003). Microwave-assisted extraction of tea polyphenols and tea caffeine from green tea leaves. Chem. Eng. Process 42(2): 129–133.Google Scholar
  206. Passamonti, S., U. Vrhovsek, A. Vanzo and F. Mattivi (2003). The stomach as a site for anthocyanins absorption from food. FEBS Lett. 544(1–3): 210–213.PubMedGoogle Scholar
  207. Peterson, J. J., J. T. Dwyer, G. R. Beecher, S. A. Bhagwat, S. E. Gebhardt, D. B. Haytowitz and J. M. Holden (2006). Flavanones in oranges, tangerines (mandarins), tangors, and tangelos: a compilation and review of the data from the analytical literature. J. Food Compos. Anal. 19: S66-S73.Google Scholar
  208. Possemiers, S., S. Bolca, C. Grootaert, T. Van de Wiele, W. Verstraete, D. De Keukeleire and A. Heyerick (2006). Metabolic activation of pro-estrogens from hops by intestinal microbiota results in increased exposure to the potent phytoestrogen 8-prenylnaringenin,in vitro andin vivo. Poly. Comm.: 51–52.Google Scholar
  209. Possemiers, S., A. Heyerick, V. Robbens, D. De Keukeleire and W. Verstraete (2005). Activation of proestrogens from hops (Humulus lupulus L.) by intestinal microbiota; conversion of isoxanthohumol into 8-prenylnaringenin. J. Agr. Food. Chem. 53(16): 6281–6288.Google Scholar
  210. Pozo-Bayon, M. A., M. Monagas, M. C. Polo and C. Gomez-Cordoves (2004). Occurrence of pyranoanthocyanins in sparkling wines manufactured with red grape varieties. J. Agr. Food Chem. 52(5): 1300–1306.Google Scholar
  211. Pretorius, I. S. (2000). Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast 16(8): 675–729.PubMedGoogle Scholar
  212. Radler, F. (1992). Yeast. Metabolism of organic acids. In: G.H. Fleet (Ed.)Wine Microbiology and Biotechnology. Camberwell, Victoria, Australia, Hardwood Academic Publishers: 165–182.Google Scholar
  213. Ralston, L., S. Subramanian, M. Matsuno and O. Yu (2005). Partial reconstruction of flavonoid and isoflavonoid biosynthesis in yeast using soybean type I and type II chalcone isomerases. Plant Physiol. 137(4): 1375–1388.PubMedGoogle Scholar
  214. Ramirez-Tortosa, C., O. M. Andersen, P. T. Gardner, P. C. Morrice, S. G. Wood, S. J. Duthie, A. R. Collins and G. G. Duthie (2001). Anthocyanin-rich extract decreases indices of lipid peroxidation and DNA damage in vitamin E-depleted rats. Free Radical Bio. Med. 31(9): 1033–1037.Google Scholar
  215. Rao, K. V. and N. T. Weisner (1981). Microbial transformation of quercetin byBacillus cereus. Appl. Environ. Microb. 42(3): 450–452.Google Scholar
  216. Renaud, S. and M. Delorgeril (1992). Wine, alcohol, platelets, and the French paradox for coronary heart-disease. Lancet 339(8808): 1523–1526.PubMedGoogle Scholar
  217. Revilla, I., S. Perez-Magarino, M. L. Gonzalez-SanJose and S. Beltran (1999). Identification of anthocyanin derivatives in grape skin extracts and red wines by liquid chromatography with diode array and mass spectrometric detection. J. Chromatogr. A 847(1–2): 83–90.Google Scholar
  218. Rice-Evans, C. A., N. J. Miller, P. G. Bolwell, P. M. Bramley and J. B. Pridham (1995). The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radical Res. 22(4): 375–383.Google Scholar
  219. RiceEvans, C. A., N. J. Miller and G. Paganga (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Bio. Med. 20(7): 933–956.Google Scholar
  220. Romero, C. and J. Bakker (1999). Interactions between grape anthocyanins and pyruvic acid, with effect of pH and acid concentration on anthocyanin composition and color in model solutions. J. Agr. Food Chem. 47(8): 3130–3139.Google Scholar
  221. Romero, C. and J. Bakker (2001). Anthocyanin and colour evolution during maturation of four port wines: effect of pyruvic acid addition. J. Sci. Food Agr. 81(2): 252–260.Google Scholar
  222. Rong, H., Y. Zhao, K. Lazou, D. De Keukeleire, S. R. Milligan and P. Sandra (2000). Quantitation of 8-prenylnaringenin, a novel phytoestrogen in hops (Humulus lupulus L.), hop products, and beers, by benchtop HPLC-MS using electrospray ionization. Chromatographia 51(9–10): 545–552.Google Scholar
  223. Rowland, I., H. Wiseman, T. Sanders, H. Adlercreutz and E. Bowey (1999). Metabolism of oestrogens and phytoestrogens: role of the gut microflora. Biochem. Soc. Trans. 27(2): 304–308.PubMedGoogle Scholar
  224. Rowland, I. R., H. Wiseman, T. A. Sanders, H. Adlercreutz and E. A. Bowey (2000). Interindividual variation in metabolism of soy isoflavones and lignans: influence of habitual diet on equol production by the gut microflora. Nutr. Cancer 36(1): 27–32.PubMedGoogle Scholar
  225. Ruefer, C. E., C. Gerhauser, N. Frank, H. Becker and S. E. Kulling (2005).In vitro phase II metabolism of xanthohumol by human UDP-glucuronosyltransferases and sulfotransferases. Mol. Nutr. Food. Res. 49(9): 851–856.PubMedGoogle Scholar
  226. Sakaguchi, M., K. Mihara and R. Sato (1984). Signal recognition particle is required for co-translational insertion of cytochrome P-450 into microsomal membranes. Proc. Natl. Acad. Sci. USA 81(11): 3361–3364.PubMedGoogle Scholar
  227. Salakka, A. K., T. H. Jokela and K. Wahala (2006). Multiple hydride reduction pathways in isoflavonoids. J. Org. Chem. 2: 16.Google Scholar
  228. Sanchez-Gonzalez, M. and J. P. N. Rosazza (2004). Microbial transformations of chalcones: Hydroxylation, O-demethylation, and cyclization to flavanones. J. Nat. Prod. 67(4): 553–558.PubMedGoogle Scholar
  229. SarniManchado, P., H. Fulcrand, J. M. Souquet, V. Cheynier and M. Moutounet (1996). Stability and color of unreported wine anthocyanin-derived pigments. J. Food Sci. 61(5): 938–941.Google Scholar
  230. SatueGracia, M. T., M. Heinonen and E. N. Frankel (1997). Anthocyanins as antioxidants on human low-density lipoprotein and lecithin-liposome systems. J. Agr. Food Chem. 45(9): 3362–3367.Google Scholar
  231. Scalbert, A. and G. Williamson (2000). Dietary intake and bioavailability of polyphenols. J. Nutr. 130(8): 2073s–2085s.PubMedGoogle Scholar
  232. Schauder, B. and J. E. McCarthy (1989). The role of bases upstream of the Shine-Dalgarno region and in the coding sequence in the control of gene expression inEscherichia coli: translation and stability of mRNAsin vivo. Gene 78(1): 59–72.PubMedGoogle Scholar
  233. Schneider, H., A. Schwiertz, M. D. Collins and M. Blaut (1999). Anaerobic transformation of quercetin-3-glucoside by bacteria from the human intestinal tract. Arch. Microbiol. 171(2): 81–91.PubMedGoogle Scholar
  234. Schwarz, M., J. J. Picazo-Bacete, P. Winterhalter and I. Hermosin-Gutierrez (2005). Effect of copigments and grape cultivar on the color of red wines fermented after the addition of copigments. J. Agr. Food. Chem. 53(21): 8372–8381.Google Scholar
  235. Schwarz, M., T. C. Wabnitz and P. Winterhalter (2003). Pathway leading to the formation of anthocyanin-vinylphenol adducts and related pigments in red wines. J. Agr. Food Chem. 51(12): 3682–3687.Google Scholar
  236. Schwarz, M. and P. Winterhalter (2003). A novel synthetic route to substituted pyranoanthocyanins with unique colour properties. Tetrahedron Lett. 44(41): 7583–7587.Google Scholar
  237. Schwarz, M. and P. Winterhalter (2004). Novel aged anthocyanins from Pinotage wines: Isolation, characterization, and pathway of formation. In: A.L. Waterhouse, J.A. Kennedy (Ed.):Red Wine Color: Revealing the Mysteries, ACS Symp. Ser. 886, American Chemical Society: Washington, DC, pp. 179–197.Google Scholar
  238. Serafini, M., G. Maiani and A. Ferro-Luzzi (1998). Alcohol-free red wine enhances plasma antioxidant capacity in humans. J. Nutr. 128(6): 1003–1007.PubMedGoogle Scholar
  239. Setchell, K. D. R., S. P. Borriello, P. Hulme, D. N. Kirk and M. Axelson (1984). Nonsteroidal estrogens of dietary origin - possible roles in hormone-dependent disease. Am. J. Clin. Nutr. 40(3): 569–578.PubMedGoogle Scholar
  240. Setchell, K. D. R., C. Clerici, E. D. Lephart, S. J. Cole, C. Heenan, D. Castellani, B. E. Wolfe, L. Nechemias-Zimmer, N. M. Brown, T. D. Lund, R. J. Handa and J. E. Heubi (2005). S-Equol, a potent ligand for estrogen receptor beta, is the exclusive enantiomeric form of the soy isoflavone metabolite produced by human intestinal bacterial floral. Am. J. Clin. Nutr. 81(5): 1072–1079.PubMedGoogle Scholar
  241. Setchell, K. D. R., L. ZimmerNechemias, J. N. Cai and J. E. Heubi (1997). Exposure of infants to phyto-oestrogens from soy-based infant formula. Lancet 350(9070): 23–27.PubMedGoogle Scholar
  242. Setchell, K. D. R., L. Zimmer-Nechemias, J. N. Cai and J. E. Heubi (1998). Isoflavone content of infant formulas and the metabolic fate of these phytoestrogens in early life. Am. J. Clin. Nutr. 68(6): 1453s–1461s.PubMedGoogle Scholar
  243. Setiawan, V. W., Z. F. Zhang, G. P. Yu, Q. Y. Lu, Y. L. Li, M. L. Lu, M. R. Wang, C. H. Guo, S. Z. Yu, R. C. Kurtz and C. C. Hsieh (2001). Protective effect of green tea on the risks of chronic gastritis and stomach cancer. Int. J. Cancer 92(4): 600–604.PubMedGoogle Scholar
  244. Simons, A. L., M. Renouf, S. Hendrich and P. A. Murphy (2005a). Human gut microbial degradation of flavonoids: Structure-function relationships. J. Agr. Food. Chem. 53(10): 4258–4263.Google Scholar
  245. Simons, A. L., M. Renouf, S. Hendrich and P. A. Murphy (2005b). Metabolism of glycitein (7,4 ’-dihydroxy-6-methoxy-isoflavone) by human gut microflora. J. Agr. Food. Chem. 53(22): 8519–8525.Google Scholar
  246. Smith, M. A. L. and L. A. Spomer (1995). Vessels, gels, liquid media, and support systems. J. Aitken-Christie, T. Kozai and M. A. L. Smith (Eds).Automation and Environmental Control in Plant Tissue Culture. Dordrecht, The Netherlands, Kluwer Academic Publishers: 371–404.Google Scholar
  247. Song, T. T., K. Barua, G. Buseman and P. A. Murphy (1998). Soy isoflavone analysis: quality control and a new internal standard. Am. J. Clin. Nutr. 68(6): 1474s–1479s.PubMedGoogle Scholar
  248. Song, T. T., S. Hendrich and P. A. Murphy (1999). Estrogenic activity of glycitein, a soy isoflavone. J. Agr. Food Chem. 47(4): 1607–1610.Google Scholar
  249. Sroka, Z. and W. Cisowski (2003). Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Food Chem. Toxicol. 41(6): 753–758.PubMedGoogle Scholar
  250. Stashenko, H., C. Macku and T. Shibamato (1992). Monitoring volatile chemicals formed from must during yeast fermentation. J. Agr. Food Chem. 40(11): 2257–2259.Google Scholar
  251. Stevens, J. F., A. W. Taylor and M. L. Deinzer (1999). Quantitative analysis of xanthohumol and related prenylflavonoids in hops and beer by liquid chromatography tandem mass spectrometry. J. Chromatogr. A 832(1–2): 97–107.PubMedGoogle Scholar
  252. Stich, E., K. Kloos, P. Cortona and S. Hake (1999). Color me natural. Nutr. World 2: 64–70.Google Scholar
  253. Stintzing, F. C. and R. Carle (2004). Functional properties of anthocyanins and betalains in plants, food, and in human nutrition. Trends Food Sci. Technol. 15(1): 19–38.Google Scholar
  254. Stormo, G. D., T. D. Schneider and L. M. Gold (1982). Characterization of translational initiation sites inE. coli. Nucleic Acids Res. 10(9): 2971–2996.Google Scholar
  255. Takamatsu, S., A. M. Galal, S. A. Ross, D. Ferreira, M. A. ElSohly, A. R. S. Ibrahim and F. S. El-Feraly (2003). Antioxidant effect of flavonoids on DCF production in HL-60 cells. Phytother. Res. 17(8): 963–966.PubMedGoogle Scholar
  256. Takamura, Y. and G. Nomura (1988). Changes in the intracellular concentration of acetyl-CoA and malonyl-CoA in relation to the carbon and energy metabolism ofEscherichia coli K12. J. Gen. Microbiol. 134(8): 2249–2253.PubMedGoogle Scholar
  257. Talavera, S., C. Felgines, O. Texier, C. Besson, J. L. Lamaison and C. Remesy (2003). Anthocyanins are efficiently absorbed from the stomach in anesthetized rats. J. Nutr. 133(12): 4178–4182.PubMedGoogle Scholar
  258. Talavera, S., C. Felgines, O. Texier, C. Besson, C. Manach, J. L. Lamaison and C. Remesy (2004). Anthocyanins are efficiently absorbed from the small intestine in rats. J. Nutr. 134(9): 2275–2279.PubMedGoogle Scholar
  259. Tsai, P. J., Y. Y. Hsieh and T. C. Huang (2004). Effect of sugar on anthocyanin degradation and water mobility in a roselle anthocyanin model system using O-17 NMR. J. Agr. Food Chem. 52(10): 3097–3099.Google Scholar
  260. Tsangalis, D., J. F. Ashton, A. E. J. McGill and N. P. Shah (2002). Enzymic transformation of isoflavone phytoestrogens in soymilk by beta-glucosidase-producing bifidobacteria. J. Food Sci. 67(8): 3104–3113.Google Scholar
  261. Tsangalis, D., J. F. Ashton, A. E. J. Mcgill and N. P. Shah (2003). Biotransformation of isoflavones by bifidobacteria in fermented soymilk supplemented with D-glucose and L-cysteine. J. Food Sci. 68(2): 623–631.Google Scholar
  262. Tsuda, T., F. Horio and T. Osawa (1999). Absorption and metabolism of cyanidin 3-O-β-D-glucoside in rats. FEBS Lett. 449(2–3): 179–182.PubMedGoogle Scholar
  263. Turner, N. J., B. M. Thomson and I. C. Shaw (2003). Bioactive isoflavones in functional foods: The importance of gut microflora on bioavailability. Nutr. Rev. 61(6): 204–213.PubMedGoogle Scholar
  264. Udupa, S. R., A. Banerji and M. S. Chadha (1969). Microbiological transformations of flavonoids – II Transformations of (±)-flavanone Tetrahedron 25(22): 5415–5419.Google Scholar
  265. Ueno, T., S. Uchiyama and N. Kikuchi (2002). The role of intestinal bacteria on biological effects of soy isoflavones in humans. J. Nutr. 132(3): 594s–594s.Google Scholar
  266. Valero, E., L. Moyano, M. C. Millan, M. Medina and J. M. Ortega (2002). Higher alcohols and esters production bySaccharomyces cerevisiae. Influence of the initial oxygenation of the grape must. Food Chem. 78(1): 57–61.Google Scholar
  267. Vinson, J. A. and Y. A. Dabbagh (1998). Effect of green and black tea supplementation on lipids, lipid oxidation and fibrinogen in the hamster: mechanisms for the epidemiological benefits of tea drinking. FEBS Lett. 433(1–2): 44–46.PubMedGoogle Scholar
  268. Viswanathan, M., S. K. Kim, A. Berdichevsky and L. Guarente (2005). A role for SIR-2.1 regulation of ER stress response genes in determining C. elegans life span. Dev. Cell 9(5): 605–615.Google Scholar
  269. Vivar-Quintana, A. M., C. Santos-Buelga, E. Francia-Aricha and J. C. Rivas-Gonzalo (1999). Formation of anthocyanin-derived pigments in experimental red wines. Food Sc.i Technol. Int. 5(4): 347–352.Google Scholar
  270. Wang, H. B., E. J. Race and A. J. Shrikhande (2003). Anthocyanin transformation in Cabernet Sauvignon wine during aging. J. Agr. Food Chem. 51(27): 7989–7994.Google Scholar
  271. Wang, H. J. and P. A. Murphy (1996). Mass balance study of isoflavones during soybean processing. J. Agr. Food Chem. 44(8): 2377–2383.Google Scholar
  272. Wang, J. and G. Mazza (2002). Effects of anthocyanins and other phenolic compounds on the production of tumor necrosis factor alpha in LPS/IFN-gamma-activated RAW 264.7 macrophages. J. Agr. Food Chem. 50(15): 4183–4189.Google Scholar
  273. Wang, L. Q., M. R. Meselhy, Y. Li, N. Nakamura, B. S. Min, G. W. Qin and M. Hattori (2001). The heterocyclic ring fission and dehydroxylation of catechins and related compounds byEubacterium sp strain SDG-2, a human intestinal bacterium. Chem. Pharm. Bull. 49(12): 1640–1643.PubMedGoogle Scholar
  274. Wang, R. F., W. W. Cao and C. E. Cerniglia (1996). PCR detection and quantitation of predominant anaerobic bacteria in human and animal fecal samples. Appl. Environ. Microb. 62(4): 1242–1247.Google Scholar
  275. Wang, X. L., H. G. Hur, J. H. Lee, K. T. Kim and S. I. Kim (2005a). Enantioselective synthesis of S-equol from dihydrodaidzein by a newly isolated anaerobic human intestinal bacterium. Appl. Environ. Microb. 71(1): 214–219.Google Scholar
  276. Wang, X. L., K. H. Shin, H. G. Hur and S. I. Kim (2005b). Enhanced biosynthesis of dihydrodaidzein and dihydrogenistein by a newly isolated bovine rumen anaerobic bacterium. J. Biotechnol. 115(3): 261–269.Google Scholar
  277. Watanabe, S. and H. Adlercreutz (1998). Pharmacokinetics of soy phytoestrogens in humans.Functional Foods for Disease Prevention. T. Shibamato, J. Terao and T. Osawa. Washington, DC, American Chemical Society: 198–208.Google Scholar
  278. Watts, K. T., P. C. Lee and C. Schmidt-Dannert (2004). Exploring recombinant flavonoid biosynthesis in metabolically engineeredEscherichia coli. Chembiochem 5(4): 500–507.PubMedGoogle Scholar
  279. Watts, K. T., P. C. Lee and C. Schmidt-Dannert (2006). Biosynthesis of plant-specific stilbene polyketides in metabolically engineeredEscherichia coli. BMC Biotechnol. 6: 22.PubMedGoogle Scholar
  280. Way, T. D., M. C. Kao and J. K. Lin (2004). Apigenin induces apoptosis through proteasomal degradation of HER2/neu in HER2/neu-overexpressing breast cancer cells via the phosphatidylinositol 3-kinase/Akt-dependent pathway. J. Biol. Chem. 279(6): 4479–4489.PubMedGoogle Scholar
  281. Weisel, T., M. Baum, G. Eisenbrand, H. Dietrich, F. Will, J. P. Stockis, S. Kulling, C. Rufer, C. Johannes and C. Janzowski (2006). An anthocyanin/polyphenolic-rich fruit juice reduces oxidative DNA damage and increases glutathione level in healthy probands. Biotech. J. 1(4): 388–397.Google Scholar
  282. Wellmann, E. (1975). UV dose-dependent induction of enzymes related to flavonoid biosynthesis in cell-suspension cultures of parsley. FEBS Lett. 51(1): 105–107.PubMedGoogle Scholar
  283. Whiting, G. C. and P. A. Coggins (1960). Organic acid metabolism in cider and berry fermentations. III. Ket-acids in cider-apple juices and ciders. J. Sci. Food Agri. 11: 705–709.Google Scholar
  284. Wildenradt, H. L. and V. L. Singleton (1974). Production of aldehydes as a result of oxidation of polyphenolic compounds and its relation to wine aging. Am. J. Enol. Viticult. 25(2): 119–126.Google Scholar
  285. Williams, P. A., J. Cosme, V. Sridhar, E. F. Johnson and D. E. McRee (2000a). Mammalian microsomal cytochrome P450 monooxygenase: structural adaptations for membrane binding and functional diversity. Mol. Cell 5(1): 121–131.Google Scholar
  286. Williams, P. A., J. Cosme, V. Sridhar, E. F. Johnson and D. E. McRee (2000b). Microsomal cytochrome P450 2C5: comparison to microbial P450s and unique features. J. Inorg. Biochem. 81(3): 183–190.Google Scholar
  287. Williams, P. A., J. Cosme, D. M. Vinkovic, A. Ward, H. C. Angove, P. J. Day, C. Vonrhein, I. J. Tickle and H. Jhoti (2004). Crystal structures of human cytochrome P450 3A4 bound to metyrapone and progesterone. Science 305(5684): 683–686.PubMedGoogle Scholar
  288. Williams, P. A., J. Cosme, A. Ward, H. C. Angove, D. Matak Vinkovic and H. Jhoti (2003). Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature 424(6947): 464–468.Google Scholar
  289. Williamson, G., D. Barron, K. Shimoi and J. Terao (2005).In vitro biological properties of flavonoid conjugates found in vivo. Free Radical Res. 39(5): 457–469.Google Scholar
  290. Willits, M. G., M. Giovanni, R. T. N. Prata, C. M. Kramer, V. De Luca, J. C. Steffens and G. Graser (2004). Bio-fermentation of modified flavonoids: an example ofin vivo diversification of secondary metabolites. Phytochemistry 65(1): 31–41.PubMedGoogle Scholar
  291. Winter, J., L. H. Moore, V. R. Dowell and V. D. Bokkenheuser (1989). C-ring cleavage of flavonoids by human intestinal bacteria. Appl. Environ. Microb. 55(5): 1203–1208.Google Scholar
  292. Wood, J. G., B. Rogina, S. Lavu, K. Howitz, S. L. Helfand, M. Tatar and D. Sinclair (2004). Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430(7000): 686–689.PubMedGoogle Scholar
  293. Wrolstad, R. E. (2000).Natural Food Colorants. New York, Marcel Dekker, Inc.Google Scholar
  294. Xie, D. Y., S. B. Sharma and R. A. Dixon (2004). Anthocyanidin reductases fromMedicago truncatula andArabidopsis thaliana. Arch. Biochem. Biophys. 422(1): 91–102.PubMedGoogle Scholar
  295. Xu, X., K. S. Harris, H. J. Wang, P. A. Murphy and S. Hendrich (1995). Bioavailability of soybean isoflavones depends upon gut microflora in women. J. Nutr. 125(9): 2307–2315.PubMedGoogle Scholar
  296. Xu, X., H. J. Wang, P. A. Murphy, L. Cook and S. Hendrich (1994). Daidzein is a more bioavailable soymilk isoflavone than is genistein in adult women. J. Nutr. 124(6): 825–832.PubMedGoogle Scholar
  297. Yaipakdee, P. and L. W. Robertson (2001). Enzymatic halogenation of flavanones and flavones. Phytochemistry 57(3): 341–347.PubMedGoogle Scholar
  298. Yamazaki, S., K. Sato, K. Suhara, M. Sakaguchi, K. Mihara and T. Omura (1993). Importance of the proline-rich region following signal-anchor sequence in the formation of correct conformation of microsomal cytochrome P–450s. J. Biochem. 114(5): 652–657.PubMedGoogle Scholar
  299. Yan, Y., J. Chemler, L. Huang, S. Martens and M. A. Koffas (2005a). Metabolic engineering of anthocyanin biosynthesis inEscherichia coli. Appl. Environ. Microbiol. 71(7): 3617–3623.Google Scholar
  300. Yan, Y., A. Kohli and M. A. Koffas (2005b). Biosynthesis of natural flavanones inSaccharomyces cerevisiae. Appl. Environ. Microbiol. 71(9): 5610–5613.Google Scholar
  301. Yen, G. C. and H. Y. Chen (1995). Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agr. Food Chem. 43(1): 27–32.Google Scholar
  302. Yoshino, K., Y. Hara, M. Sano and I. Tomita (1994). Antioxidative effects of black tea theaflavins and thearubigin on lipid-peroxidation of rat-liver homogenates induced by tert-butyl hydroperoxide. Biol. Pharm. Bull. 17(1): 146–149.PubMedGoogle Scholar
  303. Youdim, K. A., J. McDonald, W. Kalt and J. A. Joseph (2002). Potential role of dietary flavonoids in reducing microvascular endothelium vulnerability to oxidative and inflammatory insults. J. Nutr. Biochem. 13(5): 282–288.PubMedGoogle Scholar
  304. Yu, O., J. Shi, A. O. Hession, C. A. Maxwell, B. McGonigle and J. T. Odell (2003). Metabolic engineering to increase isoflavone biosynthesis in soybean seed. Phytochemistry 63(7): 753–763.PubMedGoogle Scholar
  305. Zhang, Y. J., S. K. Vareed and M. G. Nair (2005). Human tumor cell growth inhibition by nontoxic anthocyanidins, the pigments in fruits and vegetables. Life Sci. 76(13): 1465–1472.PubMedGoogle Scholar
  306. Zhong, J. J., T. Seki, S. Kinoshita and T. Yoshida (1991). Effect of light irradiation on anthocyanin production by suspended culture ofPerilla frutescens. Biotechnol. Bioeng. 38(6): 653–658.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Joseph A. Chemler
    • 1
  • Effendi Leonard
    • 1
  • Mattheos A.G. Koffas
    • 1
  1. 1.Chemical and Biological EngineeringState University of New York at BuffaloNew York

Personalised recommendations