Advertisement

Modifying Anthocyanin Production in Flowers

  • Kevin M. Davies
Chapter

Abstract

Anthocyanin biosynthesis is a key aspect of flower development for many angiosperms, providing one of the major influences on the choice of potential pollinators. In some species evolution has resulted in complex anthocyanin structures that provide bright flower colours, whereas in other species sophisticated combinations of pigment patterning and floral shape have developed to attract pollinators. There is now a good understanding of the molecular biology of both the genes encoding the biosynthetic enzymes for anthocyanins and copigments, and the temporal and spatial regulation of anthocyanin production. The availability of genes relating to anthocyanin biosynthesis has allowed for the molecular breeding of flower colour in several ornamental species. Since the first publication detailing the generation of new flower colours using recombinant DNA techniques (approximately 20 years ago) there have been many notable advances in the gene technologies available for genetic modification of anthocyanin biosynthesis. Transgenic carnation cultivars that produce delphinidin-derived anthocyanins and that have novel mauve-violet colours are now available commercially, and it is anticipated that these will be followed to market by many more genetically modified ornamental crops during the next 10 to 15 years.

Keywords

Flower Colour Anthocyanin Biosynthesis Anthocyanin Production Anthocyanin Biosynthetic Pathway Anthocyanin Biosynthetic Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aharoni, A., De Vos, C.H., Wein, M., Sun, Z., Greco, R., Kroon, A., Mol, J.N. and O’Connell, A.P. (2001) The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. Plant J. 28, 319–332.PubMedGoogle Scholar
  2. Aida, R., Kishimoto, S., Tanaka, Y. and Shibata, M. (2000a) Modification of flower colour in torenia (Torenia fournieri Lind.) by genetic transformation. Plant Sci. 153, 33–42.Google Scholar
  3. Aida, R., Yoshida, K., Kondo, T., Kishimoto, S. and Shibata, M. (2000b) Copigmnetation gives bluer flowers on transgenic torenia plants with the antisense dihydroflavonol-4-reductase gene. Plant Sci. 160, 49–56.Google Scholar
  4. Andersen, Ø.M. and Jordheim, M. (2006) The anthocyanins. In: Anderson, Ø.M. and Markham, K.R. (eds) Flavonoids: Chemistry, Biochemistry, and Applications, CRC Press, Boca Raton, Florida, USA, pp. 471–553.Google Scholar
  5. Angenent, G.C., Franken, J., Busscher, M., Weiss, D. and van Tunen, A.J. (1994) Co-suppression of the petunia homeotic gene fbp2 affects the identity of the generative meristem. Plant J. 5, 33–44.PubMedGoogle Scholar
  6. Arisumi, K., Sakata, Y. and Takeshita, S. (1990) The pigment constitution of R. griersonianum. Am. Rhod. Soc. J. 44, 15–17.Google Scholar
  7. Asen, S., Stewart, R.N and Norris, K.H. (1971) Co-pigmentation effect of quercetin glycosides on absorption characteristics of cyanidin glycosides and color of Red Wing azalea. Phytochemistry 10, 171–175.Google Scholar
  8. Bae, R.N., Kim, K.W., Kim, T.C. and Lee, S.K. (2006) Anatomical observations of anthocyanin rich cells in apple skins. HortScience 41, 733–736.Google Scholar
  9. Bey, M., Stuber, K., Fellenberg, K., Schwarz-Sommer, Z., Sommer, H., Saedler, H. and Zachgo, S. (2004) Characterization of antirrhinum petal development and identification of target genes of the class B MADS box gene DEFICIENS. Plant Cell 16, 3197–3215.PubMedGoogle Scholar
  10. Boase, M.R., Bradley, J.M. and Borst, N.K. (1998) Genetic transformation mediated by Agrobacterium tumefaciens of florists’ chrysanthemum (Dendranthema × grandiflorum) cultivar “Peach Margaret”. In Vitro Cell. Dev. Biol. Plant 34, 46–51.Google Scholar
  11. Boase, M.R., Lill, T.R., Rains, R.S., Lewis, D.H., Schwinn, K.E., King, I.S. and Davies, K.M. (2006) Impact of the environment on phenotypes of petunia plants carrying transgenes for flavonoid regulatory factors or the ROLC protein. In: Mercer, C.F. (ed.) 13th Australasian Plant Breeding Conference Proceedings, CD-ROM IBSN 978-0-86476-167-8. Grains Research & Development Corporation, New Zealand.Google Scholar
  12. Bohm, B.A. (1998) Introduction to Flavonoids. Harwood Academic Publishers, Amsterdam, The Netherlands.Google Scholar
  13. Borevitz, J.O., Xia, Y., Blount, J., Dixon, R.A. and Lamb, C. (2000) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12, 2383–2394.PubMedGoogle Scholar
  14. Bovy, A., de Vos, R., Kemper, M., Schijlen, E., Pertejo, M.A., Muir, S., Collins, G., Robinson, S., Verhoeyen, M., Hughes, S., Santos-Buelga, C. and van Tunen, A. (2002) High-flavonol tomatoes resulting from the heterologous expression of the maize transcription factor genes LC and C1. Plant Cell 14, 2509–2526.PubMedGoogle Scholar
  15. Bradley, J.M., Davies, K.M., Deroles, S.C., Bloor, S.J. and Lewis D.H. (1998) The maize Lc regulatory gene up-regulates the flavonoid biosynthetic pathway of Petunia. Plant J. 13, 381–392.Google Scholar
  16. Bradley, J.M., Deroles, S.C., Boase, M.R., Bloor, S., Swinny, E. and Davies, K.M. (1999) Variation in the ability of the maize Lc regulatory gene to upregulate flavonoid biosynthesis in heterologous systems. Plant Sci. 140, 31–39.Google Scholar
  17. Bradley, J.M., Rains, R.S., Manson, J.L. and Davies, K.M. (2000) Flower pattern stability in genetically modified lisianthus (Eustoma grandiflorum) under commercial growing conditions. New Zealand J. Crop Hort. Sci. 28, 175–184.Google Scholar
  18. Brouillard, R. and Dangles, O. (1993) Flavonoids and flower colour. In: Harborne, J.B. (ed.)The Flavonoids: Advances in Research Since 1986. Chapman & Hall, London, UK, pp. 565–587.Google Scholar
  19. Brugliera, F., Holton, T.A., Stevenson, T.W., Farcy, E., Lu, C.Y. and Cornish, E.C. (1994) Isolation and characterization of a cDNA clone corresponding to the Rt locus of Petunia hybrida. Plant J. 5, 81–92.PubMedGoogle Scholar
  20. Brugliera, F., Barri-Rewell, G., Holton, T.A. and Mason, J.G. (1999) Isolation and characterization of a flavonoid 3’-hydroxylase cDNA clone corresponding to the Ht1 locus of Petunia hybrida. Plant J. 19, 441–451.PubMedGoogle Scholar
  21. Burr, F.A., Burr, B., Scheffler, B.E., Blewitt, M., Wienand, U. and Matz, E.C. (1996) The maize repressor-like gene intensifier1 shares homology with the R1/B1 multigene family of transcription factors and exhibits missplicing. Plant Cell 8, 1249–1259.PubMedGoogle Scholar
  22. Carey, C.C., Strahle, J.T., Selinger, D.A. and Chandler, V.L. (2004) Mutations in the pale aleurone color1 regulatory gene of the Zea mays anthocyanin pathway have distinct phenotypes relative to the functionally similar TRANSPARENT TESTA GLABRA1 gene in Arabidopsis thaliana. Plant Cell 16, 450–464.PubMedGoogle Scholar
  23. Chen, B., Wang, X., Hu, Y., Wang, Y. and Lin, Z. (2004) Ectopic expression of a c1-I allele from maize inhibits pigment formation in the flower of transgenic tobacco. Mol. Biotech. 26, 187–192.Google Scholar
  24. Chittka, L., Shmida, A., Troje, N. and Menzel, R. (1994). Ultraviolet as a component of flower reflections, and the colour perception of Hymenoptera. Vision Res. 34, 1489–1508.PubMedGoogle Scholar
  25. Collette, V.E., Jameson, P.E., Schwinn, K.E., Umaharan, P. and Davies, K.M. (2004) Temporal and spatial expression of flavonoid biosynthetic genes in flowers of Anthurium andraeanum. Physiol. Plant. 122, 297–304.Google Scholar
  26. Courtney-Gutterson, N., Napoli, C., Lemieuz, C., Morgan, A., Firoozabady, E. and Robinson, K.E.P. (1994) Modification of flower color in florist’s chrysanthemum: production of a white-flowering variety through molecular-genetics. Biotechnology 12, 268–271.PubMedGoogle Scholar
  27. Cuttriss, A. and Pogson, B. (2004) Carotenoids. In: Davies, K. (ed.) Plant Pigments and their Manipulation. Blackwell Publishing, Oxford, UK, pp. 57–91.Google Scholar
  28. Damiani, F., Paolocci, F., Cluster, P.D., Arcioni, S., Tanner, G.J., Joseph, R.J., Li, Y.G., de Majnik, J. and Larkin, P.J. (1999) The maize transcription factor Sn alters proanthocyanidin synthesis in transgenic Lotus corniculatus plants. Aust. J. Plant Physiol. 26, 159–169.Google Scholar
  29. Davies, K.M. (2004) Important rare plant pigments. In: Davies, K.M. (ed.) Plant Pigments and their Manipulation. Annual Plant Reviews, Blackwell Press, UK, pp. 214–247.Google Scholar
  30. Davies, K.M. and Schwinn, K.E. (1997) Flower colour. In: Geneve, R.L., Preece, J.E. and Merkle, S.A. (eds) Biotechnology of Ornamental Plants. CAB International, Wallingford, UK, pp. 259–294.Google Scholar
  31. Davies, K.M. and Schwinn, K.E. (2003) Transcriptional regulation of secondary metabolism. Funct. Plant Biol. 30, 913–925.Google Scholar
  32. Davies, K.M. and Schwinn, K.E. (2006) Molecular biology and biotechnology of flavonoid biosynthesis. In: Anderson, Ø.M. and Markham, K.R. (eds) Flavonoids: Chemistry, Biochemistry, and Applications, CRC Press, Boca Raton, Florida, USA, pp. 143–218.Google Scholar
  33. Davies, K.M., Bloor, S.J., Spiller, G.B. and Deroles, S.C. (1998) Production of yellow colour in flowers: redirection of flavonoid biosynthesis in Petunia. Plant J. 13, 259–266.Google Scholar
  34. Davies, K.M., Schwinn, K.E., Deroles, S.C., Manson, D.G., Lewis, D.H., Bloor, S.J. and Bradley, J.M. (2003) Enhancing anthocyanin production by altering competition for substrate between flavonol synthase and dihydroflavonol 4-reductase. Euphytica 131, 259–268.Google Scholar
  35. Della Vedova, C.B., Lorbiecke, R., Kirsch, H., Schulte, M.B., Scheets, K., Borchert, L.M., Scheffler, B.E., Wienand, U., Cone, K.C. and Birchler, J.A. (2005) The dominant inhibitory chalcone synthase allele C2-Idf (inhibitor diffuse) from Zea mays (L.) acts via an endogenous RNA silencing mechanism. Genetics 170, 1989–2002.PubMedGoogle Scholar
  36. De Jaeger, G., Buys, E., Eeckhout, D., De Wilde, C., Jacobs, A., Kapila, J., Angenon, G., Van Montagu, M., Gerats, T. and Depicker, A. (1999) High level accumulation of single-chain variable fragments in the cytosol of transgenic Petunia hybrida. Eur. J. Biochem. 259, 426–434.PubMedGoogle Scholar
  37. de Majnik, J., Weinman, J.J., Djordjevic, M.A., Rolfe, B.G., Tanner, G.J., Joseph, R.G. and Larkin, P.J. (2000) Anthocyanin regulatory gene expression in transgenic white clover can result in an altered pattern of pigmentation. Aust. J. Plant Physiol. 27, 659–667.Google Scholar
  38. Deroles, S.C., Bradley, J.M., Schwinn, K.E., Markham, K.R., Bloor, S.J., Manson, D.G. and Davies, K.M. (1998) An antisense chalcone synthase gene leads to novel flower patterns in lisianthus (Eustoma grandiflorum). Mol. Breed. 4, 59–66.Google Scholar
  39. de Vetten, N., Quattrocchio, F., Mol, J. and Koes, R. (1997) The an11locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants, and animals. Genes Dev. 11, 1422–1434.PubMedGoogle Scholar
  40. de Vetten, N., ter Horst, J., van Schaik, H.-P., de Boer, A., Mol, J. and Koes, R. (1999) A cytochrome b5 is required for full activity of flavonoid 3’,5’-hydroxylase, a cytochrome P450 involved in the formation of blue flower colours. Proc. Natl. Acad. Sci. USA 96, 778–783.PubMedGoogle Scholar
  41. Elomaa, P., Honkanen, J., Puska, R., Seppanen, P., Helariutta, Y., Mehto, M., Kotilainen, M., Nevalainen, L. and Teeri, T.H. (1993) Agrobacterium-mediated transfer of antisense chalcone synthase cDNA to Gerbera hybrida inhibits flower pigmentation. Biotechnology 11, 508–511.Google Scholar
  42. Elomaa, P., Uimari, A., Mehto, M., Albert, V.A., Laitinen, R.A.E. and Teeri, T.H. (2003) Activation of anthocyanin biosynthesis in Gerbera hybrida (Asteraceae) suggests conserved protein-protein and protein-promoter interactions between the anciently diverged monocots and eudicots. Plant Physiol. 133, 1831–1842.PubMedGoogle Scholar
  43. Farzad, M., Griesbach, R. and Weiss, M.R. (2002) Floral color change in Viola cornuta L. (Violaceae): a model system to study regulation of anthocyanin production. Plant Sci. 162, 225–231.Google Scholar
  44. Farzad, M., Griesbach, R., Hammond, J., Weiss, M.R. and Elmendorf, H.G. (2003) Differential expression of three key anthocyanin biosynthetic genes in a color-changing flower, Viola cornuta cv. Yesterday, Today and Tomorrow. Plant Sci. 165, 1333–1342.Google Scholar
  45. Ferrario, S., Immink, R.G., Shchennikova, A., Busscher-Lange, J. and Angenent, G.C. (2003) The MADS box gene FBP2 is required for SEPALLATA function in petunia. Plant Cell 15, 914–925.PubMedGoogle Scholar
  46. Firoozabady, E., Moy, Y., Courtney-Gutterson, N. and Robinson, K. (1994) Regeneration of transgenic rose (Rosa hybrida) plants from embryogenic tissue. Biotechnology 12, 609–613.Google Scholar
  47. Fischer, R., Budde, I. and Hain, R. (1997) Stilbene synthase gene expression causes changes in flower colour and male sterility in tobacco. Plant J. 11, 489–498.Google Scholar
  48. Fischer, T.C., Halbwirth, H., Meisel, B., Stich, K. and Forkmann, G. (2003) Molecular cloning, substrate specificity of the functionally expressed dihydroflavonol 4-reductases from Malus domestica and Pyrus communis cultivars and the consequences for flavonoid metabolism. Arch. Biochem. Biophys. 412, 223–230.PubMedGoogle Scholar
  49. Forkmann, G. and Heller, W. (1999) Biosynthesis of flavonoids. In: Sankawa, U. (ed.) Comprehensive Natural Products Chemistry Volume 1: Polyketides and Other Secondary Metabolites Including Fatty Acids and their Derivatives. Elsevier, UK, pp. 713–748.Google Scholar
  50. Fraser, P.D. and Bramley, P.M. (2004) The biosynthesis and nutritional uses of carotenoids. Prog. Lipid Res. 43, 228–265.PubMedGoogle Scholar
  51. Fujiwara, H., Tanaka, Y., Yonekura-Sakakibara, K., Fukuchi-Mizutani, M., Nakao, M., Fukui, Y., Yamaguchi, M., Ashikari, T. and Kusumi, T. (1998) cDNA cloning, gene expression and subcellular localization of anthocyanin 5-aromatic acyltransferase from Gentiana triflora. Plant J. 16, 421–431.PubMedGoogle Scholar
  52. Fukada-Tanaka, S., Inagaki, Y., Yamaguchi, T., Saito, N. and Iida, S. (2000) Colour-enhancing protein in blue petals. Nature 407, 581.PubMedGoogle Scholar
  53. Fukuchi-Mizutani, M., Okuhara, H., Fukui, Y., Nakao, M., Katsumoto, Y., Yonekura-Sakakibara, K., Kusumi, T., Hase, T. and Tanaka, Y. (2003) Biochemical and molecular characterization of a novel UDP-glucose:anthocyanin 3’-O-glucosyltransferase, a key enzyme for blue anthocyanin biosynthesis, from gentian. Plant Physiol. 132, 1652–1663.PubMedGoogle Scholar
  54. Fukui, Y., Kusumi, T., Matsuda, K., Iwashita, T. and Nomoto, K. (2002) Structure of rosacyanin B, a novel pigment from the petals of Rosa hybrida. Tetrahedron Lett. 43, 2637–2639.Google Scholar
  55. Fukui, Y., Tanaka, Y., Kusumi, T., Iwashita, T. and Nomoto, K. (2003) A rationale for the shift in colour towards blue in transgenic carnation flowers expressing the flavonoid 3’,5’-hydroxylase gene. Phytochemistry 63, 15–23.PubMedGoogle Scholar
  56. Fukusaki, E., Kawasaki, K., Kajiyama, S., An, C.I., Suzuki, K., Tanaka, Y., Kobayashi, A. (2004) Flower color modulations of Torenia hybrida by downregulation of chalcone synthase genes with RNA interference. J. Biotech. 111, 229–240.Google Scholar
  57. Gebhardt, Y., Witte, S., Forkmann, G., Lukačin, R., Marten, U. and Martens, S. (2005) Molecular evolution of flavonoid dioxygenases in the family Apiaceae. Phytochemistry 66, 1273–1284.PubMedGoogle Scholar
  58. Goff, S.A., Cone, K.C. and Chandler, V.L. (1992) Functional analysis of the transcriptional activator encoded by the maize B gene: evidence for a direct functional interaction between two classes of regulatory proteins. Genes Dev. 6, 864–875.PubMedGoogle Scholar
  59. Goldsbrough, A., Tong, Y. and Yoder, J.I. (1996). Lc as a non-destructive visual reporter and transposition excision marker gene for tomato. Plant J. 9, 927–933.Google Scholar
  60. Gong, Z.Z., Yamagishi, E., Yamazaki, M. and Saito, K. (1999) A constitutively expressed Myc-like gene involved in anthocyanin biosynthesis from Perilla frutescens: molecular characterization, heterologous expression in transgenic plants and transactivation in yeast cells. Plant Mol. Biol. 41, 33–44.PubMedGoogle Scholar
  61. Gonnet, J.F. (2003) Origin of the color of Cv. rhapsody in blue rose and some other so-called “blue” roses. J. Agric. Food. Chem. 51, 4990–4994.PubMedGoogle Scholar
  62. Goodrich, J., Carpenter, R. and Coen, E.S. (1992) A common gene regulates pigmentation pattern in diverse plant species. Cell 68, 955–964.PubMedGoogle Scholar
  63. Gorton, H.L. and Vogelmann, T.C. (1996) Effects of epidermal cell shape and pigmentation on optical properties of Antirrhinum petals at visible and ultraviolet wavelengths. Plant Physiol 112, 879–888.PubMedGoogle Scholar
  64. Goto, T. and Kondo, T. (1991) Structure and molecular stacking of anthocyanins – flower color variation. Angew. Chem. Int. Ed. Eng. 30, 17–33.Google Scholar
  65. Goto, T., Takase, S. and Kondo, T. (1978) PMR spectra of natural acylated anthocyanins. Determination of stereostructure of awobanin, shisonin and violanin, Tetrahedron Lett. 2413–2416.Google Scholar
  66. Griesbach, R.J. (1993) Characterization of the flavonoids from Petunia xhybrida flowers expressing the A1 gene of Zea mays. HortScience 28, 659–660.Google Scholar
  67. Grotewold, E. (2006) The genetics and biochemistry of floral pigments. Annu. Rev. Plant Biol. 57, 761–780.Google Scholar
  68. Gutterson, N. (1995) Anthocyanin biosynthetic genes and their application to flower colour modification through sense suppression. HortScience 30, 964–966.Google Scholar
  69. Halbwirth, H. and Stich, K. (2006) An NADPH and FAD dependent enzyme catalyzes hydroxylation of flavonoids in position 8. Phytochemistry 67, 1080–1087.PubMedGoogle Scholar
  70. Halbwirth, H., Martens, S., Wienand, U., Forkmann, G. and Stich, K. (2003) Biochemical formation of anthocyanins in silk tissue of Zea mays. Plant Sci. 164, 489–495.Google Scholar
  71. Heller, W. and Forkmann, G. (1994) Biosynthesis of flavonoids. In: Harborne, J.B. (ed.) The Flavonoids: Advances in research since 1986. Chapman & Hall, London, pp. 499–535.Google Scholar
  72. Hiratsu, K., Matsui, K., Koyama, T. and Ohme-Takagi, M. (2003) Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. Plant J. 34, 733–739.PubMedGoogle Scholar
  73. Holton, T.A., Brugliera, F., Lester, D.R., Tanaka, Y., Hyland, C.D., Menting, J.G.T., Lu, C.-Y., Farcy, E., Stevenson, T.W. and Cornish, E.C. (1993a) Cloning and expression of cytochrome P450 genes controlling flower colour. Nature 366, 276–279.Google Scholar
  74. Holton, T.A., Cornish, E.C. and Tanaka, Y. (1993b) Cloning and expression of flavonol synthase from Petunia hybrida. Plant J. 4, 1003–1010.Google Scholar
  75. Ibrahim, R.K. and Muzac, I. (2000) The methyltransferase gene superfamily: a tree with multiple branches. In: Romeo, J.T., Ibrahim, R., Varin, L. and De Luca, V. (eds) Evolution of Metabolic Pathways. Elsevier Science Ltd, Oxford, UK, pp. 349–384.Google Scholar
  76. Jin, H., Cominelli, E., Bailey, P., Parr, A., Mehrtens, F., Jones, J., Tonelli, C., Weisshaar, B. and Martin, C. (2000) Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis.EMBO J. 19, 6150–6161.PubMedGoogle Scholar
  77. Johnson, E.T., Yi, H., Shin, B., Oh, B.-J., Cheong, H. and Choi, G. (1999) Cymbidium hybrida dihydroflavonol 4-reductase does not efficiently reduce dihydrokaempferol to produce orange pelargonidin-type anthocyanins. Plant J. 19, 81–85.PubMedGoogle Scholar
  78. Jorgensen, R. (1995) Cosuppression, flower color patterns, and metastable gene expression states. Science 268, 686–691.PubMedGoogle Scholar
  79. Jorgensen, R.A., Que, Q.D. and Napoli, C.A. (2002) Maternally-controlled ovule abortion results from cosuppression of dihydroflavonol-4-reductase or flavonoid-3’,5’-hydroxylase genes in Petunia hybrida. Funct. Plant Biol. 29, 1501–1506.Google Scholar
  80. Joung, J.Y., Kasthuri, G.M., Park J.Y., Kang, W.J., Kim, H.S., Yoon, B.S., Joung, H. and Jeon, J.H. (2003) An overexpression of chalcone reductase of Pueraria montana var. lobata alters biosynthesis of anthocyanin and 5’-deoxyflavonoids in transgenic tobacco. Biochem. Biophys. Res. Comm. 303, 326–331.PubMedGoogle Scholar
  81. Koseki, M., Goto, K., Masuta, C. and Kanazawa, A. (2005) The star-type color pattern in Petunia hybrida “Red Star” flowers is induced by sequence-specific degradation of chalcone synthase RNA. Plant Cell Physiol. 46, 1879–1883.PubMedGoogle Scholar
  82. Kroon, J., Souer, E., de Graaff, A., Xue, Y., Mol, J. and Koes, R. (1994) Cloning and structural analysis of the anthocyanin pigmentation locus Rt of Petunia hybrida: characterization of insertion sequences in two mutant alleles. Plant J. 5, 69–80.PubMedGoogle Scholar
  83. Latunde-Dada, A.O., Cabello-Hurtado, F., Czittrich, N., Didierjean, L., Schopfer, C., Hertkorn, N., Werck-Reichhart, D. and Ebel, J. (2001) Flavonoid 6-hydroxylase from soybean (Glycine max L.), a novel plant P-450 monooxygenase. J. Biol. Chem. 276, 1688–1695.PubMedGoogle Scholar
  84. Li, S.J., Deng, X.M., Mao, H.Z. and Hong, Y. (2005) Enhanced anthocyanin synthesis in foliage plant Caladium bicolor. Plant Cell Rep. 23, 716–720.PubMedGoogle Scholar
  85. Liu, D., Galli, M. and Crawford, N.M. (2001) Engineering variegated floral patterns in tobacco plants using the arabidopsis transposable element Tag1. Plant Cell Physiol. 42, 419–423.PubMedGoogle Scholar
  86. Lloyd, A.M., Walbot, V. and Davis, R.W. (1992) Arabidopsis and Nicotiana anthocyanin production activated by maize regulators R and C1. Science 258, 1773–1775.PubMedGoogle Scholar
  87. Lo, S.C. and Nicholson, R.L. (1998) Reduction of light-induced anthocyanin accumulation in inoculated sorghum mesocotyls. Implications for a compensatory role in the defense response. Plant Physiol. 116, 979–989.PubMedGoogle Scholar
  88. Lu, C.Y., Chandler, S.F., Mason, J.G. and Brugliera, F. (2003) Florigene flowers: from laboratory to market. In: Vasil, I.K. (ed.)Plant Biotechnology 2002 and Beyond. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 333–336.Google Scholar
  89. Ludwig, S.R., Bowen, B., Beach, L. and Wessler, S.R. (1990) A regulatory gene as a novel visible marker for maize transformation. Science 24, 449–450.Google Scholar
  90. Markham, K.R., Gould, K.S., Winefield, C.S., Mitchell, K.A., Bloor, S.J. and Boase, M.R. (2000) Anthocyanic vacuolar inclusions - their nature and significance in flower colouration. Phytochemistry 55, 327–336.PubMedGoogle Scholar
  91. Markham, K.R., Bloor, S.J., Nicholson, R., Rivera, R., Shemluck, M., Kevan, P.G. and Michener, C. (2004) Black flower coloration in wild Lisianthius nigrescens: its chemistry and ecological consequences. Z. Naturforsch. 59, 625–630.Google Scholar
  92. Marles, M.A., Ray, H. and Gruber, M.Y. (2003) New perspectives on proanthocyanidin biochemistry and molecular regulation. Phytochemistry 64, 367–383.PubMedGoogle Scholar
  93. Marrs, K.A., Alfenito, M.R., Lloyd, A.M. and Walbot, V. (1995) A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature 375, 397–400.PubMedGoogle Scholar
  94. Mathews, H., Clendennen, S.K., Caldwell, C.G., Liu, X.L., Connors, K., Matheis, N., Schuster, D.K., Menasco, D.J., Wagoner, W., Lightner, J. and Wagner, D.R. (2003) Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. Plant Cell 15, 1689–1703.PubMedGoogle Scholar
  95. Matsui, K., Tanaka, H. and Ohme-Takagi, M. (2004) Suppression of the biosynthesis of proanthocyanidin in Arabidopsis by a chimeric PAP1 repressor. Plant Biotech. J. 2, 487–493.Google Scholar
  96. Meng, X. and Wang, X. (2004) Regulation of flower development and anthocyanin accumulation in Gerbera hybrida. J. Hort. Sci. Biotech. 79, 131–137.Google Scholar
  97. Meyer, P. (1991) Engineering of novel flower colours. In: Harding, J., Singh, F. and Mol, J.N.M. (eds) Genetics and Breeding of Ornamental Species. Kluwer Academic Publishers, Dordrecht, The Netherlands pp. 285–307.Google Scholar
  98. Meyer, P., Heidmann, I., Forkmann, G. and Saedler, H. (1987) A new petunia flower colour generated by transformation of a mutant with a maize gene. Nature 330, 677–678.PubMedGoogle Scholar
  99. Millar, A.A. and Gubler F. (2005) The arabidopsis GAMYB-Like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell 17, 705–721.PubMedGoogle Scholar
  100. Mooney, M., Desnos, T., Harrison, K., Jones, J., Carpenter, R. and Coen, E. (1995) Altered regulation of tomato and tobacco pigmentation genes caused by the delila gene of Antirrhinum. Plant J. 7, 333–339.Google Scholar
  101. Morita, Y., Hoshino, A., Kikuchi, Y., Okuhara, H., Ono, E., Tanaka, Y., Fukui, Y., Saito, N., Nitasaka, E., Noguchi, H. and Iida, S. (2005) Japanese morning glory dusky mutants displaying reddish-brown or purplish-gray flowers are deficient in a novel glycosylation enzyme for anthocyanin biosynthesis, UDP-glucose:anthocyanidin 3-O-glucoside-2”-O-glucosyltransferase, due to 4-bp insertions in the gene. Plant J. 42, 353–63.PubMedGoogle Scholar
  102. Nakajima, J.-I., Sato, Y., Hoshino, T., Yamazaki, M. and Saito, K. (2006) Mechanistic study on the oxidation of anthocyanidin synthase by quantum mechanical calculation. J. Biol. Chem. 281, 21387–21398.PubMedGoogle Scholar
  103. Nakamura, N., Fukuchi-Mizutani, M., Miyazaki, K., Suzuki, K. and Tanaka, Y. (2006) RNAi suppression of the anthocyanidin synthase gene in Torenia hybrida yields white flowers with higher frequency and better stability than antisense and sense suppression. Plant Biotech. 23, 13–17.Google Scholar
  104. Nakayama, T., Yonekura-Sakakibara, K., Sato, T., Kikuchi, S., Fukui, Y., Fukuchi-Mizutani, M., Ueda, T., Nakao, M., Tanaka, Y., Kusumi, T. and Nishino, T. (2000) Aureusidin synthase: a polyphenol oxidase homolog responsible for flower coloration. Science 290, 1163–1166.PubMedGoogle Scholar
  105. Nakayama, T., Suzuki, H. and Nishino, T. (2003) Anthocyanin acyltransferases: specificities, mechanism, phylogenetics, and applications. J. Mol. Cat. 23, 117–132.Google Scholar
  106. Napoli, C., Lemieux, C. and Jorgensen, R. (1990) Introduction of a chimeric chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2, 279–289.PubMedGoogle Scholar
  107. Nielsen, K.M., Deroles, S.C., Markham, K.R., Bradley, J.M., Podivinsky, E. and Manson, D. (2002) Antisense flavonol synthase alters copigmentation and flower color in lisianthus. Mol. Breed. 9, 217–229.Google Scholar
  108. Nishihara, M., Nakatsuka, T., Mishiba, K., Kikuchi, A. and Yamamura, S. (2003) Flower color modification by suppression of chalcone synthase gene in gentian. Plant Cell Physiol. 44s1, 59.Google Scholar
  109. Nishihara, M., Nakatsuka, T. and Yamamura, S. (2006) Flavonoid components and flower color change in transgenic tobacco plants by suppression of chalcone isomerase gene. FEBS Lett. 579, 6074–6078.Google Scholar
  110. Noda, K.-I., Glover, B.J., Linstead, P. and Martin, C. (1994) Flower colour intensity depends on specialized cell shape controlled by a Myb-related transcription factor. Nature 369, 661–664.PubMedGoogle Scholar
  111. Noda, N., Kato, N., Kogawa, K., Kazuma, K. and Suzuki, M. (2004) Cloning and characterization of the gene encoding anthocyanin 3’,5’-O-glucosyltransferase involved in ternatin biosynthesis from blue petals of butterfly pea (Clitoria ternatea). Plant Cell Physiol. 45s1, 32.Google Scholar
  112. Nozue, M., Kubo, H., Nishimura, M., Katou, A., Hattori, C., Usuda, N., Nagata, T., Yasuda, H. (1993) Characterization of intravacuolar pigmented structures in anthocyanin-containing cells of sweet-potato suspension-cultures. Plant Cell Physiol. 34, 803–808.Google Scholar
  113. Okinaka, Y., Shimada, Y., Nakano-Shimada, R., Ohbayashi, M., Kiyokawa, S. and Kikuchi, Y. (2003) Selective accumulation of delphinidin derivatives in tobacco using a putative flavonoid 3’,5’-hydroxylase cDNA from Campanula medium. BioSci. Biotech. Biochem. 67, 161–165.Google Scholar
  114. Ogata, J., Kanno, Y., Itoh, Y., Tsugawa, H. and Suzuki, M. (2005) Plant biochemistry: anthocyanin biosynthesis in roses. Nature 435, 757–758.PubMedGoogle Scholar
  115. Ono, E., Fukuchi-Mizutani, M., Nakamura, N., Fukui, Y., Yonekura-Sakakibara, K., Yamaguchi, M., Nakayama, T., Tanaka, T., Kusumi, T. and Tanaka, Y. (2006a) Yellow flowers generated by expression of the aurone biosynthetic pathway. Proc. Natl. Acad. Sci. USA 103, 11075–11080.Google Scholar
  116. Ono, E., Hatayama, M., Isono, Y., Sato, T., Watanabe, R., Yonekura-Sakakibara, K., Fukuchi-Mizutani, F., Tanaka, Y., Kusumi, T., Nishino T. and Nakayama, T. (2006b) Localization of a flavonoid biosynthetic polyphenol oxidase in vacuoles. Plant J. 45, 133–143.Google Scholar
  117. Park, K.-I., Choi, J.-D., Hoshino, A., Morita, Y. and Iida, S. (2004) An intragenic tandem duplication in a transcriptional regulatory gene for anthocyanin biosynthesis confers pale-colored flowers and seeds with fine spots in Ipomoea tricolor. Plant J. 38, 840–849.PubMedGoogle Scholar
  118. Paxton, R.J. and Tengo, J. (2001) Doubly duped males: the sweet and sour of the orchid’s bouquet. Trends Ecol. Evol. 16, 167–169.PubMedGoogle Scholar
  119. Payne, C.T., Zhang, F. and Lloyd, A.M. (2000) GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1. Genetics, 156, 1349–1362.PubMedGoogle Scholar
  120. Paz-Ares, J., Peterson, P.A. and Saedler, H. (1990) Molecular analysis of the C1–I allele from Zea mays: a dominant mutant of the regulatory C1 locus. EMBO J. 9, 315–321.PubMedGoogle Scholar
  121. Polashock, J.J., Griesbach, R.J., Sullivan, R.F. and Vorsa, N. (2002) Cloning of a cDNA encoding the cranberry dihydroflavonol-4-reductase (DFR) and expression in transgenic tobacco. Plant Sci. 163, 241–251.Google Scholar
  122. Quattrocchio, F., Wing, J., van der Woude, K., Souer, E., de Vetten, N., Mol, J. and Koes, R. (1999) Molecular analysis of the anthocyanin2 gene of petunia and its role in the evolution of flower color. Plant Cell 11, 1433–1444.PubMedGoogle Scholar
  123. Ramsay, N.A., Walker, A.R., Mooney, M. and Gray, J.C. (2003) Two basic-helix-loop-helix genes (MYC-146 and GL3) from Arabidopsis can activate anthocyanin biosynthesis in a white-flowered Matthiola incana mutant. Plant Molecular Biology, 52, 679–688.Google Scholar
  124. Ray, H., Yu, M., Auser, P., Blahut-Beatty, L., McKersie, B., Bowley, S., Westcott, N., Coulman, B., Lloyd, A. and Gruber, M.Y. (2003) Expression of anthocyanins and proanthocyanidins after transformation of alfalfa with maize Lc. Plant Physiol. 132, 1448–1463.PubMedGoogle Scholar
  125. Rosati, C., Cadic, A., Duron, M., Renou, J.P. and Simoneau, P. (1997) Molecular cloning and expression analysis of dihydroflavonol 4-reductase gene in flower-organs of Forsythia x intermedia. Plant Mol. Biol. 35, 303–311.PubMedGoogle Scholar
  126. Rosati, C., Simoneau, P., Treutter, D., Poupard, P., Cadot, Y., Cadic, A. and Duron, M. (2003) Engineering of flower colour in forsythia by expression of two independently-transformed dihydroflavonol 4-reductase and anthocyanidin synthase genes of flavonoid pathway. Mol. Breed. 12, 197–208.Google Scholar
  127. Sainz, M.B., Grotewold, E. and Chandler, V.L. (1997) Evidence for direct activation of an anthocyanin promoter by the maize C1 protein and comparison of DNA binding by related Myb domain proteins. Plant Cell 9, 611–625.PubMedGoogle Scholar
  128. Saito, N., Yokoi, M., Ogawa, M., Kamijo, M. and Honda, T. (1988) 6-Hydroxyanthocyanidin glycosides in the flowers of Alstroemeria. Phytochemistry 27, 1399–1401.Google Scholar
  129. Santos, M.O., Crosby, W.L. and Winkel, B.S.J. (2004) Modulation of flavonoid metabolism in Arabidopsis using a phage-derived antibody. Mol. Breed. 13, 333–343.Google Scholar
  130. Schwinn, K.E. and Davies, K.M. (2004) Flavonoids. In: Davies, K. (ed.) Plant Pigments and their Manipulation. Blackwell Publishing, Oxford, UK, pp. 92–149.Google Scholar
  131. Schwinn, K.E., Davies, K.M., Deroles, S.C., Markham, K., Miller, R.M., Bradley, M., Manson, D.G. and Given, N.K. (1997) Expression of an Antirrhinum majus UDP-glucose:flavonoid-3-O-glucosyltransferase transgene alters flavonoid glycosylation and acylation in lisianthus (Eustoma grandiflorum Grise.). Plant Sci. 125, 53–61.Google Scholar
  132. Schwinn, K., Venail, J., Shang, Y., Mackay, S., Alm, V., Butelli, E., Oyama, R., Bailey, P., Davies, K. and Martin, C. (2006) A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. Plant Cell 18, 831–851.PubMedGoogle Scholar
  133. Seitz, C., Eder, C., Deiml, B., Kellner, S., Martens, S. and Forkmann, G. (2006) Cloning, functional identification and sequence analysis of flavonoid 3’-hydroxylase and flavonoid 3’,5’-hydroxylase cDNAs reveals independent evolution of flavonoid 3’,5’-hydroxylase in the Asteraceae family. Plant Mol. Biol. 61, 365–381.PubMedGoogle Scholar
  134. Shimada, Y., Nakano-Shimada, R., Ohbayashi, M., Okinaka, Y., Kiyokawa, S. and Kikuchi, Y. (1999) Expression of chimeric P450 genes encoding flavonoid-3’,5’-hydroxylase in transgenic tobacco and petunia plants. FEBS Lett. 461, 241–245.PubMedGoogle Scholar
  135. Shimada, Y., Ohbayashi, M., Nakano-Shimada, R., Okinaka, Y., Kiyokawa, S. and Kikuchi, Y. (2001) Genetic engineering of the anthocyanin biosynthetic pathway with flavonoid-3’,5’-hydroxylase: specific switching of the pathway in petunia. Plant Cell Rep. 20, 456–462.Google Scholar
  136. Shiono, M., Matsugaki, N. and Takeda, K. (2005) Structure of the blue cornflower pigment. Nature 436, 791.PubMedGoogle Scholar
  137. Sompornpailin, K., Makita, Y., Yamazaki, M. and Saito, K. (2002) A WD-repeat-containing putative regulatory protein in anthocyanin biosynthesis in Perilla frutescens. Plant Molecular Biology, 50, 485–495.PubMedGoogle Scholar
  138. Spelt, C., Quattrocchio, F., Mol, J.N.M. and Koes, R. (2000) Anthocyanin1 of petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes. Plant Cell 12, 1619–1631.PubMedGoogle Scholar
  139. Spelt, C., Quattrocchio, F., Mol, J. and Koes, R. (2002) ANTHOCYANIN1 of petunia controls pigment synthesis, vacuolar pH, and seed coat development by genetically distinct mechanisms. Plant Cell 14, 2121–2135.PubMedGoogle Scholar
  140. Springob, K., Nakajima, J., Yamazaki, M. and Saito, K. (2003) Recent advances in the biosynthesis and accumulation of anthocyanins. Nat. Prod. Rep. 20, 288–303.PubMedGoogle Scholar
  141. Strack, D., Vogt, T. and Schliemann, W. (2003) Recent advances in betalain research. Phytochemistry 62, 247–269.PubMedGoogle Scholar
  142. Suzuki, K., Xue, H., Tanaka, Y., Fukui, Y., Fukuchi-Mizutani, M., Katsumoto, Y., Tsuda, S. and Kusumi, T. (2000) Flower color modifications of Torenia hybrida by cosuppression of anthocyanin biosynthesis genes. Mol. Breed. 6, 239–246.Google Scholar
  143. Suzuki, H., Nakayama, T., Yonekura-Sakakibara, K., Fukui, Y., Nakamura, N., Yamaguchi, M., Tanaka, Y., Kusumi, T. and Nishino, T. (2002) cDNA cloning, heterologous expressions, and functional characterization of malonyl-coenzyme A:anthocyanidin 3-O-glucoside-6”-O-malonyltransferase from dahlia flowers. Plant Physiol. 130, 2142–2151.PubMedGoogle Scholar
  144. Suzuki, H., Sawada, K., Yonekura-Sakakibara, K., Nakayama, T., Yamaguchi, M.-A. and Nishino, T. (2003) Identification of a cDNA encoding malonyl-coenzyme A:anthocyanidin 3-O-glucoside-6”-O-malonyltransferase from cineraria (Senecio cruentus) flowers. Plant Biotech. 20, 229–234.Google Scholar
  145. Tanaka, Y., Fukui, Y., Fukuchi-Mizutani, M., Holton, T.A., Higgins, E. and Kusumi, T. (1995) Molecular cloning and characterization of Rosa hybrida dihydroflavonol 4-reductase gene. Plant Cell Physiol. 36, 1023–1031.PubMedGoogle Scholar
  146. Tanaka, Y., Tsuda, S. and Kusumi, T. (1998) Metabolic engineering to modify flower color. Plant Cell Physiol. 39, 1119–1126.Google Scholar
  147. Tanaka, Y., Katsumoto, Y., Brugliera, F. and Mason, J. (2005) Genetic engineering in floriculture. Plant Cell Tissue Organ Cult. 80, 1–24.Google Scholar
  148. Tatsuzawa, F., Murata, N., Shinoda, K., Suzuki, R. and Saito, N. (2003) Flower colors and anthocyanin pigments in 45 cultivars of Alstroemeria L. J. Jap. Soc. Hort. Sci. 72, 243–251.Google Scholar
  149. Taylor, L.P. and Jorgensen, R. (1992) Conditional male fertility in chalcone synthase-deficient petunia. J. Heredity 83, 11–17.Google Scholar
  150. Tsuda, S., Fukui, Y., Nakamura, N., Katsumoto, Y., Yonekura-Sakakibara, K., Fukuchi-Mizutani, M., Ohira, K., Ueyama, Y., Ohkawa, H., Holton, T.A., Kusumi, T. and Tanaka, Y. (2004) Flower color modification of Petunia hybrida commercial varieties by metabolic engineering. Plant Biotech. 21, 377–386.Google Scholar
  151. Ueyama, Y., Suzuki, K., Fukuchi-Mizutani, M., Fukui, Y., Miyazaki, K., Ohkawa, H., Kusumi, T. and Tanaka, Y. (2002) Molecular and biochemical characterization of torenia flavonoid 3’-hydroxylase and flavone synthase II and modification of flower color by modulating the expression of these genes. Plant Sci. 163, 253–263.Google Scholar
  152. Ueyama, Y., Katsumoto, Y., Fukui, Y., Fukuchi-Mizutani, M., Ohkawa, H., Kusumi, T., Iwashita, T. and Tanaka, Y. (2006) Molecular characterization of the flavonoid biosynthetic pathway and flower color modification of Nierembergia sp. Plant Biotech. 23, 19–24.Google Scholar
  153. van der Krol, A.R., Lenting, P.E., Veenstra, J.G., van der Meer, I.M., Koes, R.E., Gerats, A.G.M., Mol, J.N.M. and Stuitje, A.R. (1988) An antisense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature 333, 866–869.Google Scholar
  154. van der Krol, A.R., Mur, L.A., Beld, M., Mol, J.N.M. and Stuitje, A.R. (1990a) Flavonoid genes in petunia: addition of a limited number of additional copies may lead to a suppression of gene activity. Plant Cell 2, 291–299.Google Scholar
  155. van der Krol, A.R., Mur, L.A., Delange, P., Gerats, A.G.M., Mol, J.N.M. and Stuitje, A.R. (1990b) Antisense chalcone synthase genes in Petunia – visualization of variable transgene expression. Mol. Gen. Genet. 22, 204–212.Google Scholar
  156. Vogt, T. (2000) Glycosyltransferases involved in plant secondary metabolism. In: Romeo, J.T., Ibrahim, R., Varin, L. and De Luca, V. (eds)Evolution of Metabolic Pathways. Elsevier Science Ltd, Oxford, UK, pp. 317–347.Google Scholar
  157. Vom Endt, D., Kijne, J.W. and Memelink, J. (2002) Transcription factors controlling plant secondary metabolism: what regulates the regulators? Phytochemistry 61, 107–114.PubMedGoogle Scholar
  158. Walker, A.R., Davison, P.A., Bolognesi-Winfield, A.C., James, C.M., Srinivasan, N., Blundell, T.L., Esch, J.J., Marks, M.D. and Gray, J.C. (1999) The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell 11, 1337–1350.PubMedGoogle Scholar
  159. Weiss, M.R. (1995) Floral colour change: a widespread functional convergence. Am. J. Bot. 82, 167–185.Google Scholar
  160. Weiss, D. (2000) Regulation of flower pigmentation and growth: multiple signaling pathways control anthocyanin synthesis in expanding petals. Physiol. Plant. 110, 152–157.Google Scholar
  161. Wellmann, F., Griesser, M., Schwab, W., Martens, S., Eisenreich, W., Matern, U. and Lukacin, R. (2006) Anthocyanidin synthase from Gerbera hybrida catalyzes the conversion of (+)-catechin to cyanidin and a novel procyanidin. FEBS Lett. 580, 1642–1648.PubMedGoogle Scholar
  162. Wilmouth, R.C., Turnbull, J.J., Welford, R.W., Clifton, I.J., Prescott, A.G. and Schofield, C.J. (2002) Structure and mechanism of anthocyanidin synthase from Arabidopsis thaliana. Structure 10, 93.PubMedGoogle Scholar
  163. Winefield, C. (2002) The final steps in anthocyanin formation: a story of modification and sequestration. Adv. Bot. Res. 37, 55–74.Google Scholar
  164. Winefield, C.S., Lewis, D.H., Swinny, E.E., Zhang, H., Arathoon, H.S., Fischer, T.C., Halbwirth, H., Stich, K., Gosch, C., Forkmann, G. and Davies, K.M. (2005) Investigation of 3-deoxyanthocyanin biosynthesis in Sinningia cardinalis. Physiol. Plant. 124, 419–430.Google Scholar
  165. Xie, D.-Y., Sharma, S.B., Pavia, N.L., Ferreira, D. and Dixon, R.A. (2003) Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299, 396–399.PubMedGoogle Scholar
  166. Yamaguchi, T., Fukada-Tanaka, S., Inagaki, Y., Saito, N., Yonekura-Sakakibara, K., Tanaka, Y., Kusumi, T. and Iida, S. (2001) Genes encoding the vacuolar Na+/H+ exchanger and flower coloration. Plant Cell Physiol. 42, 451–461.PubMedGoogle Scholar
  167. Yamazaki, M., Gong, Z., Fukuchi-Mizutani, M., Fukui, Y., Tanaka, Y., Kusumi, T. and Saito, K. (1999) Molecular cloning and biochemical characterization of a novel anthocyanin 5-O-glucosyltransferase by mRNA differential display for plant forms regarding anthocyanin. J. Biol. Chem. 274, 7405–7511.PubMedGoogle Scholar
  168. Yamazaki, M., Yamagishi, E., Gong, Z., Fukuchi-Mizutani, M., Fukui, Y., Tanaka, Y., Kusumi, T., Yamaguchi, T. and Saito, K. (2002) Two flavonoid glucosyltransferases from Petunia hybrida: molecular cloning, biochemical properties and developmentally regulated expression. Plant Mol. Biol. 48, 401–411.PubMedGoogle Scholar
  169. Zimmermann, I.M., Heim, M.A., Weisshaar, B. and Uhrig, J.F. (2004) Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins. Plant J. 40, 22–34.PubMedGoogle Scholar
  170. Zuker, A., Tzfira, T., Ben-Meir, H., Ovadis, M., Schklarman, E., Itzhaki, H., Forkmann, G., Martens, S., Neta-Sharir, I., Weiss, D. and Vainstein, A. (2002) Modification of flower colour and fragrance by antisense suppression of the flavanone 3-hydroxylase gene. Mol. Breed. 9, 33–41.Google Scholar
  171. Zrÿd, J-.P. and Christinet, L. (2004) Betalains. In: Davies, K. (ed.) Plant Pigments and their Manipulation. Blackwell Publishing, Oxford, UK, pp. 185–213.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.New Zealand Institute for Crop & Food Research LtdPrivate Bag 11600New Zealand

Personalised recommendations