Advertisement

Anthocyanins pp 169-190 | Cite as

Modification and Stabilization of Anthocyanins

  • Keiko Yonekura-Sakakibara
  • Toru Nakayama
  • Mami Yamazaki
  • Kazuki Saito
Chapter

Abstract

Modification of anthocyanins is responsible for the stabilization of vacuolar anthocyanins. Cytosolic modification reactions include glycosylation, methylation, and acylation immediately following the synthesis of anthocyanidin aglycones. Knowledge of the biochemistry and molecular biology of these modification reactions, and the enzymes involved, has increased dramatically due to the molecular cloning of the genes encoding these enzymes from a variety of plant species in the last decade. Recent advances in the modification of anthocyanins are summarized and discussed in terms of fundamental biochemistry and application for the modification and stabilization of anthocyanins.

Keywords

Acyl Donor Acyl Acceptor Acyl Transfer Anthocyanin Biosynthetic Pathway Acyl Substituent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abe, Y., Tera, M., Sasaki, N., Okamura, M., Umemoto, N., Momose, M., Kawahara, N., Kamakura, H., Goda, Y., Nagasawa, K., Ozeki, Y. (2008) Detection of 1-O-malylglucose: pelargonidin 3-O-glucose-6''-O-malyltransferase activity in carnation (Dianthus caryophyllus). Biochem. Biophys. Res. Commun. DOI: 10.1016/j.bbrc.2008.04.153Google Scholar
  2. Anderson, Ø.M. and Jordheim, M. (2006) The Anthocyanins. In: Ø.M. Anderson and K.R. Markham (Eds.), Flavonoids: Chemistry, Biochemistry and Applications. CRC/Taylor & Francis, Boca Raton, pp. 471–551.Google Scholar
  3. Bar-Peled, M., Lewinsohn, E., Fluhr, R. and Gressel, J. (1991) UDP-rhamnose: flavanone-7-O-glucoside-2’’-O-rhamnosyltransferase. Purification and characterization of an enzyme catalyzing the production of bitter compounds in citrus. J. Biol. Chem. 266, 20953–20959.PubMedGoogle Scholar
  4. Boss, P.K., Davies, C. and Robinson, S.P. (1996) Expression of anthocyanin biosynthesis pathway genes in red and white grapes. Plant Mol. Biol. 32, 565–569PubMedCrossRefGoogle Scholar
  5. Brouillard, R. and Dangles, O. (1994) Flavonoids and flower colour. In: J.B. Harbone (Ed.), The Flavonoids. Chapman & Hall/CRC, Washington DC, pp. 565–599.Google Scholar
  6. Brugliera, F., Holton, T.A., Stevenson, T.W., Farcy, E., Lu, C.Y. and Cornish, E.C. (1994) Isolation and characterization of a cDNA clone corresponding to the Rt locus of Petunia hybrida. Plant J. 5, 81–92.PubMedCrossRefGoogle Scholar
  7. Brugliera, F., Demelis, L., Koes, R. and Tanaka, Y. (2003) Genetic sequences having methyltransferase activity and uses therefore. International publication number WO 03/062428 A1.Google Scholar
  8. D’Auria, J.C. (2006) Acyltransferases in plants: a good time to be BAHD. Curr. Opin. Plant Biol. 9, 331–340.Google Scholar
  9. Davies, K.M. and Schwinn, K.E. (2006) Molecular Biology and Biotechnology of Flavonoid Biosynthesis. In: Ø.M. Anderson and K.R. Markham (Eds.), Flavonoids: Chemistry, Biochemistry and Applications. CRC/Taylor & Francis, Boca Raton, pp. 143–218.Google Scholar
  10. Dooner, H.K. and Nelson, O.E. (1977) Controlling element-induced alterations in UDPglucose:flavonoid glucosyltransferase, the enzyme specified by the bronze locus in maize. Proc. Natl. Acad. Sci. USA 74, 5623–5627.PubMedCrossRefGoogle Scholar
  11. Fedoroff, N.V., Furtek, D.B. and Nelson, O.E. (1984) Cloning of the bronze locus in maize by a simple and generalizable procedure using the transposable controlling element Activator (Ac). Proc. Natl. Acad. Sci. USA 81, 3825–3829.PubMedCrossRefGoogle Scholar
  12. Ford, C.M., Boss, P.K. and Hoj, P.B. (1998) Cloning and characterization of Vitis vinifera UDP-glucose: flavonoid 3-O-glucosyltransferase, a homologue of the enzyme encoded by the maize Bronze-1 locus that may primarily serve to glucosylate anthocyanidins in vivo. J. Biol. Chem. 273, 9224–9233.PubMedCrossRefGoogle Scholar
  13. Frydman, A., Weisshaus, O., Bar-Peled, M., Huhman, D.V., Sumner, L.W., Marin, F.R., Lewinsohn, E., Fluhr, R., Gressel, J. and Eyal, Y. (2004) Citrus fruit bitter flavors: isolation and functional characterization of the gene Cm1,2RhaT encoding a 1,2 rhamnosyltransferase, a key enzyme in the biosynthesis of the bitter flavonoids of citrus. Plant J. 40, 88–100.PubMedCrossRefGoogle Scholar
  14. Fujiwara, H., Tanaka, Y., Fukui, Y., Nakao, M., Ashikari, T. and Kusumi, T. (1997) Anthocyanin 5-aromatic acyltransferase from Gentiana triflora. Purification, characterization, and its role in anthocyanin biosysnthesis. Eur. J. Biochem. 249, 45–51.PubMedCrossRefGoogle Scholar
  15. Fujiwara, H., Tanaka, Y., Yonekura-Sakakibara, K., Fukuchi-Mizutani, M., Nakao, M., Fukui, Y., Yamaguchi, M., Ashikari, T. and Kusumi, T. (1998) cDNA cloning, gene expression and subcellular localization of anthocyanin 5-aromatic acyltransferase from Gentiana triflora. Plant J. 16, 421–431.PubMedCrossRefGoogle Scholar
  16. Fukuchi-Mizutani, M., Okuhara, H., Fukui, Y., Nakao, M., Katsumoto, Y., Yonekura-Sakakibara, K., Kusumi, T., Hase, T. and Tanaka, Y. (2003) Biochemical and molecular characterization of a novel UDP-glucose: anthocyanin 3’-O-glucosyltransferase, a key enzyme for blue anthocyanin biosynthesis, from gentian. Plant Physiol. 132, 1652–1663.PubMedCrossRefGoogle Scholar
  17. Furtek, D., Schiefelbein, J.W., Johnston, F. and Nelson Jr., O.E. (1988) Sequence comparisons of three wild-type Bronze-1 alleles from Zea mays. Plant Mol. Biol. 11, 473–481.Google Scholar
  18. Gachon, C.M.M., Langlois-Meurinne M. and Saindrenan P. (2005) Plant secondary metabolism glycosyltransferases: the emerging functional analysis. Trends Plant Sci. 10, 542–549.Google Scholar
  19. Gerats, A.G.M., Farcy, E., Wallroth, M., Groot, S.P.C. and Schram, A. (1984) Control of anthocyanin biosynthesis in Petunia hybrida by multiple allelic series of the genes An1 and An2. Genetics 106, 501–508.PubMedGoogle Scholar
  20. Gläßgen, W.E. and Seitz, H.U. (1992) Acylation of anthocyanins with hydroxycinnamic acids via 1-O-acylglucosides by protein preparations from cells cultures of Daucus carota L. Planta 186, 582–585CrossRefGoogle Scholar
  21. Gong, Z., Yamazaki, M., Sugiyama, M., Tanaka, Y. and Saito, K. (1997) Cloning and molecular analysis of structural genes involved in anthocyanin biosynthesis and expressed in a forma-specific manner in Perilla frutescens. Plant Mol. Biol. 35, 915–927.PubMedCrossRefGoogle Scholar
  22. Hans, J., Brandt, W. and Vogt, T. (2004) Site-directed mutagenesis and protein 3D-homology modelling suggest a catalytic mechanism for UDP-glucose-dependent betanidin 5-O-glucosyltransferase from Dorotheanthus bellidiformis. Plant J. 39, 319–333.PubMedCrossRefGoogle Scholar
  23. Hause, B., Meyer, K., Viitanen, P.V., Chapple, C. and Strack, D. (2002) Immunolocalization of 1- O-sinapoylglucose: malate sinapoyltransferase in Arabidopsis thaliana. Planta 215, 26–32.PubMedCrossRefGoogle Scholar
  24. Heller, W. and Forkmann, G. (1993) Biosynthesis of Flavonoids. In: J.B. Harbone (Ed.), The Flavonoids: Advances in Research Since 1986. Chapman & Hall/CRC, London, pp. 499–535.Google Scholar
  25. Honda, T. and Saito, N. (2002) Recent progress in the chemistry of polyacylated anthocyanins as flower color pigments. Heterocycles 56, 633–692CrossRefGoogle Scholar
  26. Hopp, W. and Seitz, H.U. (1987) The uptake of acylated anthocyanin into isolated vacuoles from a cell suspension culture of Daucus carota. Planta 170, 74–85.CrossRefGoogle Scholar
  27. Jonsson, L.M., Donker-Koopman, W.E., Uitslager, P. and Schram, A.W. (1983) Subcellular localization of anthocyanin methyltransferase in flowers of Petunia hybrida. Plant Physiol. 72, 287–290.PubMedCrossRefGoogle Scholar
  28. Joshi, C.P. and Chiang, V.L. (1998) Conserved sequence motifs in plant S-adenosyl-L-methionine-dependent methyltransferases. Plant Mol. Biol. 37, 663–674.PubMedCrossRefGoogle Scholar
  29. Kroon, J., Souer, E., de Graaff, A., Xue, Y., Mol, J. and Koes, R. (1994) Cloning and structural analysis of the anthocyanin pigmentation locus Rt of Petunia hybrida: characterization of insertion sequences in two mutant alleles. Plant J. 5, 69–80.PubMedCrossRefGoogle Scholar
  30. Kubo, A., Arai, Y., Nagashima, S. and Yoshikawa, T. (2004) Alteration of sugar donor specificities of plant glycosyltransferases by a single point mutation. Arch. Biochem. Biophys. 429, 198–203.PubMedCrossRefGoogle Scholar
  31. Li, A. X. and Steffens, J. C. (2000) An acyltransferase catalyzing the formation of diacylglucose is a serine carboxypeptidase-like protein. Proc. Natl. Acad. Sci. USA 97, 6902–6907.PubMedCrossRefGoogle Scholar
  32. Lim, E.K. and Bowles, D.J. (2004) A class of plant glycosyltransferases involved in cellular homeostasis. EMBO J. 23, 2915–2922.PubMedCrossRefGoogle Scholar
  33. Ma, X., Koepke, J., Panjikar, S., Fritzsch, G. and Stöckigt, J. (2005) Crystal structure of vindroine synthase, the first representative of the BAHD superfamily. J. Biol. Chem. 280, 13576–13583.PubMedCrossRefGoogle Scholar
  34. Marrs, K.A., Alfenito, M.R., Lloyd, A.M. and Walbot, V. (1995) A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature 375, 397–400.PubMedCrossRefGoogle Scholar
  35. Matern, U., Reichenbach, C. and Heller, W. (1986) Efficient uptake of flavonoids into parsley (Petroselinum hortense) vacuoles requires acylated glycosides. Planta 167, 183–189.CrossRefGoogle Scholar
  36. Mathews, H., Clendennen, S.K., Caldwell, C.G., Liu, X.L., Connors, K., Matheis, N., Schuster, D.K., Menasco, D.J., Wagoner, W., Lightner, J. and Wagner, D.R. (2003) Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. Plant Cell 15, 1689–1703.PubMedCrossRefGoogle Scholar
  37. Milkowski, C. and Strack, D. (2004) Serine carboxypeptidase-like acyltransferases. Phytochemistry 65, 517–524.PubMedCrossRefGoogle Scholar
  38. Miller, K.D., Guyon, V., Evans, J.N., Shuttleworth, W.A. and Taylor, L.P. (1999) Purification, cloning, and heterologous expression of a catalytically efficient flavonol 3-O-galactosyltransferase expressed in the male gametophyte of Petunia hybrida. J. Biol. Chem. 274, 34011–34019.PubMedCrossRefGoogle Scholar
  39. Morita, Y., Hoshino, A., Kikuchi, Y., Okuhara, H., Ono, E., Tanaka, Y., Fukui, Y., Saito, N., Nitasaka, E., Noguchi, H. and Iida, S. (2005) Japanese morning glory dusky mutants displaying reddish-brown or purplish-gray flowers are deficient in a novel glycosylation enzyme for anthocyanin biosynthesis, UDP-glucose: anthocyanidin 3-O-glucoside-2’’-O-glucosyltransferase, due to 4-bp insertions in the gene. Plant J. 42, 353–363.PubMedCrossRefGoogle Scholar
  40. Mulichak, A.M., Losey, H.C., Walsh, C.T. and Garavito, R.M. (2001) Structure of the UDP-glucosyltransferase GtfB that modifies the heptapeptide aglycone in the biosynthesis of vancomycin group antibiotics. Structure 9, 547–557.PubMedCrossRefGoogle Scholar
  41. Nakajima, J., Tanaka, Y., Yamazaki, M. and Saito, K. (2001) Reaction mechanism from leucoanthocyanidin to anthocyanidin 3-glucoside, a key reaction for coloring in anthocyanin biosynthesis. J. Biol. Chem. 276, 25797–25803.PubMedCrossRefGoogle Scholar
  42. Nakajima, N., Ishihara, K., Hamada, H., Kawabe, S. and Furuya, T. (2000) Regioselective acylation of flavonoid glucoside with aromatic acid by an enzymatic reaction system from cultured cells of Ipomoea batatas. J. Biosci. Bioengin. 90, 347–349.Google Scholar
  43. Nakayama, T., Suzuki, H. and Nishino, T. (2003) Anthocyanin acyltransferases: specificities, mechanism, phylogenetics, and applications. J. Mol. Cat. B: Enzymatic. 23, 117–132.CrossRefGoogle Scholar
  44. Noda, N., Kato, N., Kogawa, K., Kazuma, K. and Suzuki M (2004) Cloning and characterization of the gene encoding anthocyanin 3’, 5’-O-glucosyltransferase involved in ternatin biosynthesis from blue petals of butterfly pea (Clitoria ternatea). Plant Cell Physiol. 45, s132.Google Scholar
  45. Noda, N., Kazuma, K., Sasaki, T., Kogawa, K. and Suzuki, M. (2006) Molecular cloning of 1-O-acylglucose dependent anthocyanin aromatic acyltransferase in ternatin biosynthesis of butterfly pea (Clitoria ternatea). Plant Cell Physiol. 47, S109.Google Scholar
  46. Offen, W., Martinez-Fleites, C., Yang, M., Kiat-Lim, E., Davis, B.G., Tarling, C.A., Ford, C.M., Bowles, D.J. and Davies, G.J. (2006) Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification. EMBO J. 25, 1396–1405.PubMedCrossRefGoogle Scholar
  47. Ogata, J., Kanno, Y., Itoh, Y., Tsugawa, H. and Suzuki, M. (2005). Plant biochemistry: anthocyanin biosynthesis in roses. Nature 435, 757–758.PubMedCrossRefGoogle Scholar
  48. Ono, E., Fukuchi-Mizutani, M., Nakamura, N., Fukui, Y., Yonekura-Sakakibara, K., Yamaguchi, M., Nakayama, T., Tanaka, T., Kusumi, T. and Tanaka, Y. (2006). Yellow flowers generated by expression of the aurone biosynthetic pathway Proc. Natl. Acad. Sci. USA 103, 11075–11080.CrossRefGoogle Scholar
  49. Page, R. (1996). TreeView: an application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12, 357–358.PubMedGoogle Scholar
  50. Quattrocchio, F., Wing, J.F., Leppen, H., Mol, J. and Koes, R.E. (1993) Regulatory genes controlling anthocyanin pigmentation are functionally conserved among plant species and have distinct sets of target genes. Plant Cell 5, 1497–1512.PubMedCrossRefGoogle Scholar
  51. Saito, N., Tatsuzawa, F., Miyoshi, K., Shigihara, A. and Honda, T. (2003) The first isolation of C-glycosylanthocyanin from the flowers of Tricyrtis formosana. Tetrahedron Lett. 44, 6821–6823.CrossRefGoogle Scholar
  52. Sawada, S., Suzuki, H., Ichimaida, F., Yamaguchi, M.A., Iwashita, T., Fukui, Y., Hemmi, H., Nishino, T. and Nakayama, T. (2005) UDP-glucuronic acid: anthocyanin glucuronosyltransferase from red daisy (Bellis perennis) flowers. Enzymology and phylogenetics of a novel glucuronosyltransferase involved in flower pigment biosynthesis. J. Biol. Chem. 280, 899–906.PubMedCrossRefGoogle Scholar
  53. Shao, H., He, X., Achnine, L., Blount, J.W., Dixon, R.A. and Wang, X. (2005) Crystal structures of a multifunctional triterpene/flavonoid glycosyltransferase from Medicago truncatula. Plant Cell 17, 3141–3154.PubMedCrossRefGoogle Scholar
  54. Suzuki, H., Nakayama, T., Yonekura-Sakakibara, K., Fukui, Y., Nakamura, N., Nakao, M., Tanaka, Y., Yamaguchi, M.-A., Kusumi, T. and Nishino, T. (2001) Malonyl-CoA:anthocyanin 5-O-glucoside-6’’’-O-malonyltransferase from scarlet sage (Salvia splendens) flowers. J. Biol. Chem. 276, 49013–49019.PubMedCrossRefGoogle Scholar
  55. Suzuki, H., Nakayama, T., Yonekura-Sakakibara, K., Fukui, Y., Nakamura, N., Yamaguchi, M.-A., Tanaka, Y., Kusumi, T. and Nishino, T. (2002) cDNA cloning, heterologous expressions, and functional characterization of malonyl-coenzyme A: anthocyanidin 3-O-glucoside-6″′-O-malonyltransferase from dahlia flowers. Plant Physiol. 130, 2142–2151.PubMedCrossRefGoogle Scholar
  56. Suzuki, H., Nakayama, T. and Nishino, T. (2003) Proposed mechanism and functional amino acid residues of malonyl-CoA: anthocyanin 5-O-glucoside-6’’’-O-malonyltransferase from flowers of Salvia splendens, a member of the versatile plant acyltransferase family. Biochemistry 42, 1764–1771.PubMedCrossRefGoogle Scholar
  57. Suzuki, H., Nakayama, T., Yamaguchi, M. and Nishino, T. (2004a) cDNA cloning and characterization of two Dendranthema x morifolium anthocyanin malonyltransferases with different functional activities. Plant Sci. 166, 89–96.CrossRefGoogle Scholar
  58. Suzuki, H., Sawada, S., Watanabe, K., Nagae, S., Yamaguchi, M.A., Nakayama, T. and Nishino, T. (2004b) Identification and characterization of a novel anthocyanin malonyltransferase from scarlet sage (Salvia splendens) flowers: an enzyme that is phylogenetically separated from other anthocyanin acyltransferases. Plant J. 38, 994–1003.CrossRefGoogle Scholar
  59. Taguchi, G., Shitchi, Y., Shirasawa, S., Yamamoto, H. and Hayashida, N. (2005) Molecular cloning, characterization, and downregulation of an acyltransferase that catalyzes the malonylation of flavonoid and naphthol glucosides in tobacco cells. Plant J. 42, 481–491.PubMedCrossRefGoogle Scholar
  60. Tanaka, Y., Yonekura, K., Fukuchi-Mizutani, M., Fukui, Y., Fujiwara, H., Ashikari, T. and Kusumi, T. (1996) Molecular and biochemical characterization of three anthocyanin synthetic enzymes from Gentiana triflora. Plant Cell Physiol. 37, 711–716.PubMedGoogle Scholar
  61. Tanaka, Y., Katsumoto, Y., Brugliera, F. and Mason, J. (2005) Genetic engineering in floriculture. Plant Cell Tissue Org. Cult. 80, 1–24.CrossRefGoogle Scholar
  62. Tanaka, Y. and Brugliera, F. (2006) Flower Colour. In: C. Ainsworth (Ed.), Flowering and Its Manipulation. Blackwell Publishing, Oxford, pp. 201–239.Google Scholar
  63. Tohge, T., Nishiyama, Y., Hirai, M.Y., Yano, M., Nakajima, J., Awazuhara, M., Inoue, E., Takahashi, H., Goodenowe, D.B., Kitayama, M., Noji, M., Yamazaki, M. and Saito, K. (2005) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J. 42, 218–235.PubMedCrossRefGoogle Scholar
  64. Unno, H., Ichimaida, F., Suzuki, H., Takahashi, S., Tanaka, Y., Saito, A., Nishino, T., Kusunoki, M., and Nakayama, T. (2007) Structural and mutational studies of anthocyanin malonyltransferases establish the features of BAHD enzyme catalysis. J. Biol. Chem. 282, 15812–15822.PubMedCrossRefGoogle Scholar
  65. Vogt, T., Grimm, R. and Strack, D. (1999) Cloning and expression of a cDNA encoding betanidin 5-O-glucosyltransferase, a betanidin- and flavonoid-specific enzyme with high homology to inducible glucosyltransferases from the Solanaceae. Plant J. 19, 509–519.PubMedCrossRefGoogle Scholar
  66. Wise, R.P., Rohde, W. and Salamini, F. (1990) Nucleotide sequence of the Bronze-1 homologous gene from Hordeum vulgare. Plant Mol. Biol. 14, 277–279.PubMedCrossRefGoogle Scholar
  67. Yamazaki, M., Gong, Z., Fukuchi-Mizutani, M., Fukui, Y., Tanaka, Y., Kusumi, T. and Saito, K. (1999) Molecular cloning and biochemical characterization of a novel anthocyanin 5-O-glucosyltransferase by mRNA differential display for plant forms regarding anthocyanin. J. Biol. Chem. 274, 7405–7411.PubMedCrossRefGoogle Scholar
  68. Yamazaki, M., Yamagishi, E., Gong, Z., Fukuchi-Mizutani, M., Fukui, Y., Tanaka, Y., Kusumi, T., Yamaguchi, M. and Saito, K. (2002) Two flavonoid glucosyltransferases from Petunia hybrida: molecular cloning, biochemical properties and developmentally regulated expression. Plant Mol. Biol. 48, 401–411.PubMedCrossRefGoogle Scholar
  69. Yonekura-Sakakibara, K., Tanaka, Y., Fukuchi-Mizutani, M., Fujiwara, H., Fukui, Y., Ashikari, T., Murakami, Y., Yamaguchi, M. and Kusumi T. (2000) Molecular and biochemical characterization of a novel hydroxycinnamoyl-CoA: anthocyanin 3-O-glucoside -6’’-O-acyltransferase from Perilla frutescens. Plant Cell Physiol. 41, 495–502.PubMedGoogle Scholar
  70. Yoshimoto, M., Okuno, S., Yamaguchi, M.-A. and Yamakawa, O. (2001) Antimutagenicity of deacylated anthocyanins in purple-fleshed sweet potato. Biosci. Biotech. Biochem. 65, 1652–1655.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Keiko Yonekura-Sakakibara
    • 1
  • Toru Nakayama
    • 2
  • Mami Yamazaki
    • 3
  • Kazuki Saito
    • 4
  1. 1.RIKEN Plant Science CenterJapan
  2. 2.Department of Biomolecular EngineeringTohoku UniversityJapan
  3. 3.Chiba UniversityGraduate School of Pharmaceutical ScienceJapan
  4. 4.RIKEN Plant Science Center/Chiba UniversityGraduate School of Pharmaceutical ScienceJapan

Personalised recommendations