Skip to main content
Book cover

Anthocyanins pp 191–255Cite as

Flavonoid Biotransformations in Microorganisms

  • Chapter
  • First Online:

Abstract

Flavonoids are a diverse group of secondary metabolites found ubiquitously in the plant kingdom. Their associated health benefits have gained these fascinating compounds an increasing amount of attention towards their use as medicinal agents, supplements and natural colorants. With the rapid progress in unraveling the flavonoid biosynthetic pathways, the first part of this chapter presents the recent advances and challenges in utilizing recombinant bacteria and yeast to produce a number of different classes of flavonoid compounds including stilbenes, flavanones, isoflavones, flavones and anthocyanins. The second part presents a review on the iomodifications of flavonoids by non-recombinant microorganisms that result in an array of natural products, with special emphasis on the metabolism of flavonoids by intestinal microflora.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdelrahim, I. and Y. J. Abulhajj (1990). Microbiological transformation of (+/–)-flavanone and (+/–)-isoflavanone. J. Nat. Prod. 53(3): 644–656.

    Google Scholar 

  • Adlercreutz, H., K. Hockerstedt, C. Bannwart, S. Bloigu, E. Hamalainen, T. Fotsis and A. Ollus (1987). Effect of dietary-components, including lignans and phytoestrogens, on enterohepatic circulation and liver-metabolism of estrogens and on sex-hormone binding globulin (Shbg). J. Steroid Biochem. 27(4–6): 1135–1144.

    PubMed  CAS  Google Scholar 

  • Adlercreutz, H., P. I. Musey, T. Fotsis, C. Bannwart, K. Wahala, T. Makela, G. Brunow and T. Hase (1986). Identification of lignans and phytoestrogens in urine of chimpanzees. Clin. Chim. Acta 158(2): 147–154.

    PubMed  CAS  Google Scholar 

  • Akaza, H., N. Miyanaga, N. Takashima, S. Naito, Y. Hirao, T. Tsukamoto and M. Mori (2002). Is daidzein non-metabolizer a high risk for prostate cancer? A case-controlled study of serum soybean isoflavone concentration. Jpn. J. Clin. Oncol. 32(8): 296–300.

    PubMed  Google Scholar 

  • Alcalde-Eon, C., M. T. Escribano-Bailon, C. Santos-Buelga and J. C. Rivas-Gonzalo (2004). Separation of pyranoanthocyanins from red wine by column chromatography. Anal. Chim. Acta 513(1): 305–318.

    CAS  Google Scholar 

  • Anyanwutaku, I. O., E. Zirbes and J. P. N. Rosazza (1992). Isoflavonoids fromStreptomycetes: origins of genistein, 8-chlorogenistein, and 6,8-dichlorogenistein. J. Nat. Prod. 55(10): 1498–1504.

    CAS  Google Scholar 

  • Arai, Y., M. Uehara, Y. Sato, M. Kimira, A. Eboshida, H. Adlercreutz and S. Watanabe (2000). Comparison of isoflavones among dietary intake, plasma concentration and urinary excretion for accurate estimation of phytoestrogen intake. J. Epidemiol. 10(2): 127–135.

    PubMed  CAS  Google Scholar 

  • Arora, A., M. G. Nair and G. M. Strasburg (1998). Antioxidant activities of isoflavones and their biological metabolites in a liposomal system. Arch. Biochem. Biophys. 356(2): 133–141.

    PubMed  CAS  Google Scholar 

  • Asenstorfer, R. E., Y. Hayasaka and G. P. Jones (2001). Isolation and structures of oligomeric wine pigments by bisulfite-mediated ion-exchange chromatography. J. Agr. Food Chem. 49(12): 5957–5963.

    CAS  Google Scholar 

  • Asenstorfer, R. E., A. J. Markides, P. G. Iland and G. P. Jones (2003). Formation of vitisin A during red wine fermentation and maturation. Aust. J. Grape Wine Res. 9(1): 40–46.

    CAS  Google Scholar 

  • Atanasova, V., H. Fulcrand, W. Cheynier and M. Moutounet (2002). Effect of oxygenation on polyphenol changes occurring in the course of wine-making. Anal. Chim. Acta 458(1): 15–27.

    CAS  Google Scholar 

  • Atkinson, C., S. Berman, O. Humbert and J. W. Lampe (2004).In vitro incubation of human feces with daidzein and antibiotics suggests interindividual differences in the bacteria responsible for equol production. J. Nutr. 134(3): 596–599.

    PubMed  CAS  Google Scholar 

  • Aura, A. M., P. Martin-Lopez, K. A. O’Leary, G. Williamson, K. M. Oksman-Caldentey, K. Poutanen and C. Santos-Buelga (2005).In vitro metabolism of anthocyanins by human gut microflora. Eur. J. Nutr. 44(3): 133–142.

    PubMed  CAS  Google Scholar 

  • Aura, A. M., K. A. O’Leary, G. Williamson, M. Ojala, M. Bailey, R. Puupponen-Pimia, A. M. Nuutila, K. M. Oksman-Caldentey and K. Poutanen (2002). Quercetin derivatives are deconjugated and converted to hydroxyphenylacetic acids but not methylated by human fecal florain vitro. J. Agr. Food Chem. 50(6): 1725–1730.

    CAS  Google Scholar 

  • Aura, A. M., T. Seppänen-Laakso, I. Mattila, S. Guyot, C. M. G. C. Renard, J.-M. Souquet, V. Cheynier and K.-M. Oksman-Caldentey (2006). Microbial metabolism of (+)-catechin, (–)-epicatechin and proanthocyanidins by human fecal microbiotain vitro. Poly. Comm. 2006, 43–44.

    Google Scholar 

  • Axelson, M., D. N. Kirk, R. D. Farrant, G. Cooley, A. M. Lawson and K. D. R. Setchell (1982). The identification of the weak estrogen equol [7-hydroxy-3-(4’-hydroxyphenyl)chroman] in human-urine. Biochem. J. 201(2): 353–357.

    PubMed  CAS  Google Scholar 

  • Bakker, J. and C. F. Timberlake (1997). Isolation, identification, and characterization of new color-stable anthocyanins occurring in some red wines. J. Agr. Food Chem. 45(1): 35–43.

    CAS  Google Scholar 

  • Barnes, H. J., M. P. Arlotto and M. R. Waterman (1991). Expression and enzymatic activity of recombinant cytochrome P450 17 alpha-hydroxylase inEscherichia coli. Proc. Natl. Acad. Sci. USA 88(13): 5597–5601.

    PubMed  CAS  Google Scholar 

  • Barnes, S. (2003). Phyto-oestrogens and osteoporosis: what is a safe dose? Brit. J. Nutr. 89: S101-S108.

    PubMed  CAS  Google Scholar 

  • Baumes, R., R. Cordonnier, S. Nitz and F. Drawert (1986). Identification and determination of volatile constituents in wines from different vine cultivars. J. Sci. Food Agr. 37(9): 927–943.

    CAS  Google Scholar 

  • Baur, J. A., K. J. Pearson, N. L. Price, H. A. Jamieson, C. Lerin, A. Kalra, V. V. Prabhu, J. S. Allard, G. Lopez-Lluch, K. Lewis, P. J. Pistell, S. Poosala, K. G. Becker, O. Boss, D. Gwinn, M. Wang, S. Ramaswamy, K. W. Fishbein, R. G. Spencer, E. G. Lakatta, D. Le Couteur, R. J. Shaw, P. Navas, P. Puigserver, D. K. Ingram, R. de Cabo and D. A. Sinclair (2006). Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444(7117): 337–342.

    PubMed  CAS  Google Scholar 

  • Becker, J. V. W., G. O. Armstrong, M. J. Van der Merwe, M. G. Lambrechts, M. A. Vivier and I. S. Pretorius (2003). Metabolic engineering ofSaccharomyces cerevisiae for the synthesis of the wine-related antioxidant resveratrol. FEMS Yeast Res. 4(1): 79–85.

    PubMed  CAS  Google Scholar 

  • Beld, M., C. Martin, H. Huits, A. R. Stuitje and A. G. Gerats (1989). Flavonoid synthesis inPetunia hybrida: partial characterization of dihydroflavonol-4-reductase genes. Plant Mol. Biol. 13(5): 491–502.

    PubMed  CAS  Google Scholar 

  • Birt, D. F., S. Hendrich and W. Wang (2001). Dietary agents in cancer prevention: flavonoids and isoflavonoids. Pharmacol Therapeut. 90(2–3): 157–177.

    CAS  Google Scholar 

  • Bitsch, I., M. Janssen, M. Netzel, G. Strass and T. Frank (2004). Bioavailability of anthocyanidin-3-glycosides following consumption of elderberry extract and blackcurrant juice. Int. J Clin. Pharm. Th. 42(5): 293–300.

    CAS  Google Scholar 

  • Blair, R. M., S. E. Appt, A. A. Franke and T. B. Clarkson (2003). Treatment with antibiotics reduces plasma equol concentration in cynomolgus monkeys (Macaca fascicularis). J. Nutr. 133(7): 2262–2267.

    PubMed  CAS  Google Scholar 

  • Block, G., B. Patterson and A. Subar (1992). Fruit, vegetables, and cancer prevention: a review of the epidemiological evidence. Nutr. Cancer 18(1): 1–29.

    PubMed  CAS  Google Scholar 

  • Bois, F., C. Beney, A. Boumendjel, A. M. Mariotte, G. Conseil and A. Di Pietro (1998). Halogenated chalcones with high-affinity binding to P-glycoprotein: Potential modulators of multidrug resistance. J. Med. Chem. 41(21): 4161–4164.

    PubMed  CAS  Google Scholar 

  • Bomser, J., D. L. Madhavi, K. Singletary and M. A. L. Smith (1996).In vitro anticancer activity of fruit extracts fromVaccinium species. Planta Med. 62(3): 212–216.

    PubMed  CAS  Google Scholar 

  • Boulton, R. B., V. L. Singleton, L. F. Bisson and R. E. Kunkee (1996). Yeast and biochemistry of ethanol fermentation.Principles and Practices of Winemaking. New York, Chapman and Hall: 127–137.

    Google Scholar 

  • Bowey, E., H. Adlercreutz and I. Rowland (2003). Metabolism of isoflavones and lignans by the gut microflora: a study in germ-free and human flora associated rats. Food Chem. Toxicol. 41(5): 631–636.

    PubMed  CAS  Google Scholar 

  • Boyd, W. (2000). Natural colors as functional ingredients in healthy food. Cereal Foods World 45: 221–222.

    Google Scholar 

  • Braune, A., M. Gutschow, W. Engst and M. Blaut (2001). Degradation of quercetin and luteolin byEubacterium ramulus. Appl. Environ. Microb. 67(12): 5558–5567.

    CAS  Google Scholar 

  • Brouillard, R. (1982). Chemical structure of anthocyanins.Anthocyanins as food colors. P. Markakis. New York, NY, Academic Press, Inc.

    Google Scholar 

  • Brown, N. M. and K. D. R. Setchell (2001). Animal models impacted by phytoestrogens in commercial chow: Implications for pathways influenced by hormones. Lab. Invest. 81(5): 735–747.

    PubMed  CAS  Google Scholar 

  • Bub, A., B. Watzl, D. Heeb, G. Rechkemmer and K. Briviba (2001). Malvidin-3-glucoside bioavailability in humans after ingestion of red wine, dealcoholized red wine and red grape juice. Eur. J. Nutr. 40(3): 113–120.

    PubMed  CAS  Google Scholar 

  • Burbulis, I. E. and B. Winkel-Shirley (1999). Interactions among enzymes of the Arabidopsis flavonoid biosynthetic pathway. Proc. Natl. Acad. Sci. USA 96(22): 12929–12934.

    PubMed  CAS  Google Scholar 

  • Caltagirone, S., C. Rossi, A. Poggi, F. O. Ranelletti, P. G. Natali, M. Brunetti, F. B. Aiello and M. Piantelli (2000). Flavonoids apigenin and quercetin inhibit melanoma growth and metastatic potential. Int. J. Cancer 87(4): 595–600.

    PubMed  CAS  Google Scholar 

  • CameiradosSantos, P. J., J. M. Brillouet, V. Cheynier and M. Moutounet (1996). Detection and partial characterisation of new anthocyanin-derived pigments in wine. J. Sci. Food Agr. 70(2): 204–208.

    CAS  Google Scholar 

  • Cao, M. A., X. B. Sun, P. H. Zhao and C. S. Yuan (2006). Two new antibacterial flavanones fromSophora flavescens. Chinese Chem. Lett. 17(8): 1048–1050.

    CAS  Google Scholar 

  • Cao, Y. H. and R. H. Cao (1999). Angiogenesis inhibited by drinking tea. Nature 398(6726): 381–381.

    PubMed  CAS  Google Scholar 

  • Cassidy, A., S. Bingham, J. Carlson and K. D. R. Setchell (1993). Biological effects of plant estrogens in premenopausal women. Faseb J. 7(4): A866–A866.

    Google Scholar 

  • Chang, Y. C. and M. G. Nair (1995). Metabolism of daidzein and genistein by intestinal bacteria. J. Nat. Prod. 58(12): 1892–1896.

    PubMed  CAS  Google Scholar 

  • Chatonnet, P., D. Dubourdieu, J. N. Boidron and V. Lavigne (1993). Synthesis of volatile phenols bySaccharomyces cerevisiae in wines. J. Sci. Food Agr. 62(2): 191–202.

    CAS  Google Scholar 

  • Cho, J. (2006). Antioxidant and neuroprotective effects of hesperidin and its aglycone hesperetin. Arch. Pharm. Res. 29(8): 699–706.

    PubMed  CAS  Google Scholar 

  • Clausen, M., C. J. Lamb, R. Megnet and P. W. Doerner (1994).Pad1 encodes phenylacrylic acid decarboxylase which confers resistance to cinnamic acid inSaccharomyces cerevisiae. Gene 142(1): 107–112.

    PubMed  CAS  Google Scholar 

  • Clifford, M. N. (2000). Anthocyanins – nature, occurrence and dietary burden. J. Sci. Food Agr. 80(7): 1063–1072.

    CAS  Google Scholar 

  • Colantuoni, A., S. Bertuglia, M. J. Magistretti and L. Donato (1991). Effects ofVaccinium myrtillus anthocyanosides on arterial vasomotion. Drug Res. 41–2(9): 905–909.

    Google Scholar 

  • Coldham, N. G., C. Darby, M. Hows, L. J. King, A. Q. Zhang and M. J. Sauer (2002). Comparative metabolism of genistin by human and rat gut microflora: detection and identification of the end-products of metabolism. Xenobiotica 32(1): 45–62.

    PubMed  CAS  Google Scholar 

  • Contreras, D. M., C. M. A. Ramírez, S. Guyot, I. Perraud-Gaime, S. Roussos and C. Augur (2006). Enzymatic degradation of catechin and procyanidin B2 by filamentous fungi. Poly. Comm. 2006, 77–78.

    Google Scholar 

  • Cotelle, N., J. L. Bernier, J. P. Catteau, J. Pommery, J. C. Wallet and E. M. Gaydou (1996). Antioxidant properties of hydroxy-flavones. Free Radical Bio. Med. 20(1): 35–43.

    CAS  Google Scholar 

  • Critchfield, J. W., J. E. Coligan, T. M. Folks and S. T. Butera (1997). Casein kinase II is a selective target of HIV-1 transcriptional inhibitors. Proc. Natl. Acad. Sci. USA 94(12): 6110–6115.

    PubMed  CAS  Google Scholar 

  • Czeczot, H., B. Tudek, J. Kusztelak, T. Szymczyk, B. Dobrowolska, G. Glinkowska, J. Malinowski and H. Strzelecka (1990). Isolation and studies of the mutagenic activity in the ames test of flavonoids naturally-occurring in medical herbs. Mutat. Res. 240(3): 209–216.

    PubMed  CAS  Google Scholar 

  • Das, S. and J. P. N. Rosazza (2006). Microbial and enzymatic transformations of flavonoids. J. Nat. Prod. 69(3): 499–508.

    PubMed  CAS  Google Scholar 

  • Day, A. J., F. J. Canada, J. C. Diaz, P. A. Kroon, R. Mclauchlan, C. B. Faulds, G. W. Plumb, M. R. A. Morgan and G. Williamson (2000). Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Lett. 468(2–3): 166–170.

    PubMed  CAS  Google Scholar 

  • Decroos, K., S. Vanhemmens, S. Cattoir, N. Boon and W. Verstraete (2005). Isolation and characterisation of an equol-producing mixed microbial culture from a human faecal sample and its activity under gastrointestinal conditions. Arch. Microbiol. 183(1): 45–55.

    PubMed  CAS  Google Scholar 

  • Deweerd, K. A., A. Saxena, D. P. Nagle and J. M. Suflita (1988). Metabolism of the 18-O-methoxy substituent of 3-methoxybenzoic acid and other unlabeled methoxybenzoic acids by anaerobic-bacteria. Appl. Environ. Microb. 54(5): 1237–1242.

    CAS  Google Scholar 

  • Dhar, K. and J. P. N. Rosazza (2000). Purification and characterization ofStreptomyces griseus catechol O-methyltransferase. Appl. Environ. Microb. 66(11): 4877–4882.

    CAS  Google Scholar 

  • Dixon, R. A. and L. W. Sumner (2003). Legume natural products: understanding and manipulating complex pathways for human and animal health. Plant Physiol. 131(3): 878–885.

    PubMed  CAS  Google Scholar 

  • Dong, X. Y., E. L. Braun and E. Grotewold (2001). Functional conservation of plant secondary metabolic enzymes revealed by complementation of Arabidopsis flavonoid mutants with maize genes. Plant Physiol. 127(1): 46–57.

    PubMed  CAS  Google Scholar 

  • Dugelay, I., Z. Gunata, J. C. Sapis, R. Baumes and C. Bayonove (1993). Role of cinnamoyl esterase-activities from enzyme preparations on the formation of volatile phenols during winemaking. J. Agr. Food Chem. 41(11): 2092–2096.

    CAS  Google Scholar 

  • Duncan, A. M., B. E. Merz-Demlow, X. Xu, W. R. Phipps and M. S. Kurzer (2000). Premenopausal equol excretors show plasma hormone profiles associated with lowered risk of breast cancer. Cancer Epidem. Biomar. 9(6): 581–586.

    CAS  Google Scholar 

  • Dupin, I. V. S., B. M. McKinnon, C. Ryan, M. Boulay, A. J. Markides, G. P. Jones, P. J. Williams and E. J. Waters (2000).Saccharomyces cerevisiae mannoproteins that protect wine from protein haze: Their release during fermentation and lees contact and a proposal for their mechanism of action. J. Agr. Food Chem. 48(8): 3098–3105.

    CAS  Google Scholar 

  • Es-Safi, N. E., H. Fulcrand, V. Cheynier and M. Moutounet (1999). Competition between (+)-catechin and (–)-epicatechin in acetaldehyde-induced polymerization of flavanols. J. Agr. Food Chem. 47(5): 2088–2095.

    CAS  Google Scholar 

  • Etievant, P. X. (1981). Volatile phenol determination in wine. J. Agr. Food. Chem. 29(1): 65–67.

    CAS  Google Scholar 

  • Ferrandiz, M. L. and M. J. Alcaraz (1991). Antiinflammatory Activity and Inhibition of Arachidonic-Acid Metabolism by Flavonoids. Agents Actions 32(3–4): 283–288.

    PubMed  CAS  Google Scholar 

  • Feuillat, M. (2003). Yeast macromolecules: origin, composition, and enological interest. Am. J. Enol. Viticult. 54(3): 211–213.

    CAS  Google Scholar 

  • Fischer, D., K. Stich, L. Britsch and H. Grisebach (1988). Purification and characterization of (+)dihydroflavonol (3-hydroxyflavanone) 4-reductase from flowers ofDahlia variabilis. Arch. Biochem. Biophys. 264(1): 40–47.

    PubMed  CAS  Google Scholar 

  • Fischer, T. C., H. Halbwirth, B. Meisel, K. Stich and G. Forkmann (2003). Molecular cloning, substrate specificity of the functionally expressed dihydroflavonol 4-reductases fromMalus domestica andPyrus communis cultivars and the consequences for flavonoid metabolism. Arch. Biochem. Bioph. 412(2): 223–230.

    CAS  Google Scholar 

  • Fleschhut, J., F. Kratzer, G. Rechkemmer and S. E. Kulling (2006). Stability and biotransformation of various dietary anthocyaninsin vitro. Eur. J. Nutr. 45(1): 7–18.

    PubMed  CAS  Google Scholar 

  • Forkmann, G. and W. Heller (1999).Comprehensive Natural Products Chemistry. Amsterdam, Elsevier.

    Google Scholar 

  • Formica, J. V. and W. Regelson (1995). Review of the biology of quercetin and related bioflavonoids. Food Chem. Toxicol. 33(12): 1061–1080.

    PubMed  CAS  Google Scholar 

  • FranciaAricha, E. M., M. T. Guerra, J. C. RivasGonzalo and C. SantosBuelga (1997). New anthocyanin pigments formed after condensation with flavanols. J. Agr. Food Chem. 45(6): 2262–2266.

    CAS  Google Scholar 

  • Frank, T., M. Netzel, G. Strass, R. Bitsch and I. Bitsch (2003). Bioavailability of anthocyanidin-3-glucosides following consumption of red wine and red grape juice. Can. J. Physiol. Pharm. 81(5): 423–435.

    CAS  Google Scholar 

  • Frankenfeld, C. L., C. Atkinson, W. K. Thomas, E. L. Goode, A. Gonzalez, T. Jokela, K. Wahala, S. M. Schwartz, S. S. Li and J. W. Lampe (2004a). Familial correlations, segregation analysis, and nongenetic correlates of soy isoflavone-metabolizing phenotypes. Exp. Biol. Med. 229(9): 902–913.

    CAS  Google Scholar 

  • Frankenfeld, C. L., A. McTiernan, S. S. Tworoger, C. Atkinson, W. K. Thomas, F. Z. Stanczyk, S. M. Marcovina, D. S. Weigle, N. S. Weiss, V. L. Holt, S. M. Schwartz and J. W. Lampe (2004b). Serum steroid hormones, sex hormone-binding globulin concentrations, and urinary hydroxylated estrogen metabolites in post-menopausal women in relation to daidzein-metabolizing phenotypes. J. Steroid Biochem. 88(4–5): 399–408.

    CAS  Google Scholar 

  • Fulcrand, H., C. Benabdeljalil, J. Rigaud, V. Cheynier and M. Moutounet (1998). A new class of wine pigments generated by reaction between pyruvic acid and grape anthocyanins. Phytochemistry 47(7): 1401–1407.

    PubMed  CAS  Google Scholar 

  • Fulcrand, H., T. Doco, N. E. EsSafi, V. Cheynier and M. Moutounet (1996a). Study of the acetaldehyde induced polymerisation of flavan-3-ols by liquid chromatography ion spray mass spectrometry. J. Chromatogr. A 752(1–2): 85–91.

    CAS  Google Scholar 

  • Fulcrand, H., P. J. C. dosSantos, P. SarniManchado, V. Cheynier and J. FavreBonvin (1996b). Structure of new anthocyanin-derived wine pigments. J. Chem. Soc. Perk. Trans. 1(7): 735–739.

    Google Scholar 

  • Genthner, B. R. S., C. L. Davis and M. P. Bryant (1981). Features of rumen and sewage-sludge strains ofEubacterium limosum, a methanol-utilizing and H2-CO2-utilizing species. Appl. Environ. Microb. 42(1): 12–19.

    CAS  Google Scholar 

  • Gerhauser, C. (2005). Beer constituents as potential cancer chemopreventive agents. Eur. J. Cancer 41(13): 1941–1954.

    PubMed  Google Scholar 

  • Gerhauser, C., A. Alt, E. Heiss, A. Gamal-Eldeen, K. Klimo, J. Knauft, I. Neumann, H. R. Scherf, N. Frank, H. Bartsch and H. Becker (2002). Cancer chemopreventive activity of Xanthohumol, a natural product derived from hop. Mol. Cancer Ther. 1(11): 959–969.

    PubMed  CAS  Google Scholar 

  • Ghiselli, A., M. Nardini, A. Baldi and C. Scaccini (1998). Antioxidant activity of different phenolic fractions separated from an Italian red wine. J. Agr. Food Chem. 46(2): 361–367.

    CAS  Google Scholar 

  • Gil, B., M. J. Sanz, M. C. Terencio, M. L. Ferrandiz, G. Bustos, M. Paya, R. Gunasegaran and M. J. Alcaraz (1994). Effects of flavonoids on Naja-Naja and human recombinant synovial phospholipases a(2) and inflammatory responses in mice. Life Sci. 54(20): Pl333-Pl338.

    Google Scholar 

  • Goldin, B. R. (1990). Intestinal microflora - metabolism of drugs and carcinogens. Ann. Med. 22(1): 43–48.

    PubMed  CAS  Google Scholar 

  • Hagiwara, A., K. Miyashita, T. Nakanishi, M. Sano, S. Tamano, T. Kadota, T. Koda, M. Nakamura, K. Imaida, N. Ito and T. Shirai (2001). Pronounced inhibition by a natural anthocyanin, purple corn color, of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)associated colorectal carcinogenesis in male F344 rats pretreated with 1,2-dimethylhydrazine. Cancer Lett. 171(1): 17–25.

    PubMed  CAS  Google Scholar 

  • Hakansson, A. E., K. Pardon, Y. Hayasaka, M. de Sa and M. Herderich (2003). Structures and colour properties of new red wine pigments. Tetrahedron Lett. 44(26): 4887–4891.

    CAS  Google Scholar 

  • Hall, R. D. and M. M. Yeoman (1986). Temporal and spatial heterogeneity in the accumulation of anthocyanins in cell-cultures ofCatharanthus roseus (L) Don,G. J. Exp. Bot. 37(174): 48–60.

    CAS  Google Scholar 

  • Hanagata, N., A. Ito, H. Uehara, F. Asari, T. Takeuchi and I. Karube (1993). Behavior of cell aggregate ofCarthamus tinctorius L. cultured-cells and correlation with red pigment formation. J. Biotechnol. 30(3): 259–269.

    CAS  Google Scholar 

  • Harborne, J. B. and C. A. Williams (2000). Advances in flavonoid research since 1992. Phytochemistry 55(6): 481–504.

    PubMed  CAS  Google Scholar 

  • Harris, G. K., A. Gupta, R. G. Nines, L. A. Kresty, S. G. Habib, W. L. Frankel, K. LaPerle, D. D. Gallaher, S. J. Schwartz and G. D. Stoner (2001). Effects of lyophilized black raspberries on azoxymethane-induced colon cancer and 8-hydroxy-2′-deoxyguanosine levels in the Fischer 344 rat. Nutr. Cancer 40(2): 125–133.

    PubMed  CAS  Google Scholar 

  • Haudenschild, C., M. Schalk, F. Karp and R. Croteau (2000). Functional expression of regiospecific cytochrome P450 limonene hydroxylases from mint (Mentha spp.) inEscherichia coli andSaccharomyces cerevisiae. Arch. Biochem. Biophys. 379(1): 127–136.

    PubMed  CAS  Google Scholar 

  • Havsteen, B. (1983). Flavonoids, a class of natural-products of high pharmacological potency. Biochem. Pharmacol. 32(7): 1141–1148.

    PubMed  CAS  Google Scholar 

  • Hayasaka, Y. and R. E. Asenstorfer (2002). Screening for potential pigments derived from anthocyanins in red wine using nanoelectrospray tandem mass spectrometry. J. Agr. Food Chem. 50(4): 756–761.

    CAS  Google Scholar 

  • Heier, A., W. Blaas, A. Dross and R. Wittkowski (2002). Anthocyanin analysis by HPLC/ESI-MS. Am. J. Enol. Viticult. 53(1): 78–86.

    CAS  Google Scholar 

  • Heinonen, S., K. Wahala and H. Adlercreutz (1999). Identification of isoflavone metabolites dihydrodaidzein, dihydrogenistein, 6′-OH-O-dma, andcis-4-OH-equol in human urine by gas chromatography-mass spectroscopy using authentic reference compounds. Anal. Biochem. 274(2): 211–219.

    PubMed  CAS  Google Scholar 

  • Heinonen, S. M., A. Hoikkala, K. Wahala and H. Adlercreutz (2003). Metabolism of the soy isoflavones daidzein, genistein and glycitein in human subjects. Identification of new metabolites having an intact isoflavonoid skeleton. J. Steroid Biochem. 87(4–5): 285–299.

    CAS  Google Scholar 

  • Hellwig, S., J. Drossard, R. M. Twyman and R. Fischer (2004). Plant cell cultures for the production of recombinant proteins. Nat. Biotechnol. 22(11): 1415–1422.

    PubMed  CAS  Google Scholar 

  • Herath, W. H. M. W., D. Ferreira and I. A. Khan (2003). Microbial transformation of xanthohumol. Phytochemistry 62(5): 673–677.

    PubMed  CAS  Google Scholar 

  • Hollman, P. C. H. and I. C. W. Arts (2000). Flavonols, flavones and flavanols – nature, occurrence and dietary burden. J. Sci. Food Agr. 80(7): 1081–1093.

    CAS  Google Scholar 

  • Hollman, P. C. H., J. M. P. vanTrijp, M. N. C. P. Buysman, M. S. VanderGaag, M. J. B. Mengelers, J. H. M. deVries and M. B. Katan (1997). Relative bioavailability of the antioxidant flavonoid quercetin from various foods in man. Febs Lett. 418(1–2): 152–156.

    PubMed  CAS  Google Scholar 

  • Hosny, M., K. Dhar and J. P. N. Rosazza (2001). Hydroxylations and methylations of quercetin, fisetin, and catechin byStreptomyces griseus. J. Nat. Prod. 64(4): 462–465.

    PubMed  CAS  Google Scholar 

  • Hosny, M. and J. P. N. Rosazza (1999). Novel isoflavone, cinnamic acid, and triterpenoid glycosides in soybean molasses. J. Nat. Prod. 62(6): 853–858.

    PubMed  CAS  Google Scholar 

  • Hotze, M., G. Schroder and J. Schroder (1995). Cinnamate 4-hydroxylase fromCatharanthus roseus, and a strategy for the functional expression of plant cytochrome P-450 proteins as translational fusions with P-450 reductase inEscherichia coli. Febs Lett. 374(3): 345–350.

    PubMed  CAS  Google Scholar 

  • Howitz, K. T., K. J. Bitterman, H. Y. Cohen, D. W. Lamming, S. Lavu, J. G. Wood, R. E. Zipkin, P. Chung, A. Kisielewski, L. L. Zhang, B. Scherer and D. A. Sinclair (2003). Small molecule activators of sirtuins extendSaccharomyces cerevisiae lifespan. Nature 425(6954): 191–196.

    PubMed  CAS  Google Scholar 

  • Hur, H. G., R. D. Beger, T. M. Heinze, J. O. Lay, J. P. Freeman, J. Dore and F. Rafii (2002). Isolation of an anaerobic intestinal bacterium capable of cleaving the C-ring of the isoflavonoid daidzein. Arch. Microbiol. 178(1): 8–12.

    PubMed  CAS  Google Scholar 

  • Hur, H. G., J. O. Lay, R. D. Beger, J. P. Freeman and F. Rafii (2000). Isolation of human intestinal bacteria metabolizing the natural isoflavone glycosides daidzin and genistin. Arch. Microbiol. 174(6): 422–428.

    PubMed  CAS  Google Scholar 

  • Hur, H. G. and F. Rafii (2000). Biotransformation of the isoflavonoids biochanin A, formononetin, and glycitein byEubacterium limosum. FEMS Microbiol. Lett. 192(1): 21–25.

    PubMed  CAS  Google Scholar 

  • Hutchins, A. M., J. L. Slavin and J. W. Lampe (1995). Urinary isoflavonoid phytoestrogen and lignan excretion after consumption of fermented and unfermented soy products. J. Am. Diet Assoc. 95(5): 545–551.

    PubMed  CAS  Google Scholar 

  • Hwang, E. I., M. Kaneko, Y. Ohnishi and S. Horinouchi (2003). Production of plant-specific flavanones byEscherichia coli containing an artificial gene cluster. Appl. Environ. Microb. 69(5): 2699–2706.

    CAS  Google Scholar 

  • Ibrahim, A. R. and Y. J. Abulhajj (1989). Aromatic hydroxylation and sulfation of 5-hydroxyflavone byStreptomyces fulvissimus. Appl. Environ. Microb. 55(12): 3140–3142.

    CAS  Google Scholar 

  • Ibrahim, A. R. S. (2000). Sulfation of naringenin byCunninghamella elegans. Phytochemistry 53(2): 209–212.

    PubMed  CAS  Google Scholar 

  • Ibrahim, A. R. S. and Y. J. Abulhajj (1990). Microbiological transformation of flavone and isoflavone. Xenobiotica 20(4): 363–373.

    PubMed  CAS  Google Scholar 

  • Ibrahim, A. R. S., A. M. Galal, J. S. Mossa and F. S. El-Feraly (1997). Glucose-conjugation of the flavones ofPsiadia arabica byCunninghamella elegans. Phytochemistry 46(7): 1193–1195.

    PubMed  CAS  Google Scholar 

  • Ingram, D., K. Sanders, M. Kolybaba and D. Lopez (1997). Case-control study of phyto-oestrogens and breast cancer. Lancet 350(9083): 990–994.

    PubMed  CAS  Google Scholar 

  • Inoue, M., K. Tajima, K. Hirose, N. Hamajima, T. Takezaki, T. Kuroishi and S. Tominaga (1998). Tea and coffee consumption and the risk of digestive tract cancers: data from a comparative case-referent study in Japan. Cancer Causes Control 9(2): 209–216.

    PubMed  CAS  Google Scholar 

  • Jankun, J., S. H. Selman, R. Swiercz and E. SkrzypczakJankun (1997). Why drinking green tea could prevent cancer. Nature 387(6633): 561–561.

    PubMed  CAS  Google Scholar 

  • Jeon, K. S., G. E. Ji and I. K. Kwang (2002). Assay of beta-glucosidase activity of bifidobacteria and the hydrolysis of isoflavone glycosides byBifidobacterium sp Int-57 in soymilk fermentation. J. Microbiol. Biotechn. 12(1): 8–13.

    CAS  Google Scholar 

  • Jez, J. M., J. L. Ferrer, M. E. Bowman, R. A. Dixon and J. P. Noel (2000). Dissection of malonyl-coenzyme A decarboxylation from polyketide formation in the reaction mechanism of a plant polyketide synthase. Biochemistry-US 39(5): 890–902.

    CAS  Google Scholar 

  • Jiang, H. X., K. V. Wood and J. A. Morgan (2005). Metabolic engineering of the phenylpropanoid pathway inSaccharomyces cerevisiae. Appl. Environ. Microb. 71(6): 2962–2969.

    CAS  Google Scholar 

  • Joannou, G. E., G. E. Kelly, A. Y. Reeder, M. Waring and C. Nelson (1995). A urinary profile study of dietary phytoestrogens – the identification and mode of metabolism of new isoflavonoids. J. Steroid Biochem. Mol. Biol. 54(3–4): 167–184.

    PubMed  CAS  Google Scholar 

  • Johnson, E. T., S. Ryu, H. K. Yi, B. Shin, H. Cheong and G. Choi (2001). Alteration of a single amino acid changes the substrate specificity of dihydroflavonol 4-reductase. Plant J. 25(3): 325–333.

    PubMed  CAS  Google Scholar 

  • Jung, W., O. Yu, S. M. Lau, D. P. O’Keefe, J. Odell, G. Fader and B. McGonigle (2000). Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nat. Biotechnol. 18(2): 208–212.

    PubMed  CAS  Google Scholar 

  • Juniewicz, P. E., S. P. Morell, A. Moser and L. L. Ewing (1988). Identification of phytoestrogens in the urine of male dogs. J. Steroid Biochem. Mol. Biol. 31(6): 987–994.

    CAS  Google Scholar 

  • Justesen, U., E. Arrigoni, B. R. Larsen and R. Amado (2000). Degradation of flavonoid glycosides and aglycones duringin vitro fermentation with human faecal flora. Food Sci. Technol. 33(6): 424–430.

    CAS  Google Scholar 

  • Kahkonen, M. P. and M. Heinonen (2003). Antioxidant activity of anthocyanins and their aglycons. J. Agr. Food Chem. 51(3): 628–633.

    Google Scholar 

  • Kamei, H., T. Kojima, M. Hasegawa, T. Koide, T. Umeda, T. Yukawa and K. Terabe (1995). Suppression of tumor-cell growth by anthocyaninsin vitro. Cancer Invest. 13(6): 590–594.

    PubMed  CAS  Google Scholar 

  • Kang, S. Y., N. P. Seeram, M. G. Nair and L. D. Bourquin (2003). Tart cherry anthocyanins inhibit tumor development in Apc(Min) mice and reduce proliferation of human colon cancer cells. Cancer Lett. 194(1): 13–19.

    PubMed  CAS  Google Scholar 

  • Katsube, N., K. Iwashita, T. Tsushida, K. Yamaki and M. Kobori (2003). Induction of apoptosis in cancer cells by bilberry (Vaccinium myrtillus) and the anthocyanins. J. Agr. Food Chem. 51(1): 68–75.

    CAS  Google Scholar 

  • Kawabata, J., Y. Okamoto, A. Kodama, T. Makimoto and T. Kasai (2002). Oxidative dimers produced from protocatechuic and gallic esters in the DPPH radical scavenging reaction. J. Agr. Food Chem. 50(19): 5468–5471.

    CAS  Google Scholar 

  • Kelly, G. E., G. E. Joannou, A. Y. Reeder, C. Nelson and M. A. Waring (1995). The variable metabolic response to dietary isoflavones in humans. Proc. Soc. Exp. Biol. Med. 208(1): 40–43.

    PubMed  CAS  Google Scholar 

  • Keppler, K. and H. U. Humpf (2005). Metabolism of anthocyanins and their phenolic degradation products by the intestinal microflora. Bioorgan. Med. Chem. 13(17): 5195–5205.

    CAS  Google Scholar 

  • Khan, M. S. Y. and S. M. Hasan (2003). Synthesis, antiinflammatory and antibacterial activity of some new flavonoidal derivatives. Indian J. Chem. B 42(8): 1970–1974.

    Google Scholar 

  • Kim, D. H., E. A. Jung, I. S. Sohng, J. A. Han, T. H. Kim and M. J. Han (1998). Intestinal bacterial metabolism of flavonoids and its relation to some biological activities. Arch. Pharm. Res. 21(1): 17–23.

    PubMed  CAS  Google Scholar 

  • Kim, H. J. and I. S. Lee (2006). Microbial metabolism of the prenylated chalcone xanthohumol. J. Nat. Prod. 69(10): 1522–1524.

    PubMed  CAS  Google Scholar 

  • Klus, K. and W. Barz (1998). Formation of polyhydroxylated isoflavones from the isoflavones genistein and biochanin A by bacteria isolated from tempe. Phytochemistry 47(6): 1045–1048.

    Google Scholar 

  • Kobayashi, Y., M. Akita, K. Sakamoto, H. F. Liu, T. Shigeoka, T. Koyano, M. Kawamura and T. Furuya (1993). Large-scale production of anthocyanin byAralia cordata cell-suspension cultures. Appl. Microbiol. Biot. 40(2–3): 215–218.

    CAS  Google Scholar 

  • Koide, T., U. Hashimoto, H. Kamei, T. Kojima, M. Hasegawa and K. Terabe (1997). Antitumor effect of anthocyanin fractions extracted from red soybeans and red beansin vitro andin vivo. Cancer Biother. Radio. 12(4): 277–280.

    CAS  Google Scholar 

  • Koide, T., H. Kamei, Y. Hashimoto, T. Kojima and M. Hasegawa (1996). Antitumor effect of hydrolyzed anthocyanin from grape rinds and red rice. Cancer Biother. Radio. 11(4): 273–277.

    CAS  Google Scholar 

  • Kostrzewa-Suslow, E., J. Dmochowska-Gladysz, A. Bialonska, Z. Ciunik and W. Rymowicz (2006). Microbial transformations of flavanone and 6-hydroxyflavanone byAspergillus niger strains. J. Mol. Catal. B-Enzym. 39(1–4): 18–23.

    CAS  Google Scholar 

  • Krishnamurty, H. G., K. J. Cheng, G. A. Jones, F. J. Simpson and J. E. Watkin (1970). Identification of products produced by the anaerobic degradation of rutin and related flavonoids byButyrivibrio sp. C3. Can. J. Microb. 16(8): 759–767.

    CAS  Google Scholar 

  • Kuhnau, J. (1976). The flavonoids. A class of semi-essential food components. Their role in human nutrition. World Rev. Nutr. Diet 24: 117–191.

    PubMed  CAS  Google Scholar 

  • Kuiper, G. G. J. M., J. G. Lemmen, B. Carlsson, J. C. Corton, S. H. Safe, P. T. van der Saag, P. van der Burg and J. A. Gustafsson (1998). Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 139(10): 4252–4263.

    PubMed  CAS  Google Scholar 

  • Lala, G., M. Malik, C. Zhao, J. He, Y. Kwon, M. M. Giusti and B. A. Magnuson (2006). Anthocyanin-rich extracts inhibit multiple biomarkers of colon cancer in rats. Nutr. Cancer 54(1): 84–93.

    PubMed  CAS  Google Scholar 

  • Lamartiniere, C. A., J. Wang, M. Smith-Johnson and I. E. Eltoum (2002). Daidzein: bioavailability, potential for reproductive toxicity, and breast cancer chemoprevention in female rats. Toxicol. Sci. 65(2): 228–238.

    PubMed  CAS  Google Scholar 

  • Lampe, J. W., S. C. Karr, A. M. Hutchins and J. L. Slavin (1998). Urinary equol excretion with a soy challenge: influence of habitual diet. Proc. Soc. Exp. Biol. Med. 217(3): 335–339.

    PubMed  CAS  Google Scholar 

  • Lamson, D. W. and M. S. Brignall (2000). Antioxidants and cancer, part 3: quercetin. Altern. Med. Rev. 5(3): 196–208.

    PubMed  CAS  Google Scholar 

  • Lao, C. L., E. Lopez-Tamames, R. M. Lamuela-Raventos, S. Buxaderas and M. D. C. De La Torre-Boronat (1997). Pectic enzyme treatment effects on quality of white grape musts and wines. J. Food Sci. 62(6): 1142–1144.

    CAS  Google Scholar 

  • Lapidot, T., S. Harel, R. Granit and J. Kanner (1998). Bioavailability of red wine anthocyanins as detected in human urine. J. Agr. Food Chem. 46(10): 4297–4302.

    CAS  Google Scholar 

  • Larsson, S., N. O. Nilvebrant and L. J. Jonsson (2001). Effect of overexpression ofSaccharomyces cerevisiae Pad1p on the resistance to phenylacrylic acids and lignocellulose hydrolysates under aerobic and oxygen-limited conditions. Appl. Microbiol. Biot. 57(1–2): 167–174.

    CAS  Google Scholar 

  • Lee, D. F., E. E. Swinny and G. P. Jones (2004). NMR identification of ethyl-linked anthocyanin-flavanol pigments formed in model wine ferments. Tetrahedron Lett. 45(8): 1671–1674.

    CAS  Google Scholar 

  • Leonard, E., J. Chemler, K. H. Lim and M. A. Koffas (2006a). Expression of a soluble flavone synthase allows the biosynthesis of phytoestrogen derivatives inEscherichia coli. Appl. Microbiol. Biotech. 70(1): 85–91.

    CAS  Google Scholar 

  • Leonard, E., Y. Yan and M. A. Koffas (2006b). Functional expression of a P450 flavonoid hydroxylase for the biosynthesis of plant-specific hydroxylated flavonols inEscherichia coli. Meta. Eng. 8(2): 172–181.

    CAS  Google Scholar 

  • Leonard, E., Y. J. Yan, K. H. Lim and M. A. G. Koffas (2005). Investigation of two distinct flavone synthases for plant-specific flavone biosynthesis inSaccharomyces cerevisiae. Appl. Environ. Microb. 71(12): 8241–8248.

    CAS  Google Scholar 

  • Li, G., B. S. Min, C. J. Zheng, J. Lee, S. R. Oh, K. S. Ahn and H. K. Lee (2005). Neuroprotective and free radical scavenging activities of phenolic compounds fromHovenia dulcis. Arch. Pharm. Res. 28(7): 804–809.

    PubMed  CAS  Google Scholar 

  • Lietti, A., A. Cristoni and M. Picci (1976). Studies onVaccinium myrtillus anthocyanosides .I. vasoprotective and antiinflammatory activity. Drug Res. 26(5): 829–832.

    CAS  Google Scholar 

  • Liu, C. J., J. W. Blount, C. L. Steele and R. A. Dixon (2002). Bottlenecks for metabolic engineering of isoflavone glycoconjugates in Arabidopsis. Proc. Natl. Acad. Sci. USA 99(22): 14578–14583.

    PubMed  CAS  Google Scholar 

  • Liu, S. Q. and G. J. Pilone (2000). An overview of formation and roles of acetaldehyde in winemaking with emphasis on microbiological implications. Int. J. Food Sci. Tech. 35(1): 49–61.

    CAS  Google Scholar 

  • Looman, A. C., J. Bodlaender, L. J. Comstock, D. Eaton, P. Jhurani, H. A. de Boer and P. H. van Knippenberg (1987). Influence of the codon following the AUG initiation codon on the expression of a modifiedlacZ gene inEscherichia coli. EMBO J. 6(8): 2489–2492.

    Google Scholar 

  • Lozoya, E., H. Hoffmann, C. Douglas, W. Schulz, D. Scheel and K. Hahlbrock (1988). Primary structures and catalytic properties of isoenzymes encoded by the two 4-coumarate-CoA ligase genes in parsley. Eur. J. Biochem. 176(3): 661–667.

    PubMed  CAS  Google Scholar 

  • Lundh, T. (1995). Metabolism of estrogenic isoflavones in domestic-animals. Proc. Soc. Exp. Biol. Med. 208(1): 33–39.

    PubMed  CAS  Google Scholar 

  • Maatooq, G. T. and J. P. N. Rosazza (2005). Metabolism of daidzein byNocardia species NRRL 5646 andMortierella isabellina ATCC 38063. Phytochemistry 66(9): 1007–1011.

    PubMed  CAS  Google Scholar 

  • Macdonald, I. A., J. A. Mader and R. G. Bussard (1983). The role of rutin and quercitrin in stimulating flavonol glycosidase activity by cultured cell-free microbial preparations of human feces and saliva. Mutat. Res. 122(2): 95–102.

    PubMed  CAS  Google Scholar 

  • Magee, P. J. and I. R. Rowland (2004). Phyto-oestrogens, their mechanism of action: current evidence for a role in breast and prostate cancer. Brit. J. Nutr. 91(4): 513–531.

    PubMed  CAS  Google Scholar 

  • Martens, S. and G. Forkmann (1999). Cloning and expression of flavone synthase II fromGerbera hybrids. Plant J. 20(5): 611–618.

    PubMed  CAS  Google Scholar 

  • Martens, S., G. Forkmann, U. Matern and R. Lukacin (2001). Cloning of parsley flavone synthase I. Phytochemistry 58(1): 43–46.

    PubMed  CAS  Google Scholar 

  • Martens, S., T. Teeri and G. Forkmann (2002). Heterologous expression of dihydroflavonol 4-reductases from various plants. FEBS Lett. 531(3): 453–458.

    PubMed  CAS  Google Scholar 

  • Marullo, P., M. Bely, I. Masneuf-Pomarede, M. Pons, M. Aigle and D. Dubourdieu (2006). Breeding strategies for combining fermentative qualities and reducing off-flavor production in a wine yeast model. Fems Yeast Res. 6(2): 268–279.

    PubMed  CAS  Google Scholar 

  • Mateus, N., S. de Pascual-Teresa, J. C. Rivas-Gonzalo, C. Santos-Buelga and V. de Freitas (2002a). Structural diversity of anthocyanin-derived pigments in port wines. Food Chem. 76(3): 335–342.

    CAS  Google Scholar 

  • Mateus, N., J. Oliveira, J. Pissarra, A. M. Gonzalez-Paramas, J. C. Rivas-Gonzalo, C. Santos-Buelga, A. M. S. Silva and V. de Freitas (2006). A new vinylpyranoanthocyanin pigment occurring in aged red wine. Food Chem. 97(4): 689–695.

    CAS  Google Scholar 

  • Mateus, N., J. Oliveira, C. Santos-Buelga, A. M. S. Silva and V. de Freitas (2004). NMR structure characterization of a new vinylpyranoanthocyanin-catechin pigment (a portisin). Tetrahedron Lett. 45(17): 3455–3457.

    CAS  Google Scholar 

  • Mateus, N., A. M. S. Silva, J. C. Rivas-Gonzalo, C. Santos-Buelga and V. De Freitas (2003). A new class of blue anthocyanin-derived pigments isolated from red wines. J. Agr. Food Chem. 51(7): 1919–1923.

    Google Scholar 

  • Mateus, N., A. M. S. Silva, C. Santos-Buelga, J. C. Rivas-Gonzalo and V. de Freitas (2002b). Identification of anthocyanin-flavanol pigments in red wines by NMR and mass spectrometry. J .Agr. Food Chem. 50(7): 2110–2116.

    CAS  Google Scholar 

  • Mateus, N., A. M. S. Silva, J. Vercauteren and V. de Freitas (2001). Occurrence of anthocyanin-derived pigments in red wines. J. Agr. Food Chem. 49(10): 4836–4840.

    CAS  Google Scholar 

  • Matsumoto, H., H. Inaba, M. Kishi, S. Tominaga, M. Hirayama and T. Tsuda (2001). Orally administered delphinidin 3-rutinoside and cyanidin 3-rutinoside are directly absorbed in rats and humans and appear in the blood as the intact forms. J. Agr. Food Chem. 49(3): 1546–1551.

    CAS  Google Scholar 

  • Mauricio, J. C., J. Moreno, L. Zea, J. M. Ortega and M. Medina (1997). The effects of grape must fermentation conditions on volatile alcohols and esters formed bySaccharomyces cerevisiae. J. Sci. Food Agr. 75(2): 155–160.

    CAS  Google Scholar 

  • Mazza, G., C. D. Kay, T. Cottrell and B. J. Holub (2002). Absorption of anthocyanins from blueberries and serum antioxidant status in human subjects. J. Agr. Food Chem. 50(26): 7731–7737.

    CAS  Google Scholar 

  • Mazza, G. and E. Miniati (1993).Anthocyanins in Fruits, Vegetables, and Grains. Boca Raton, FL, CRC Press.

    Google Scholar 

  • McDougall, G. J., S. Fyffe, P. Dobson and D. Stewart (2005). Anthocyanins from red wine – their stability under simulated gastrointestinal digestion. Phytochemistry 66(21): 2540–2548.

    PubMed  CAS  Google Scholar 

  • Mclellan, M. R., R. W. Kime, C. Y. Lee and T. M. Long (1995). Effect of honey as an antibrowning agent in light raisin processing. J. Food Process. Pres. 19(1): 1–8.

    CAS  Google Scholar 

  • Meselhy, M. R., N. Nakamura and M. Hattori (1997). Biotransformation of (–)-epicatecbin 3-O-gallate by human intestinal bacteria. Chem. Pharm. Bull. 45(5): 888–893.

    PubMed  CAS  Google Scholar 

  • Meyer, J. E., M. F. Pepin and M. A. L. Smith (2002). Anthocyanin production fromVaccinium pahalae: limitations of the physical micro environment. J. Biotechnol. 93(1): 45–57.

    PubMed  CAS  Google Scholar 

  • Michnick, S., J. L. Roustan, F. Remize, P. Barre and S. Dequin (1997). Modulation of glycerol and ethanol yields during alcoholic fermentation inSaccharomyces cerevisiae strains overexpressed or disrupted for GPD1 encoding glycerol 3-phosphate dehydrogenase. Yeast 13(9): 783–793.

    PubMed  CAS  Google Scholar 

  • Middleton, E. and C. Kandaswami (1992). Effects of flavonoids on immune and inflammatory cell functions. Biochem. Pharmacol. 43(6): 1167–1179.

    PubMed  CAS  Google Scholar 

  • Milligan, S., J. Kalita, V. Pocock, A. Heyerick, L. De Cooman, H. Rong and D. De Keukeleire (2002). Oestrogenic activity of the hop phyto-oestrogen, 8-prenylnaringenin. Reproduction 123(2): 235–242.

    PubMed  CAS  Google Scholar 

  • Milligan, S. R., J. C. Kalita, A. Heyerick, H. Rong, L. De Cooman and D. De Keukeleire (1999). Identification of a potent phytoestrogen in hops (Humulus lupulus L.) and beer. J. Clin. Endocr. Metab. 84(6): 2249–2252.

    PubMed  CAS  Google Scholar 

  • Miyake, Y., K. Yamamoto and T. Osawa (1997). Metabolism of antioxidant in lemon fruit (Citrus limon B-URM. f.) by human intestinal bacteria. J. Agr. Food Chem. 45(10): 3738–3742.

    CAS  Google Scholar 

  • Miyazawa, T., K. Nakagawa, M. Kudo, K. Muraishi and K. Someya (1999). Direct intestinal absorption of red fruit anthocyanins, cyanidin-3-glucoside and cyanidin-3,5-diglucoside, into rats and humans. J. Agr. Food Chem. 47(3): 1083–1091.

    CAS  Google Scholar 

  • Mol, J., E. Grotewold and R. Koes (1998). How genes paint flowers and seeds. Trends Plant Sci. 3(6): 212–217.

    Google Scholar 

  • Molly, K., M. V. Woestyne and W. Verstraete (1993). Development of a 5-step multichamber reactor as a simulation of the human intestinal microbial ecosystem. Appl. Microbiol. Biotech. 39(2): 254–258.

    CAS  Google Scholar 

  • Monagas, M., B. Bartolome and C. Gomez-Cordoves (2005). Updated knowledge about the presence of phenolic compounds in wine. Crit. Rev. Food Sci. 45(2): 85–118.

    CAS  Google Scholar 

  • Monagas, M., V. Nunez, B. Bartolome and C. Gomez-Cordoves (2003). Anthocyanin-derived pigments in Graciano, Tempranillo, and Cabernet Sauvignon wines produced in Spain. Am. J. Enol. Viticult. 54(3): 163–169.

    CAS  Google Scholar 

  • Monfort, S. L., M. A. Thompson, N. M. Czekala, L. H. Kasman, C. H. L. Shackleton and B. L. Lasley (1984). Identification of a non-steroidal estrogen, equol, in the urine of pregnant macaques – correlation with steroidal estrogen excretion. J. Steroid Biochem. 20(4): 869–876.

    PubMed  CAS  Google Scholar 

  • Moorthy, N. S. H. N., R. J. Singh, H. P. Singh and S. D. Gupta (2006). Synthesis, biological evaluation andin silico metabolic and toxicity prediction of some flavanone derivatives. Chem. Pharm. Bull. 54(10): 1384–1390.

    PubMed  CAS  Google Scholar 

  • Morata, A., A. C. Gomez-Cordoves, B. Colomo and J. A. Suarez (2003). Pyruvic acid and acetaldehyde production by different strains ofSaccharomyces cerevisiae: relationship with vitisin A and B formation in red wines. J. Agr. Food Chem. 51(25): 7402–7409.

    CAS  Google Scholar 

  • Morata, A., M. C. Gomez-Cordoves, F. Calderon and J. A. Suarez (2006). Effects of pH, temperature and SO2 on the formation of pyranoanthocyanins during red wine fermentation with two species ofSaccharomyces. Int. J. Food Microbiol. 106(2): 123–129.

    PubMed  CAS  Google Scholar 

  • Nakayama, T., T. Sato, Y. Fukui, K. Yonekura-Sakakibara, H. Hayashi, Y. Tanaka, T. Kusumi and T. Nishino (2001). Specificity analysis and mechanism of aurone synthesis catalyzed by aureusidin synthase, a polyphenol oxidase homolog responsible for flower coloration. FEBS Lett. 499(1–2): 107–111.

    PubMed  CAS  Google Scholar 

  • Natella, F., M. Nardini, M. Di Felice and C. Scaccini (1999). Benzoic and cinnamic acid derivatives as antioxidants: structure-activity relation. J. Agr. Food Chem. 47(4): 1453–1459.

    Google Scholar 

  • Noda, Y., T. Kneyuki, K. Igarashi, A. Mori and L. Packer (2000). Antioxidant activity of nasunin, an anthocyanin in eggplant peels. Toxicology 148(2–3): 119–123.

    PubMed  CAS  Google Scholar 

  • Ohnishi, M., N. Yoshimi, T. Kawamori, N. Ino, Y. Hirose, T. Tanaka, J. Yamahara, H. Miyata and H. Mori (1997). Inhibitory effects of dietary protocatechuic acid and costunolide on 7,12-dimethylbenz[α]anthracene-induced hamster cheek pouch carcinogenesis. Jpn. J. Cancer Res. 88(2): 111–119.

    PubMed  CAS  Google Scholar 

  • Ohta, A., M. Uehara, K. Sakai, M. Takasaki, H. Adlercreutz, T. Morohashi and Y. Ishimi (2002). A combination of dietary fructooligosaccharides and isoflavone conjugates increases femoral bone mineral density and equol production in ovariectomized mice. J. Nutr. 132(7): 2048–2054.

    PubMed  CAS  Google Scholar 

  • Okuno, Y. and M. Miyazawa (2006). Microbial O-demethylation of sinesetin and antimutagenic activity of the metabolite. J. Chem. Technol. Biot. 81(1): 29–33.

    CAS  Google Scholar 

  • Omori, T., K. Ogawa, Y. Umemoto, K. Yuki, Y. Kajihara, M. Shimoda and H. Wada (1996). Enhancement of glycerol production by brewing yeast (Saccharomyces cerevisiae) with heat shock treatment. J. Ferment. Bioeng. 82(2): 187–190.

    CAS  Google Scholar 

  • Oszmianski, J. and C. Y. Lee (1990). Inhibition of polyphenol oxidase activity and browning by honey. J. Agr. Food Chem. 38(10): 1892–1895.

    CAS  Google Scholar 

  • Pan, X. J., G. G. Niu and H. Z. Liu (2003). Microwave-assisted extraction of tea polyphenols and tea caffeine from green tea leaves. Chem. Eng. Process 42(2): 129–133.

    CAS  Google Scholar 

  • Passamonti, S., U. Vrhovsek, A. Vanzo and F. Mattivi (2003). The stomach as a site for anthocyanins absorption from food. FEBS Lett. 544(1–3): 210–213.

    PubMed  CAS  Google Scholar 

  • Peterson, J. J., J. T. Dwyer, G. R. Beecher, S. A. Bhagwat, S. E. Gebhardt, D. B. Haytowitz and J. M. Holden (2006). Flavanones in oranges, tangerines (mandarins), tangors, and tangelos: a compilation and review of the data from the analytical literature. J. Food Compos. Anal. 19: S66-S73.

    CAS  Google Scholar 

  • Possemiers, S., S. Bolca, C. Grootaert, T. Van de Wiele, W. Verstraete, D. De Keukeleire and A. Heyerick (2006). Metabolic activation of pro-estrogens from hops by intestinal microbiota results in increased exposure to the potent phytoestrogen 8-prenylnaringenin,in vitro andin vivo. Poly. Comm.: 51–52.

    Google Scholar 

  • Possemiers, S., A. Heyerick, V. Robbens, D. De Keukeleire and W. Verstraete (2005). Activation of proestrogens from hops (Humulus lupulus L.) by intestinal microbiota; conversion of isoxanthohumol into 8-prenylnaringenin. J. Agr. Food. Chem. 53(16): 6281–6288.

    CAS  Google Scholar 

  • Pozo-Bayon, M. A., M. Monagas, M. C. Polo and C. Gomez-Cordoves (2004). Occurrence of pyranoanthocyanins in sparkling wines manufactured with red grape varieties. J. Agr. Food Chem. 52(5): 1300–1306.

    CAS  Google Scholar 

  • Pretorius, I. S. (2000). Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast 16(8): 675–729.

    PubMed  CAS  Google Scholar 

  • Radler, F. (1992). Yeast. Metabolism of organic acids. In: G.H. Fleet (Ed.)Wine Microbiology and Biotechnology. Camberwell, Victoria, Australia, Hardwood Academic Publishers: 165–182.

    Google Scholar 

  • Ralston, L., S. Subramanian, M. Matsuno and O. Yu (2005). Partial reconstruction of flavonoid and isoflavonoid biosynthesis in yeast using soybean type I and type II chalcone isomerases. Plant Physiol. 137(4): 1375–1388.

    PubMed  CAS  Google Scholar 

  • Ramirez-Tortosa, C., O. M. Andersen, P. T. Gardner, P. C. Morrice, S. G. Wood, S. J. Duthie, A. R. Collins and G. G. Duthie (2001). Anthocyanin-rich extract decreases indices of lipid peroxidation and DNA damage in vitamin E-depleted rats. Free Radical Bio. Med. 31(9): 1033–1037.

    CAS  Google Scholar 

  • Rao, K. V. and N. T. Weisner (1981). Microbial transformation of quercetin byBacillus cereus. Appl. Environ. Microb. 42(3): 450–452.

    CAS  Google Scholar 

  • Renaud, S. and M. Delorgeril (1992). Wine, alcohol, platelets, and the French paradox for coronary heart-disease. Lancet 339(8808): 1523–1526.

    PubMed  CAS  Google Scholar 

  • Revilla, I., S. Perez-Magarino, M. L. Gonzalez-SanJose and S. Beltran (1999). Identification of anthocyanin derivatives in grape skin extracts and red wines by liquid chromatography with diode array and mass spectrometric detection. J. Chromatogr. A 847(1–2): 83–90.

    CAS  Google Scholar 

  • Rice-Evans, C. A., N. J. Miller, P. G. Bolwell, P. M. Bramley and J. B. Pridham (1995). The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radical Res. 22(4): 375–383.

    CAS  Google Scholar 

  • RiceEvans, C. A., N. J. Miller and G. Paganga (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Bio. Med. 20(7): 933–956.

    CAS  Google Scholar 

  • Romero, C. and J. Bakker (1999). Interactions between grape anthocyanins and pyruvic acid, with effect of pH and acid concentration on anthocyanin composition and color in model solutions. J. Agr. Food Chem. 47(8): 3130–3139.

    CAS  Google Scholar 

  • Romero, C. and J. Bakker (2001). Anthocyanin and colour evolution during maturation of four port wines: effect of pyruvic acid addition. J. Sci. Food Agr. 81(2): 252–260.

    CAS  Google Scholar 

  • Rong, H., Y. Zhao, K. Lazou, D. De Keukeleire, S. R. Milligan and P. Sandra (2000). Quantitation of 8-prenylnaringenin, a novel phytoestrogen in hops (Humulus lupulus L.), hop products, and beers, by benchtop HPLC-MS using electrospray ionization. Chromatographia 51(9–10): 545–552.

    CAS  Google Scholar 

  • Rowland, I., H. Wiseman, T. Sanders, H. Adlercreutz and E. Bowey (1999). Metabolism of oestrogens and phytoestrogens: role of the gut microflora. Biochem. Soc. Trans. 27(2): 304–308.

    PubMed  CAS  Google Scholar 

  • Rowland, I. R., H. Wiseman, T. A. Sanders, H. Adlercreutz and E. A. Bowey (2000). Interindividual variation in metabolism of soy isoflavones and lignans: influence of habitual diet on equol production by the gut microflora. Nutr. Cancer 36(1): 27–32.

    PubMed  CAS  Google Scholar 

  • Ruefer, C. E., C. Gerhauser, N. Frank, H. Becker and S. E. Kulling (2005).In vitro phase II metabolism of xanthohumol by human UDP-glucuronosyltransferases and sulfotransferases. Mol. Nutr. Food. Res. 49(9): 851–856.

    PubMed  CAS  Google Scholar 

  • Sakaguchi, M., K. Mihara and R. Sato (1984). Signal recognition particle is required for co-translational insertion of cytochrome P-450 into microsomal membranes. Proc. Natl. Acad. Sci. USA 81(11): 3361–3364.

    PubMed  CAS  Google Scholar 

  • Salakka, A. K., T. H. Jokela and K. Wahala (2006). Multiple hydride reduction pathways in isoflavonoids. J. Org. Chem. 2: 16.

    Google Scholar 

  • Sanchez-Gonzalez, M. and J. P. N. Rosazza (2004). Microbial transformations of chalcones: Hydroxylation, O-demethylation, and cyclization to flavanones. J. Nat. Prod. 67(4): 553–558.

    PubMed  CAS  Google Scholar 

  • SarniManchado, P., H. Fulcrand, J. M. Souquet, V. Cheynier and M. Moutounet (1996). Stability and color of unreported wine anthocyanin-derived pigments. J. Food Sci. 61(5): 938–941.

    CAS  Google Scholar 

  • SatueGracia, M. T., M. Heinonen and E. N. Frankel (1997). Anthocyanins as antioxidants on human low-density lipoprotein and lecithin-liposome systems. J. Agr. Food Chem. 45(9): 3362–3367.

    CAS  Google Scholar 

  • Scalbert, A. and G. Williamson (2000). Dietary intake and bioavailability of polyphenols. J. Nutr. 130(8): 2073s–2085s.

    PubMed  CAS  Google Scholar 

  • Schauder, B. and J. E. McCarthy (1989). The role of bases upstream of the Shine-Dalgarno region and in the coding sequence in the control of gene expression inEscherichia coli: translation and stability of mRNAsin vivo. Gene 78(1): 59–72.

    PubMed  CAS  Google Scholar 

  • Schneider, H., A. Schwiertz, M. D. Collins and M. Blaut (1999). Anaerobic transformation of quercetin-3-glucoside by bacteria from the human intestinal tract. Arch. Microbiol. 171(2): 81–91.

    PubMed  CAS  Google Scholar 

  • Schwarz, M., J. J. Picazo-Bacete, P. Winterhalter and I. Hermosin-Gutierrez (2005). Effect of copigments and grape cultivar on the color of red wines fermented after the addition of copigments. J. Agr. Food. Chem. 53(21): 8372–8381.

    CAS  Google Scholar 

  • Schwarz, M., T. C. Wabnitz and P. Winterhalter (2003). Pathway leading to the formation of anthocyanin-vinylphenol adducts and related pigments in red wines. J. Agr. Food Chem. 51(12): 3682–3687.

    CAS  Google Scholar 

  • Schwarz, M. and P. Winterhalter (2003). A novel synthetic route to substituted pyranoanthocyanins with unique colour properties. Tetrahedron Lett. 44(41): 7583–7587.

    CAS  Google Scholar 

  • Schwarz, M. and P. Winterhalter (2004). Novel aged anthocyanins from Pinotage wines: Isolation, characterization, and pathway of formation. In: A.L. Waterhouse, J.A. Kennedy (Ed.):Red Wine Color: Revealing the Mysteries, ACS Symp. Ser. 886, American Chemical Society: Washington, DC, pp. 179–197.

    Google Scholar 

  • Serafini, M., G. Maiani and A. Ferro-Luzzi (1998). Alcohol-free red wine enhances plasma antioxidant capacity in humans. J. Nutr. 128(6): 1003–1007.

    PubMed  CAS  Google Scholar 

  • Setchell, K. D. R., S. P. Borriello, P. Hulme, D. N. Kirk and M. Axelson (1984). Nonsteroidal estrogens of dietary origin - possible roles in hormone-dependent disease. Am. J. Clin. Nutr. 40(3): 569–578.

    PubMed  CAS  Google Scholar 

  • Setchell, K. D. R., C. Clerici, E. D. Lephart, S. J. Cole, C. Heenan, D. Castellani, B. E. Wolfe, L. Nechemias-Zimmer, N. M. Brown, T. D. Lund, R. J. Handa and J. E. Heubi (2005). S-Equol, a potent ligand for estrogen receptor beta, is the exclusive enantiomeric form of the soy isoflavone metabolite produced by human intestinal bacterial floral. Am. J. Clin. Nutr. 81(5): 1072–1079.

    PubMed  CAS  Google Scholar 

  • Setchell, K. D. R., L. ZimmerNechemias, J. N. Cai and J. E. Heubi (1997). Exposure of infants to phyto-oestrogens from soy-based infant formula. Lancet 350(9070): 23–27.

    PubMed  CAS  Google Scholar 

  • Setchell, K. D. R., L. Zimmer-Nechemias, J. N. Cai and J. E. Heubi (1998). Isoflavone content of infant formulas and the metabolic fate of these phytoestrogens in early life. Am. J. Clin. Nutr. 68(6): 1453s–1461s.

    PubMed  CAS  Google Scholar 

  • Setiawan, V. W., Z. F. Zhang, G. P. Yu, Q. Y. Lu, Y. L. Li, M. L. Lu, M. R. Wang, C. H. Guo, S. Z. Yu, R. C. Kurtz and C. C. Hsieh (2001). Protective effect of green tea on the risks of chronic gastritis and stomach cancer. Int. J. Cancer 92(4): 600–604.

    PubMed  CAS  Google Scholar 

  • Simons, A. L., M. Renouf, S. Hendrich and P. A. Murphy (2005a). Human gut microbial degradation of flavonoids: Structure-function relationships. J. Agr. Food. Chem. 53(10): 4258–4263.

    CAS  Google Scholar 

  • Simons, A. L., M. Renouf, S. Hendrich and P. A. Murphy (2005b). Metabolism of glycitein (7,4 ’-dihydroxy-6-methoxy-isoflavone) by human gut microflora. J. Agr. Food. Chem. 53(22): 8519–8525.

    CAS  Google Scholar 

  • Smith, M. A. L. and L. A. Spomer (1995). Vessels, gels, liquid media, and support systems. J. Aitken-Christie, T. Kozai and M. A. L. Smith (Eds).Automation and Environmental Control in Plant Tissue Culture. Dordrecht, The Netherlands, Kluwer Academic Publishers: 371–404.

    Google Scholar 

  • Song, T. T., K. Barua, G. Buseman and P. A. Murphy (1998). Soy isoflavone analysis: quality control and a new internal standard. Am. J. Clin. Nutr. 68(6): 1474s–1479s.

    PubMed  CAS  Google Scholar 

  • Song, T. T., S. Hendrich and P. A. Murphy (1999). Estrogenic activity of glycitein, a soy isoflavone. J. Agr. Food Chem. 47(4): 1607–1610.

    CAS  Google Scholar 

  • Sroka, Z. and W. Cisowski (2003). Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Food Chem. Toxicol. 41(6): 753–758.

    PubMed  CAS  Google Scholar 

  • Stashenko, H., C. Macku and T. Shibamato (1992). Monitoring volatile chemicals formed from must during yeast fermentation. J. Agr. Food Chem. 40(11): 2257–2259.

    CAS  Google Scholar 

  • Stevens, J. F., A. W. Taylor and M. L. Deinzer (1999). Quantitative analysis of xanthohumol and related prenylflavonoids in hops and beer by liquid chromatography tandem mass spectrometry. J. Chromatogr. A 832(1–2): 97–107.

    PubMed  CAS  Google Scholar 

  • Stich, E., K. Kloos, P. Cortona and S. Hake (1999). Color me natural. Nutr. World 2: 64–70.

    Google Scholar 

  • Stintzing, F. C. and R. Carle (2004). Functional properties of anthocyanins and betalains in plants, food, and in human nutrition. Trends Food Sci. Technol. 15(1): 19–38.

    CAS  Google Scholar 

  • Stormo, G. D., T. D. Schneider and L. M. Gold (1982). Characterization of translational initiation sites inE. coli. Nucleic Acids Res. 10(9): 2971–2996.

    CAS  Google Scholar 

  • Takamatsu, S., A. M. Galal, S. A. Ross, D. Ferreira, M. A. ElSohly, A. R. S. Ibrahim and F. S. El-Feraly (2003). Antioxidant effect of flavonoids on DCF production in HL-60 cells. Phytother. Res. 17(8): 963–966.

    PubMed  CAS  Google Scholar 

  • Takamura, Y. and G. Nomura (1988). Changes in the intracellular concentration of acetyl-CoA and malonyl-CoA in relation to the carbon and energy metabolism ofEscherichia coli K12. J. Gen. Microbiol. 134(8): 2249–2253.

    PubMed  CAS  Google Scholar 

  • Talavera, S., C. Felgines, O. Texier, C. Besson, J. L. Lamaison and C. Remesy (2003). Anthocyanins are efficiently absorbed from the stomach in anesthetized rats. J. Nutr. 133(12): 4178–4182.

    PubMed  CAS  Google Scholar 

  • Talavera, S., C. Felgines, O. Texier, C. Besson, C. Manach, J. L. Lamaison and C. Remesy (2004). Anthocyanins are efficiently absorbed from the small intestine in rats. J. Nutr. 134(9): 2275–2279.

    PubMed  CAS  Google Scholar 

  • Tsai, P. J., Y. Y. Hsieh and T. C. Huang (2004). Effect of sugar on anthocyanin degradation and water mobility in a roselle anthocyanin model system using O-17 NMR. J. Agr. Food Chem. 52(10): 3097–3099.

    CAS  Google Scholar 

  • Tsangalis, D., J. F. Ashton, A. E. J. McGill and N. P. Shah (2002). Enzymic transformation of isoflavone phytoestrogens in soymilk by beta-glucosidase-producing bifidobacteria. J. Food Sci. 67(8): 3104–3113.

    CAS  Google Scholar 

  • Tsangalis, D., J. F. Ashton, A. E. J. Mcgill and N. P. Shah (2003). Biotransformation of isoflavones by bifidobacteria in fermented soymilk supplemented with D-glucose and L-cysteine. J. Food Sci. 68(2): 623–631.

    CAS  Google Scholar 

  • Tsuda, T., F. Horio and T. Osawa (1999). Absorption and metabolism of cyanidin 3-O-β-D-glucoside in rats. FEBS Lett. 449(2–3): 179–182.

    PubMed  CAS  Google Scholar 

  • Turner, N. J., B. M. Thomson and I. C. Shaw (2003). Bioactive isoflavones in functional foods: The importance of gut microflora on bioavailability. Nutr. Rev. 61(6): 204–213.

    PubMed  Google Scholar 

  • Udupa, S. R., A. Banerji and M. S. Chadha (1969). Microbiological transformations of flavonoids – II Transformations of (±)-flavanone Tetrahedron 25(22): 5415–5419.

    CAS  Google Scholar 

  • Ueno, T., S. Uchiyama and N. Kikuchi (2002). The role of intestinal bacteria on biological effects of soy isoflavones in humans. J. Nutr. 132(3): 594s–594s.

    Google Scholar 

  • Valero, E., L. Moyano, M. C. Millan, M. Medina and J. M. Ortega (2002). Higher alcohols and esters production bySaccharomyces cerevisiae. Influence of the initial oxygenation of the grape must. Food Chem. 78(1): 57–61.

    CAS  Google Scholar 

  • Vinson, J. A. and Y. A. Dabbagh (1998). Effect of green and black tea supplementation on lipids, lipid oxidation and fibrinogen in the hamster: mechanisms for the epidemiological benefits of tea drinking. FEBS Lett. 433(1–2): 44–46.

    PubMed  CAS  Google Scholar 

  • Viswanathan, M., S. K. Kim, A. Berdichevsky and L. Guarente (2005). A role for SIR-2.1 regulation of ER stress response genes in determining C. elegans life span. Dev. Cell 9(5): 605–615.

    CAS  Google Scholar 

  • Vivar-Quintana, A. M., C. Santos-Buelga, E. Francia-Aricha and J. C. Rivas-Gonzalo (1999). Formation of anthocyanin-derived pigments in experimental red wines. Food Sc.i Technol. Int. 5(4): 347–352.

    CAS  Google Scholar 

  • Wang, H. B., E. J. Race and A. J. Shrikhande (2003). Anthocyanin transformation in Cabernet Sauvignon wine during aging. J. Agr. Food Chem. 51(27): 7989–7994.

    CAS  Google Scholar 

  • Wang, H. J. and P. A. Murphy (1996). Mass balance study of isoflavones during soybean processing. J. Agr. Food Chem. 44(8): 2377–2383.

    CAS  Google Scholar 

  • Wang, J. and G. Mazza (2002). Effects of anthocyanins and other phenolic compounds on the production of tumor necrosis factor alpha in LPS/IFN-gamma-activated RAW 264.7 macrophages. J. Agr. Food Chem. 50(15): 4183–4189.

    CAS  Google Scholar 

  • Wang, L. Q., M. R. Meselhy, Y. Li, N. Nakamura, B. S. Min, G. W. Qin and M. Hattori (2001). The heterocyclic ring fission and dehydroxylation of catechins and related compounds byEubacterium sp strain SDG-2, a human intestinal bacterium. Chem. Pharm. Bull. 49(12): 1640–1643.

    PubMed  CAS  Google Scholar 

  • Wang, R. F., W. W. Cao and C. E. Cerniglia (1996). PCR detection and quantitation of predominant anaerobic bacteria in human and animal fecal samples. Appl. Environ. Microb. 62(4): 1242–1247.

    CAS  Google Scholar 

  • Wang, X. L., H. G. Hur, J. H. Lee, K. T. Kim and S. I. Kim (2005a). Enantioselective synthesis of S-equol from dihydrodaidzein by a newly isolated anaerobic human intestinal bacterium. Appl. Environ. Microb. 71(1): 214–219.

    CAS  Google Scholar 

  • Wang, X. L., K. H. Shin, H. G. Hur and S. I. Kim (2005b). Enhanced biosynthesis of dihydrodaidzein and dihydrogenistein by a newly isolated bovine rumen anaerobic bacterium. J. Biotechnol. 115(3): 261–269.

    CAS  Google Scholar 

  • Watanabe, S. and H. Adlercreutz (1998). Pharmacokinetics of soy phytoestrogens in humans.Functional Foods for Disease Prevention. T. Shibamato, J. Terao and T. Osawa. Washington, DC, American Chemical Society: 198–208.

    Google Scholar 

  • Watts, K. T., P. C. Lee and C. Schmidt-Dannert (2004). Exploring recombinant flavonoid biosynthesis in metabolically engineeredEscherichia coli. Chembiochem 5(4): 500–507.

    PubMed  CAS  Google Scholar 

  • Watts, K. T., P. C. Lee and C. Schmidt-Dannert (2006). Biosynthesis of plant-specific stilbene polyketides in metabolically engineeredEscherichia coli. BMC Biotechnol. 6: 22.

    PubMed  Google Scholar 

  • Way, T. D., M. C. Kao and J. K. Lin (2004). Apigenin induces apoptosis through proteasomal degradation of HER2/neu in HER2/neu-overexpressing breast cancer cells via the phosphatidylinositol 3-kinase/Akt-dependent pathway. J. Biol. Chem. 279(6): 4479–4489.

    PubMed  CAS  Google Scholar 

  • Weisel, T., M. Baum, G. Eisenbrand, H. Dietrich, F. Will, J. P. Stockis, S. Kulling, C. Rufer, C. Johannes and C. Janzowski (2006). An anthocyanin/polyphenolic-rich fruit juice reduces oxidative DNA damage and increases glutathione level in healthy probands. Biotech. J. 1(4): 388–397.

    CAS  Google Scholar 

  • Wellmann, E. (1975). UV dose-dependent induction of enzymes related to flavonoid biosynthesis in cell-suspension cultures of parsley. FEBS Lett. 51(1): 105–107.

    PubMed  CAS  Google Scholar 

  • Whiting, G. C. and P. A. Coggins (1960). Organic acid metabolism in cider and berry fermentations. III. Ket-acids in cider-apple juices and ciders. J. Sci. Food Agri. 11: 705–709.

    CAS  Google Scholar 

  • Wildenradt, H. L. and V. L. Singleton (1974). Production of aldehydes as a result of oxidation of polyphenolic compounds and its relation to wine aging. Am. J. Enol. Viticult. 25(2): 119–126.

    CAS  Google Scholar 

  • Williams, P. A., J. Cosme, V. Sridhar, E. F. Johnson and D. E. McRee (2000a). Mammalian microsomal cytochrome P450 monooxygenase: structural adaptations for membrane binding and functional diversity. Mol. Cell 5(1): 121–131.

    CAS  Google Scholar 

  • Williams, P. A., J. Cosme, V. Sridhar, E. F. Johnson and D. E. McRee (2000b). Microsomal cytochrome P450 2C5: comparison to microbial P450s and unique features. J. Inorg. Biochem. 81(3): 183–190.

    CAS  Google Scholar 

  • Williams, P. A., J. Cosme, D. M. Vinkovic, A. Ward, H. C. Angove, P. J. Day, C. Vonrhein, I. J. Tickle and H. Jhoti (2004). Crystal structures of human cytochrome P450 3A4 bound to metyrapone and progesterone. Science 305(5684): 683–686.

    PubMed  CAS  Google Scholar 

  • Williams, P. A., J. Cosme, A. Ward, H. C. Angove, D. Matak Vinkovic and H. Jhoti (2003). Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature 424(6947): 464–468.

    Google Scholar 

  • Williamson, G., D. Barron, K. Shimoi and J. Terao (2005).In vitro biological properties of flavonoid conjugates found in vivo. Free Radical Res. 39(5): 457–469.

    CAS  Google Scholar 

  • Willits, M. G., M. Giovanni, R. T. N. Prata, C. M. Kramer, V. De Luca, J. C. Steffens and G. Graser (2004). Bio-fermentation of modified flavonoids: an example ofin vivo diversification of secondary metabolites. Phytochemistry 65(1): 31–41.

    PubMed  CAS  Google Scholar 

  • Winter, J., L. H. Moore, V. R. Dowell and V. D. Bokkenheuser (1989). C-ring cleavage of flavonoids by human intestinal bacteria. Appl. Environ. Microb. 55(5): 1203–1208.

    CAS  Google Scholar 

  • Wood, J. G., B. Rogina, S. Lavu, K. Howitz, S. L. Helfand, M. Tatar and D. Sinclair (2004). Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430(7000): 686–689.

    PubMed  CAS  Google Scholar 

  • Wrolstad, R. E. (2000).Natural Food Colorants. New York, Marcel Dekker, Inc.

    Google Scholar 

  • Xie, D. Y., S. B. Sharma and R. A. Dixon (2004). Anthocyanidin reductases fromMedicago truncatula andArabidopsis thaliana. Arch. Biochem. Biophys. 422(1): 91–102.

    PubMed  CAS  Google Scholar 

  • Xu, X., K. S. Harris, H. J. Wang, P. A. Murphy and S. Hendrich (1995). Bioavailability of soybean isoflavones depends upon gut microflora in women. J. Nutr. 125(9): 2307–2315.

    PubMed  CAS  Google Scholar 

  • Xu, X., H. J. Wang, P. A. Murphy, L. Cook and S. Hendrich (1994). Daidzein is a more bioavailable soymilk isoflavone than is genistein in adult women. J. Nutr. 124(6): 825–832.

    PubMed  CAS  Google Scholar 

  • Yaipakdee, P. and L. W. Robertson (2001). Enzymatic halogenation of flavanones and flavones. Phytochemistry 57(3): 341–347.

    PubMed  CAS  Google Scholar 

  • Yamazaki, S., K. Sato, K. Suhara, M. Sakaguchi, K. Mihara and T. Omura (1993). Importance of the proline-rich region following signal-anchor sequence in the formation of correct conformation of microsomal cytochrome P–450s. J. Biochem. 114(5): 652–657.

    PubMed  CAS  Google Scholar 

  • Yan, Y., J. Chemler, L. Huang, S. Martens and M. A. Koffas (2005a). Metabolic engineering of anthocyanin biosynthesis inEscherichia coli. Appl. Environ. Microbiol. 71(7): 3617–3623.

    CAS  Google Scholar 

  • Yan, Y., A. Kohli and M. A. Koffas (2005b). Biosynthesis of natural flavanones inSaccharomyces cerevisiae. Appl. Environ. Microbiol. 71(9): 5610–5613.

    CAS  Google Scholar 

  • Yen, G. C. and H. Y. Chen (1995). Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agr. Food Chem. 43(1): 27–32.

    CAS  Google Scholar 

  • Yoshino, K., Y. Hara, M. Sano and I. Tomita (1994). Antioxidative effects of black tea theaflavins and thearubigin on lipid-peroxidation of rat-liver homogenates induced by tert-butyl hydroperoxide. Biol. Pharm. Bull. 17(1): 146–149.

    PubMed  CAS  Google Scholar 

  • Youdim, K. A., J. McDonald, W. Kalt and J. A. Joseph (2002). Potential role of dietary flavonoids in reducing microvascular endothelium vulnerability to oxidative and inflammatory insults. J. Nutr. Biochem. 13(5): 282–288.

    PubMed  CAS  Google Scholar 

  • Yu, O., J. Shi, A. O. Hession, C. A. Maxwell, B. McGonigle and J. T. Odell (2003). Metabolic engineering to increase isoflavone biosynthesis in soybean seed. Phytochemistry 63(7): 753–763.

    PubMed  CAS  Google Scholar 

  • Zhang, Y. J., S. K. Vareed and M. G. Nair (2005). Human tumor cell growth inhibition by nontoxic anthocyanidins, the pigments in fruits and vegetables. Life Sci. 76(13): 1465–1472.

    PubMed  CAS  Google Scholar 

  • Zhong, J. J., T. Seki, S. Kinoshita and T. Yoshida (1991). Effect of light irradiation on anthocyanin production by suspended culture ofPerilla frutescens. Biotechnol. Bioeng. 38(6): 653–658.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A. Chemler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chemler, J.A., Leonard, E., Koffas, M.A. (2008). Flavonoid Biotransformations in Microorganisms. In: Winefield, C., Davies, K., Gould, K. (eds) Anthocyanins. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77335-3_7

Download citation

Publish with us

Policies and ethics