Anthocyanins pp 306-323 | Cite as

Interactions Between Flavonoids that Benefit Human Health

  • Mary Ann Lila


Interactions between anthocyanin pigments and other flavonoids or other phytochemicals accumulating within a plant contribute significantly to the ability of natural plant extracts (ingested as food or pharmaceutical product) to protect human health or mitigate disease damage. Interactions are the rule, rather than the exception, for biologically-active plant-derived components. Given the complex, multi-faceted roles interacting phytochemicals play in the human body, the use of plant cell culture production and research models can contribute novel insights as to competing mechanisms of action, bioavailability, and distribution in situ.


Plant Cell Culture Grape Seed Extract Anthocyanin Pigment Human Prostate Cancer Cell Line Natural Mixture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Center for Complementary and Alternative Medicine-sponsored Purdue-UAB Botanicals Center for Dietary Supplement Research (P50 AT-00477) and the USDA/IFAFS grant #00-52101-9695.


  1. Allred, C.D., Ju, Y.H., Allred, K.E., Change, J. and Helferich, W.G. (2001) Dietary genistin stimulates growth of estrogen-dependent breast cancer tumors similar to that observed with genistein. Carcinogenesis 22, 1667–1673PubMedCrossRefGoogle Scholar
  2. Allred, C.D., Allred, K.E., Ju, Y.H., Virant, S.M. and Helferich, W.G. (2004) Dietary genistein results in larger MNU-induced, estrogen-dependent mammary tumors following ovarioectomy of Sprague-Dawley rats. Carcinogenesis 25, 211–218.PubMedCrossRefGoogle Scholar
  3. Aparico-Fernandez, X., Yousef, G., Loarca-Pina, G., de Mejia, E. and Lila, M. (2005) Characterization of polyphenolics in the seed coat of black Jamapa bean (Phaseolus vulgaris. L.). J. Ag. Food Chem. 53, 4615–4622.CrossRefGoogle Scholar
  4. Aparico-Fernandez, X., Garcia-Gasca, X., Yousef, G., Lila, M., de Mejia, E. and Loarca-Pina, G. (2006) Chemopreventive activity of polyphenolics from black Jamapa bean (Phaseolus vulgaris L.) on HeLa and HaCaT cells. J. Ag. Food Chem. 54, 2118–2122.CrossRefGoogle Scholar
  5. Aviram, M., Dornfeld, L., Rosenblat, M., Volkova, N., Kaplan, M., Coleman, R., Hayek, T., Presser, D. and Fuhrman, B. (2000) Pomegranate juice consumption reduces oxidative stress, atherogenic modifications to LDL, and platelet aggregation: studies in humans and in atherosclerotic apolipoprotein E-deficient mice. Am. J. Clin. Nutr. 71, 1062–1076.PubMedGoogle Scholar
  6. Aviram, M., Dornfeld, L., Kaplan, M., Coleman, R., Gaitini, D., Nitecki, S., Hofman, A., Rosenblat, M., Volkova, N., Presser, D., Attias, J., Hayek, T. and Fuhrman B. (2002) Pomegranate juice flavonoids inhibit low-density lipoprotein oxidation and cardiovascular diseases: Studies in atherosclerotic mice and in humans. Drugs Exp. Clin. Res. 28, 40–62.Google Scholar
  7. Boileau, T.W., Liao, Z., Kim, S., Lemeshow, S., Erdman, J.W. Jr., Clinton, D.K. (2003) Prostate carcinogenesis in N-methyl-N-nitrosourea (NMU)-testosterone-treated rats fed tomato powder, lycopene, or energy-restricted diets. J. Nat. Cancer Inst. 95, 1578–1586.PubMedGoogle Scholar
  8. Brinker, A., Ma, J., Lipsky, P.E. and Raskin, I. (2007) Medicinal chemistry and pharmacology of genusTripterygium (Celastraceae). Phytochemistry (In Press).Google Scholar
  9. Campbell, J., King, J., Harmston, M., Lila, M.A. and Erdman, J.W. Jr. (2006a) Synergistic effects of flavonoids on cell proliferation in Hepa-1c1c7 and LNCap cancer cell lines. J. Food Sci. 71, S358-S363.CrossRefGoogle Scholar
  10. Campbell, J., Lila, M.A., Nakamura, M. and Erdman, J. Jr. (2006b). Serum testosterone reduction following short-term phytofluene, lycopene, or tomato powder consumption in F344 rats. J. Nutr. 136, 2813–2819.Google Scholar
  11. Canen-Adams, K., Lindshield, B., Wang, S., Jeffery, E., Clinton, S.K. and Erdman, J.W. Jr. (2007) Combinations of tomato and broccoli enhance antitumor activity in Dunning R3327-H prostate adenocarcinomas. Cancer Res. 67, 836–843.CrossRefGoogle Scholar
  12. Chan, M., Mattiacci, J., Hwang, H., Shah, A. and Fong, D. (2000) Synergy between ethanol and grape polyphenols, quercetin, and resveratrol, in the inhibition of the inducible nitric oxide synthase pathway. Biochem. Pharmacol. 60, 1539–1548.PubMedCrossRefGoogle Scholar
  13. Chen, L., Yang, X., Jiao, H. and Zhao, B. (2002) Tea catechins protect against lead-induce cytotoxicity, lipid peroxidation, and membrane fluidity in HepG2 cells. Toxicol. Sci. 69, 149–156.PubMedCrossRefGoogle Scholar
  14. Eder, M. and Mehnert, W. (1998) Bedeutung planzlicher begleitstoffe in extrackten. Pharmazie 53, 285–293.PubMedGoogle Scholar
  15. Elattar, T. and Virji, A. (1999) The effect of red wine and its components on growth and proliferation of human oral squamous carcinoma cells. Anticancer Res. 19, 5407–5414.PubMedGoogle Scholar
  16. Fang, Y., Smith, M.A., Rogers, R. and Pépin, M.-F. (1999) The effects of exogenous methyl jasmonate in elicited anthocyanin-producing cell cultures of ohelo (Vaccinium pahalae). In Vitro Cell. Devel. Biol. Plant 35, 106–113.CrossRefGoogle Scholar
  17. Franke, A., Cooney R., Custer L., Mordan, L. and Tanaka, Y. (1998) Inhibition of neoplastic transformation and bioavailability of dietary flavonoid agents Adv. Exp. Med. Biol. 439, 237–248.Google Scholar
  18. Gartner, C., Stahl W. and Sies, H. (1997) Lycopene is more bioavailable from tomato paste than from fresh tomatoes. Am J. Clin. Nutri. 66, 116–122.Google Scholar
  19. Gould, K. (2004) Nature’s Swiss army knife. The diverse protective roles of anthocyanins in leaves. J. Biomed. Biotech. 5, 314–320.CrossRefGoogle Scholar
  20. Grusak, M., Rogers, R., Yousef, G., Erdman, J. Jr. and Lila, M. (2004) An enclosed-chamber labeling system for the safe14C-enrichment of phytochemicals in plant cell suspension cultures. In Vitro Cell. Devel. Biol. – Plant 40, 80–85.CrossRefGoogle Scholar
  21. Honda, K. (1990) Identification of host-plant chemicals stimulating oviposition by swallowtail butterfly,Papilio protenor. J. Chem. Ecol. 16, 325–337.CrossRefGoogle Scholar
  22. Honda, K., Nishii, W. and Hayashi, N. (1997) Oviposition stimulants for sulfur butterfly,Colias erate poliographys: cyanoglucosides as synergists involved in host preference. J. Chem. Ecol. 23, 323–331.CrossRefGoogle Scholar
  23. Hora, J., Maydew, E., Lansky, E. and Dwivedi C. (2003) Chemopreventive effects of pomegranate seed oil on skin tumor development in CD1 mice. J Med Food 6, 157–161.PubMedCrossRefGoogle Scholar
  24. Janle, E., Lila, M., Wood, L., Higgins, A., Yousef, G, Rogers, R., Kim, H., Jackson, G. and Weaver, C. (2007) Kinetics and tissue distribution of14C labeled grape polyphenol fractions. FASEB J. 21, A1070-a-.Google Scholar
  25. Jo, J.Y. (2005) Characterization, interaction, and chemoprevention of potent constituents from grape cell culture. PhD thesis dissertation, University of Illinois.Google Scholar
  26. Jo, J.Y., de Mejia, E. and Lila, M.A. (2005) Effects of grape cell culture extracts on human topoisomerase II catalytic activity and characterization of active fractions. J. Agric. Food Chem. 53, 2489–2498.PubMedCrossRefGoogle Scholar
  27. Jo, J.Y., de Mejia, E. and Lila, M. (2006a). Catalytic inhibition of human DNA topoisomerase II by interactions of grape cell culture polyphenols. J. Agric. Food Chem. 54, 2083–2087.CrossRefGoogle Scholar
  28. Jo, J.Y., de Mejia, E. and Lila, M. (2006b) Cytotoxicity of bioactive polymeric fractions from grape cell culture on human hepatocellular carcinoma, murine leukemia, and non-cancerous PK15 kidney cells. Food Chem. Toxicol. 44, 1758–1767.CrossRefGoogle Scholar
  29. Joseph, J., Shukitt-Hale, B., Denisova, N., Bielinski, D., Martin, A., McEwen, J. and Bickford, P. (1999) Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation. J. Neurosci. 19, 8114–8121.PubMedGoogle Scholar
  30. Kraft, T.F.B., Schmidt, B., Knight, C., Cuendet, M., Kang, Y-H., Pezzuto, J., Seigler, D. and Lila, M. (2005) Chemopreventive potential of wild blueberry fruits in multiple stages of carcinogenesis. J. Food Sci. 70, S159–S166.CrossRefGoogle Scholar
  31. Krisa, S., Waffo Téguo, P., Decendit, A., Deffleux, G., Vercauteren, J. and Mérillon, J. (1999) Production of13C-labeled anthocyanins byVitis viniferacell suspension cultures. Phytochemistry 51, 651–656.PubMedCrossRefGoogle Scholar
  32. Kroon, P., Clifford, M., Crozier, A., Day, A., Donovan, J., Manach, C. and Williamson, G. (2004) How should we assess the effects of exposure to dietary polyphenols in vitro? Am. J. Clin. Nutr. 80, 15–21.PubMedGoogle Scholar
  33. Lansky E., Jiang, W., Mo, H., Bravo, L., Froom, P., Yu, W., Harris, N., Neeman, I. and Campbell, M. (2005) Possible synergistic prostate cancer suppression by anatomically discrete pomegranate fractions. Investigational New Drugs 23, 11–20.PubMedCrossRefGoogle Scholar
  34. Lila, M.A. (2004) Anthocyanins and human health: anin vitro investigative approach. J. Biomed. Biotech. 5, 306–313.CrossRefGoogle Scholar
  35. Lila, M., Yousef, G., Jiang, Y. and Weaver, C. (2005) Sorting out bioactivity in flavonoid mixtures. J. Nutr. 135, 1231–1235.PubMedGoogle Scholar
  36. Lila, M.A. and Raskin, I. (2005) Health-related interactions of phytochemicals. J. Food Sci. 7, R20–R27.CrossRefGoogle Scholar
  37. Liu, R. (2003) Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am. J. Clin. Nutr. 78, 517S–520S.PubMedGoogle Scholar
  38. Matito, C., Mastorakou, F., Centelles, J., Torres, J. and Cascante, M. (2003) Antiproliferative effect of antioxidant polyphenols from grape in murine Hepa-1c1c7. Eur. J. Nutr. 42, 43–49.PubMedCrossRefGoogle Scholar
  39. Mertens-Talcott S., Bomser, J., Romero, C., Talcott, S. and Percival S. (2005) Ellagic acid potentiates the effect of quercetin on p21waf1 / cip1 , p53, and MAP-kinanses without affecting intracellular generation of reactive oxygen species in vitro. J Nutr. 135, 609–614.PubMedGoogle Scholar
  40. Mertens-Talcott S., Talcott, S. and Percival S. (2003) Low concentrations of quercetin and ellagic acid synergistically influence proliferation, cytotoxicity and apoptosis in MOLT-4 human leukemia cells. J. Nutr. 133, 2669–2674.PubMedGoogle Scholar
  41. Meyer, J., Pépin, M.-F. and Smith, M. (2002) Anthocyanin production fromVaccinium pahalae: limitations of the physical microenvironment. J. Biotech. 93, 45–57.CrossRefGoogle Scholar
  42. Miller, E., Biovannucci, E., Erdman Jr., J., Bahnson, R., Schwartz, S. and Clinton, S. (2002) Tomato products, lycopene, and prostate cancer risk. Urol. Clin. North Am. 29, 83–93.PubMedCrossRefGoogle Scholar
  43. Mouria, M., Gukovskaya, A., Jung. Y., Buechler, P., Hines, O., Reber, H. and Pandol, S. (2002) Food-derived polyphenols inhibit pancreatic cancer growth through mitochondrial cytochrome C release and apoptosis. Int. J. Cancer 98, 761–769.PubMedCrossRefGoogle Scholar
  44. Mullen, W., Graf, B., Caldwell, S., Hartley, R., Duthie, G., Edwards, C., Lean, M. and Crozier, A. (2002) Determination of flavonol metabolites in plasma and tissue of rats by HPLC radiocounting and tandem mass spectroscopy following oral ingestion of [2-14C] quercetin-4’-glucoside. J. Ag Food Chem. 50, 6902–6909.CrossRefGoogle Scholar
  45. Nishida, R., Ohsugi, T. and Fukami, H. (1990) Oviposition stimulant activity of tryptamine analogs on a Rutaceae-feeding swallowtail butterfly,Papilio xuthus. Agric. Biol. Chem. 54, 1853–1855.Google Scholar
  46. Nishida, S. and Satoh, H. (2004) Comparative vasodilating actions amoung terpenoids and flavonoids contained inGinkgo biloba. Clinica Chimica Acta 339, 129–133.CrossRefGoogle Scholar
  47. Pignatelli, P., Pulcinelli, F., Celestini, A., Lenti, L., Ghiselli, A., Gazzaniga, P. and Viola, F. (2000) The flavonoids quercetin and catechin synergistically inhibit platelet function by antagonizing the intracellular production of hydrogen peroxide. Am J. Clin. Nutr. 72, 1150–1155.PubMedGoogle Scholar
  48. Reyes-Carmona, J., Yousef, G., Martínez-Peniche, R. and Lila, M. (2005) Antioxidant capacity of fruit extracts of blackberry (Rubus sp.) produced in different climatic regions. J. Food Sci. 70, S497-S503.CrossRefGoogle Scholar
  49. Schmidt, B., Howell, A., McEniry, B., Knight, C., Seigler, D., Erdman Jr., J. and Lila, M. (2004) Effective isolation of potent antiproliferation and antiadhesion components from wild blueberry (Vaccinium angustifolium Ait.) fruits. J. Ag. Food Chem. 52, 6433–6442.CrossRefGoogle Scholar
  50. Schmidt, B., Erdman Jr., J. and Lila, M.A. (2005) Effects of food processing on blueberry antiproliferative and antioxidant activity. J. Food Sci. 70, S389–S394.CrossRefGoogle Scholar
  51. Schmidt, B.M, Erdman Jr., J. and Lila, M. (2006) Differential effects of blueberry proanthocyanidins on androgen sensitive and insensitive human prostate cancer cell lines. Cancer Lett. 231, 240–246.PubMedCrossRefGoogle Scholar
  52. Seeram, N.P., Adams, L.S., Hardy, M.I. and Heber, D. (2004) Total cranberry extract versus its phytochemical constituents: antiproliferative and synergistic effects against human tumor cell lines. J. Agric. Food Chem. 52, 2512–2517.PubMedCrossRefGoogle Scholar
  53. Shanmuganayagam, D., Beahm, M., Osman, H., Krueger, C., Reed, J. and Folts, J. (2002) Grape seed and grape skin extracts elicit a greater antiplatelet effect when used in combination than when used individually in dogs and humans. J. Nutr. 132, 3592–3598.PubMedGoogle Scholar
  54. Sueiro, L, Yousef, G., Seigler, D., de Mejia, E., Grace, M. and Lila, M.A. (2006) Chemopreventive potential of flavonoid extracts from plantation-bred and wildAronia melanocarpa (Black chokeberry) fruits. J. Food Sci. 71, C480-C488.CrossRefGoogle Scholar
  55. Thole, J., Kraft, T., Sueiro, L., Kang, Y.-H., Gills, J., Cuendet, M., Pezzuto, J., Seigler, D. and Lila, M.A. (2006) A comparative evaluation of the anticancer properties of European and American elderberry fruits. J. Med. Food 9, 498–504.PubMedCrossRefGoogle Scholar
  56. Vitrac, X.; Desmouliere, A.; Brouillaud, B.; Krisa, S.; Deffieux, G.; Barthe, N.; Rosenbaum, J.; Mérillon, J. M. (2003) Distribution of [C-14] - trans-resveratrol, a cancer chemopreventive polyphenol, in mouse tissues after oral administration. Life Sci. 72, 2219–2233.PubMedCrossRefGoogle Scholar
  57. Vitrac, X., Krisa, S., Decendit, A., Vercauteren, J., Nührich, A., Monti, J.-P., Deffieux, G. and Mérillon, J.-M. (2002) Carbon-14 biolabelling of wine polyphenols inVitis vinifera cell suspension cultures. J. Biotech. 95, 49–56.CrossRefGoogle Scholar
  58. Ye, X., Krohn, R., Liu, W., Joshi, S., Kuszynski, C., McGinn, T., Bagchi, M., Preuss, H., Stohs, S. and Bagchi, D. (1999) The cytotoxic effects of a novel IH636 grape seed proanthocyanidin extract on cultured human cancer cells. Mol. Cell. Biochem. 196, 99–108.PubMedCrossRefGoogle Scholar
  59. Yousef, G., Seigler, D., Grusak, M., Rogers, R., Knight, C., Kraft, T., Erdman Jr., J.and Lila, M. (2004) Biosynthesis and characterization of14C-enriched flavonoid fractions from plant cell suspension cultures. J. Agric. Food Chem. 52, 1138–1145.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Natural Resources & Environmental SciencesUniversity of IllinoisIllinois

Personalised recommendations