Advertisement

Cochlear Implants

  • Fan-Gang ZengEmail author
  • Stephen Rebscher
  • William V. Harrison
  • Xiaoan Sun
  • Haihong Feng
Chapter
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

The cochlear implant has not only provided partial hearing to more than 120,000 persons worldwide but also served as a model for successful academic and industrial collaboration. The present chapter reviews the development of modern cochlear implants and the dynamic interactions between academia and industry. The chapter takes a system approach to the cochlear implant system design and specifications. The design goals, principles, and methods of the subsystem components are identified from the external speech processor and radio frequency transmission link to the internal receiver, stimulator, and electrode arrays. Safety and reliability issues are considered in the context of the system design and the regulatory requirements. Future directions are discussed with regard to the expanded role of the cochlear implant in treatment of hearing impairment and in development of other neural prostheses.

Keywords

Cochlear Implants Auditory Brainstem Implant Back Telemetry Multiple Current Sources Scala Tympani 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Part of the materials presented here are from a comprehensive review paper by the same authors (IEEE Review on Biomedical Engineering, 2008). The authors thank Abby Copeland for proofreading the manuscript. The preparation of this manuscript was supported in part by the National Institutes of Health, US Department of Health & Human Services (RO1-DC002267, RO1-DC008858, P30-DC008369, and HHS-N-263-2007-00054-C), The Chinese Academy of Sciences Pilot Project of the Knowledge Innovation Program (KGCX2-YX-607), and The Key Technologies R&D Program of Ministry of Science and Technology of the People’s Republic of China (No.2008BAI50B08).

References

  1. 1.
    House WF, Urban J (1973) Long term results of electrode implantation and electronic stimulation of the cochlea in man. Ann Otol Rhinol Laryngol 82:504–517.Google Scholar
  2. 2.
    Simmons FB, Epley JM, Lummis RC, et al. (1965) Auditory nerve: Electrical stimulation in man. Science 148:104–106.CrossRefGoogle Scholar
  3. 3.
    White RL (1982) Review of Current Status of Cochlear Prostheses. IEEE Trans Biomed Eng BME 29:233–238.CrossRefGoogle Scholar
  4. 4.
    Michelson RP (1971) Electrical stimulation of the human cochlea. Arch Otolaryngol 93:317–323.CrossRefGoogle Scholar
  5. 5.
    Eddington DK, Dobelle WH, Brackmann DE, et al. (1978) Auditory prosthesis research with multiple channel intracochlear stimulation in man. Ann Otol Rhinol Laryngol 87:1–39.Google Scholar
  6. 6.
    Eddington DK (1980) Speech discrimination in deaf subjects with cochlear implants. J Acoust Soc Am 68:885–891.CrossRefGoogle Scholar
  7. 7.
    Wilson BS, Lawson DT, Finley CC, et al. (1991) Coding strategies for multichannel cochlear prostheses. Am J Otol 12 Suppl:56–61.Google Scholar
  8. 8.
    Zeng FG, Shannon RV (1994) Loudness-coding mechanisms inferred from electric stimulation of the human auditory system. Science 264:564–566.CrossRefGoogle Scholar
  9. 9.
    Dorman MF, Soli S, Dankowski K, et al. (1990) Acoustic cues for consonant identification by patients who use the Ineraid cochlear implant. J Acoust Soc Am 88:2074–2079.CrossRefGoogle Scholar
  10. 10.
    Shannon RV (1992) Temporal modulation transfer functions in patients with cochlear implants. J Acoust Soc Am 91:2156–2164.CrossRefGoogle Scholar
  11. 11.
    Hochmair-Desoyer IJ, Hochmair ES, Burian K, et al. (1981) Four years of experience with cochlear prostheses. Med Prog Technol 8:107–119.Google Scholar
  12. 12.
    Chouard CH (1980) The surgical rehabilitation of total deafness with the multichannel cochlear implant. Indications and results. Audiology 19:137–145.CrossRefGoogle Scholar
  13. 13.
    An SK, Park SI, Jun SB, et al. (2007) Design for a simplified cochlear implant system. IEEE Trans Biomed Eng 54:973–982.CrossRefGoogle Scholar
  14. 14.
    James CJ, Skinner MW, Martin LF, et al. (2003) An investigation of input level range for the nucleus 24 cochlear implant system: Speech perception performance, program preference, and loudness comfort ratings. Ear Hear 24:157–174.CrossRefGoogle Scholar
  15. 15.
    Spahr AJ, Dorman MF, Loiselle LH (2007) Performance of patients using different cochlear implant systems: Effects of input dynamic range. Ear Hear 28:260–275.CrossRefGoogle Scholar
  16. 16.
    Zeng FG, Grant G, Niparko J, et al. (2002) Speech dynamic range and its effect on cochlear implant performance. J Acoust Soc Am 111:377–386.CrossRefGoogle Scholar
  17. 17.
    Zeng FG (2002) Temporal pitch in electric hearing. Hear Res 174:101–106.CrossRefGoogle Scholar
  18. 18.
    Green T, Faulkner A, Rosen S (2004) Enhancing temporal cues to voice pitch in continuous interleaved sampling cochlear implants. J Acoust Soc Am 116:2298–2310.CrossRefGoogle Scholar
  19. 19.
    Laneau J, Wouters J, Moonen M (2004) Relative contributions of temporal and place pitch cues to fundamental frequency discrimination in cochlear implantees. J Acoust Soc Am 116:3606–3619.CrossRefGoogle Scholar
  20. 20.
    Wilson BS, Finley CC, Lawson DT, et al. (1991) Better speech recognition with cochlear implants. Nature 352:236–238.CrossRefGoogle Scholar
  21. 21.
    Patrick JF, Busby PA, Gibson PJ (2006) The development of the Nucleus Freedom Cochlear implant system. Trends Amplif 10:175–200.CrossRefGoogle Scholar
  22. 22.
    Zeng FG, Shannon RV (1992) Loudness balance between electric and acoustic stimulation. Hear Res 60:231–235.CrossRefGoogle Scholar
  23. 23.
    Wilson BS, Finley CC, Farmer JC, Jr. et al. (1988) Comparative studies of speech processing strategies for cochlear implants. Laryngoscope 98:1069–1077.CrossRefGoogle Scholar
  24. 24.
    McDermott HJ, McKay CM, Vandali AE (1992) A new portable sound processor for the University of Melbourne/Nucleus Limited multielectrode cochlear implant. J Acoust Soc Am 91:3367–3371.CrossRefGoogle Scholar
  25. 25.
    Nogueira W, Buchner A, Lenarz T, et al. (2005) A psychoacoustic “NofM”-Type speech coding strategy for cochlear implants. EURASIP J Appl Signal Processing 2005:3044–3059.Google Scholar
  26. 26.
    Crosby PA, Daly CN, Money DK, et al. (1985) Cochlear implant system for an auditory prosthesis. United States Patent 4532930: Commonwealth of Australia Dept. of Science & Technology (Belconnan AU).Google Scholar
  27. 27.
    Hochmair IJ, Hochmair ES (1991) Transcutaneous power and signal transmission system and methods for increased signal transmission efficiency. United States Patent 5070535.Google Scholar
  28. 28.
    Zierhofer CM, Hochmair ES (1996) Geometric approach for coupling enhancement of magnetically coupled coils. Biomed Eng, IEEE Trans 43:708–714.CrossRefGoogle Scholar
  29. 29.
    Shannon RV, Adams DD, Ferrel RL, et al. (1990) A computer interface for psychophysical and speech research with the Nucleus cochlear implant. J Acoust Soc Am 87:905–907.CrossRefGoogle Scholar
  30. 30.
    Robert ME, Wygonski J (2002) House Ear Institute Nucleus Research Interface (HEINRI) Users Guide. Los Angeles, CA: House Ear Institute.Google Scholar
  31. 31.
    Daly CN, McDermott H (1998) Embedded data link and protocol. United States Patent 5741314.Google Scholar
  32. 32.
    Vandali AE, Whitford LA, Plant KL, et al. (2000) Speech perception as a function of electrical stimulation rate: Using the Nucleus 24 cochlear implant system. Ear Hear 21:608–624.CrossRefGoogle Scholar
  33. 33.
    Friesen LM, Shannon RV, Cruz RJ (2005) Effects of stimulation rate on speech recognition with cochlear implants. Audiol Neurootol 10:169–184.CrossRefGoogle Scholar
  34. 34.
    Plant K, Holden L, Skinner M, et al. (2007) Clinical evaluation of higher stimulation rates in the nucleus research platform 8 system. Ear Hear 28:381–393.CrossRefGoogle Scholar
  35. 35.
    Zierhofer CM (2003) Multichannel cochlear implant with neural response telemetry. United States Patent 6600955: Med-El Elektromedizinishe Geraete GmbH (Innsbruck AT).Google Scholar
  36. 36.
    Schulman JH, Whitmoyer DI, Gord JC, et al. (1997) Multichannel cochlear implant system including wearable speech processor. United States Patent 5603726: Alfred E. Mann Foundation For Scientific Research (Sylmar CA).Google Scholar
  37. 37.
    McDermott H (1989) An advanced multiple channel cochlear implant. IEEE Trans Biomed Eng 36:789–797.CrossRefGoogle Scholar
  38. 38.
    Shannon RV (1992) A model of safe levels for electrical stimulation. IEEE Trans Biomed Eng 39:424–426.CrossRefGoogle Scholar
  39. 39.
    McCreery DB, Agnew WF, Yuen TG, et al. (1990) Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation. IEEE Trans Biomed Eng 37:996–1001.CrossRefGoogle Scholar
  40. 40.
    Huang CQ, Shepherd RK, Carter PM, et al. (1999) Electrical stimulation of the auditory nerve: Direct current measurement in vivo. IEEE Trans Biomed Eng 46:461–470.CrossRefGoogle Scholar
  41. 41.
    Huang CQ, Shepherd RK, Seligman PM, et al. (1998) Reduction in excitability of the auditory nerve following acute electrical stimulation at high stimulus rates: III. Capacitive versus non-capacitive coupling of the stimulating electrodes. Hear Res 116:55–64.CrossRefGoogle Scholar
  42. 42.
    Ghovanloo M, Najafi K (2005) A compact large voltage-compliance high output-impedance programmable current source for implantable microstimulators. IEEE Trans Biomed Eng 52:97–105.CrossRefGoogle Scholar
  43. 43.
    Gord JC (2001) Programmable current output stimulus stage for implantable device. United States Patent 6181969: Advanced Bionics Corporation (Sylmar CA).Google Scholar
  44. 44.
    Money D (2001) High compliance output stage for a tissue stimulator. United States Patent 6289246: Cochlear Pty. Ltd. (Lane Cove AU).Google Scholar
  45. 45.
    Karunasiri RT (2006) Digitally controlled RF amplifier with wide dynamic range output. United States Patent 7016738: Advanced Bionics Corporation (Valencia CA US).Google Scholar
  46. 46.
    Baumann U, Nobbe A (2006) The cochlear implant electrode-pitch function. Hear Res 213:34–42.CrossRefGoogle Scholar
  47. 47.
    Gani M, Valentini G, Sigrist A, et al. (2007) Implications of deep electrode insertion on cochlear implant fitting. JARO 8:69–83.CrossRefGoogle Scholar
  48. 48.
    Wardrop P, Whinney D, Rebscher SJ, et al. (2005) A temporal bone study of insertion trauma and intracochlear position of cochlear implant electrodes. I: Comparison of Nucleus banded and Nucleus Contour electrodes. Hear Res 203:54–67.CrossRefGoogle Scholar
  49. 49.
    Wardrop P, Whinney D, Rebscher SJ, et al. (2005) A temporal bone study of insertion trauma and intracochlear position of cochlear implant electrodes. II: Comparison of Spiral Clarion and HiFocus II electrodes. Hear Res 203:68–79.CrossRefGoogle Scholar
  50. 50.
    Welling DB, Hinojosa R, Gantz B, et al. (1993) Insertional trauma of multichannel cochlear implants. Laryngoscope 103:995–1001.CrossRefGoogle Scholar
  51. 51.
    Tykocinski M, Saunders E, Cohen LT, et al. (2001) The contour electrode array: Safety study and initial patient trials of a new perimodiolar design. Otol Neurotol 22:33–41.CrossRefGoogle Scholar
  52. 52.
    Shepherd RK, Clark GM, Pyman BC, et al. (1985) Banded intracochlear electrode array: Evaluation of insertion trauma in human temporal bones. Ann Otol Rhinol Laryngol 94:55–59.Google Scholar
  53. 53.
    Richter B, Aschendorff A, Lohnstein P, et al. (2001) The nucleus contour electrode array: A radiological and histological study. Laryngoscope 111:508–513.CrossRefGoogle Scholar
  54. 54.
    Richter B, Aschendorff A, Lohnstein P, et al. (2002) Clarion 1.2 standard electrode array with partial space-filling positioner: Radiological and histological evaluation in human temporal bones. J Laryngol Otol 116:507–513.CrossRefGoogle Scholar
  55. 55.
    Nadol JB, Shiao JY, Burgess BJ, et al. (2001) Histopathology of cochlear implants in humans. Ann Otol Rhinol Laryngol 110:883–891.Google Scholar
  56. 56.
    Eshraghi AA, Yang NW, Balkany TJ (2003) Comparative study of cochlear damage with three perimodiolar electrode designs. Laryngoscope 113:415–419.CrossRefGoogle Scholar
  57. 57.
    Eshraghi AA (2006) Prevention of cochlear implant electrode damage. Curr Opin Otolaryngol Head Neck Surg 14:323–328.CrossRefGoogle Scholar
  58. 58.
    Aschendorff A, Klenzner T, Richter B, et al. (2003) Evaluation of the HiFocus™ electrode array with positioner in human temporal bones. J Laryngol Otol 117:527–531.CrossRefGoogle Scholar
  59. 59.
    Adunka O, Kiefer J (2006) Impact of electrode insertion depth on intracochlear trauma. Otolaryngol Head Neck Surg 135:374–382.CrossRefGoogle Scholar
  60. 60.
    Adunka O, Unkelbach M, Mack M, et al. (2004) Cochlear implantation via the round window minimizes trauma to cochlear structures: A histologically controlled study. Acta Otolaryngol 124:807–812.CrossRefGoogle Scholar
  61. 61.
    Marsh MA, Coker NJ, Jenkins HA (1992) Temporal bone histopathology of a patient with a nucleus 22-Channel cochlear implant. Am J Otol 13:241–248.Google Scholar
  62. 62.
    Fayad J, Linthicum FH, Otto SR, et al. (1991) Cochlear implants: Histopathologic findings related to performance in 16 human temporal bones. Ann Otol Rhinol Laryngol 100:807–811.Google Scholar
  63. 63.
    Fayad JN, Luxford W, Linthicum FH (2000) The clarion electrode positioner: Temporal bone studies. Am J Otol 21:226–229.CrossRefGoogle Scholar
  64. 64.
    Roland JT (2005) A model for cochlear implant electrode insertion and force evaluation: Results with a new electrode design and insertion technique. Laryngoscope 115:1325–1339.CrossRefGoogle Scholar
  65. 65.
    Roland JT, Fishman AJ, Alexiades G, et al. (2000) Electrode to Modiolus proximity: A flouroscopic and histologic analysis. Am J Otol 21:218–225.CrossRefGoogle Scholar
  66. 66.
    Gstoettner W, Plenk H, Franz P, et al. (1997) Cochlear implant deep electrode insertion: Extent of insertional truama. Acta Otolaryngol 117:274–277.CrossRefGoogle Scholar
  67. 67.
    Ketten DR, Skinner MW, Wang G, et al. (1998) In vivo meaures of cochlear length and insertion depth of nucleus cochlear implant electrode arrays. Ann Otol Rhinol 107:1–16.Google Scholar
  68. 68.
    Skinner M, Ketten D, Holden L, et al. (2002) CT-derived estimation of cochlear morphology and electrode array position in relation to word recognition in Nucleus-22 recipients. J Assoc Res Otolaryngol 3:332–350.CrossRefGoogle Scholar
  69. 69.
    Skinner MW, Ketten DR, Vannier MW, et al. (1994) Determination of the position of nucleus cochlear implant electrodes in the inner ear. Am J Otol 15:644–651.Google Scholar
  70. 70.
    Nadol JB (1990) Degeneration of cochlear neurons as seen in the spiral ganglion of man. Hear Res 49:141–154.CrossRefGoogle Scholar
  71. 71.
    Nadol JB (1984) Histological considerations in implant patients. Arch Otolaryngol 110:160–163.CrossRefGoogle Scholar
  72. 72.
    Finley CC, Wilson BS, White MW (1987) A finite-element model of bipolar field patterns in the electrically stimulated cochlea – A two dimensional approximation. IEEE – Ninth Ann Conf Eng Med Biol Soc 1901–1903.Google Scholar
  73. 73.
    Finley CC (1989) A finite-element model of radial bipolar field patterns in the electrically stimulated cochlea – Two and three dimensional approximations and tissue sensitivities. IEEE – 11th Ann Int Conf Eng Med Biol Soc 1059–1060.Google Scholar
  74. 74.
    Finley CC, Wilson BS, White MW (1989) Models of Neural Responsiveness to Electrical Stimulation. In: Spellman FA, (Ed.), Cochlear Implants: Models of the Electrically Stimulated Ear. New York: Springer-Verlag.Google Scholar
  75. 75.
    Finley CC, Wilson BS, White MW (1990) Models of neural responsiveness to electrical stimulation. In: J.M. Miller and F.A. Spelman (Eds.), Cochlear Implants: Models of the Electrically Stimulated Ear. New York: Springer-Verlag, pp. 55–96.Google Scholar
  76. 76.
    Frijns JHM, Snoo SLd, Schoonhoven R (1995) Potential distributions and neural excitation patterns in a rotationally symmetric model of the electrically stimulated cochlea. Hear Res 87:170–186.CrossRefGoogle Scholar
  77. 77.
    Frijns JHM, Snoo SLd, Kate JHt (1996) Spatial selectivity in a rotationally symmetric model of the electrically stimulated cochlea. Hear Res 95:33–48.CrossRefGoogle Scholar
  78. 78.
    Snyder RL, Bierer JA, Middlebrooks JC (2004) Topographic spread of inferior colliculus activation in response to acoustic and intracochlear electric stimulation. J Assoc Res Otolaryngol 5:305–322.CrossRefGoogle Scholar
  79. 79.
    Snyder RL, Rebscher SJ, Cao K, et al. (1990) Chronic intracochlear electrical stimulation in the neonatally deafened cat. I. expansion of central representation. Hear Res 50:7–33.CrossRefGoogle Scholar
  80. 80.
    Shepherd RK, Hatsushika S, Clark GM (1993) Electrical stimulation of the audtitory nerve: The effect of electrode position on neural excitation. Hear Res 66:108–120.CrossRefGoogle Scholar
  81. 81.
    Rebscher SJ, Snyder RL, Leake PA (2001) The effect of electrode configuration and duration of deafness on threshold and selectivity of responses to intracochlear electrical stimulation. J Acoust Soc Am 109:2035–2048.CrossRefGoogle Scholar
  82. 82.
    Pfingst BE, Morris DJ, Miller AL (1995) Effects of electrode configuration on threshold functions for electrical stimulation of the cochlea. Hear Res 85:76–84.CrossRefGoogle Scholar
  83. 83.
    Snyder R, Middlebrooks J, Bonham B (2008) Cochlear implant electrode configuration effects on activation threshold and tonotopic selectivity. Hear Res 235:23–38.CrossRefGoogle Scholar
  84. 84.
    Cords SM, Reuter G, Issing PR, et al. (2000) A silastic positioner for a modiolus-hugging position of intracochlear electrodes: Electrophysiologic effects. Am J Otol 21:212–217.CrossRefGoogle Scholar
  85. 85.
    Stover T, Issing P, Graurock G, et al. (2005) Evaluation of the advance off-stylet insertion technique and the cochlear insertion tool in temporal bones. Otol Neurotol 26:1161–1170.CrossRefGoogle Scholar
  86. 86.
    Wright CG, Roland PS, Kuzma J (2005) Advanced bionics thin lateral and helix II electrodes: A temporal bone study. Laryngoscope 115:2041–2045.CrossRefGoogle Scholar
  87. 87.
    Gstoettner W, Franz P, Hamzavi J, et al. (1999) Intracochlear Position of Cochlear Implant Electrodes. Acta Otolaryngol 119(2):229–233.Google Scholar
  88. 88.
    Tykocinski M, Cohen LT, Pyman BC, et al. (2000) Comparison of electrode position in the human cohclea using various perimodiolar electrode arrays. Am J Otol 21:205–211.CrossRefGoogle Scholar
  89. 89.
    Rebscher S, Hetherington A, Bonham B, et al. (2008) Considerations for design of future cochlear implant electrode arrays: Electrode array stiffness, size and depth of insertion. J Rehab Res Dev 45:731–747.Google Scholar
  90. 90.
    Rebscher SJ, Heilmann M, Bruszewski W, et al. (1999) Strategies to improve electrode positioning and safety in cochlear implants. IEEE Trans Biomed Eng 46:340–352.CrossRefGoogle Scholar
  91. 91.
    Fu QJ, Shannon RV (1999) Effects of electrode configuration and frequency allocation on vowel recognition with the Nucleus-22 cochlear implant. Ear Hear 20:332–344.CrossRefGoogle Scholar
  92. 92.
    Fu QJ, Shannon RV, Galvin J (2002) Perceptual learning following changes in the frequency-to-electrode assignment with the Nucleus-22 cochlear implants. J Acoust Soc Am 112:1664–1674.CrossRefGoogle Scholar
  93. 93.
    Oxenham AJ, Bernstein JGW, Penagos H (2004) Correct tonotopic representation is necessary for complex pitch perception. Proc Nat Acad Sci 101(5):1421–1425.CrossRefGoogle Scholar
  94. 94.
    Baskent D, Shannon R (2003) Speech recognition under conditions of frequency-place compression and expansion. J Acoust Soc Am 113(4):2064–2076.CrossRefGoogle Scholar
  95. 95.
    Baskent D, Shannon R (2004) Frequency-place compression and expansion in cochlear implant listeners. J Acoust Soc Am 116:3130–3140.CrossRefGoogle Scholar
  96. 96.
    Baskent D, Shannon R (2005) Interactions between cochlear implant electrode insertion depth and frequency-place mapping. J Acoust Soc Am 117:1405–1416.CrossRefGoogle Scholar
  97. 97.
    Escude B, James C, Deguine O, et al. (2006) The size of the cochlea and predictions of insertion depth angles for cochlear implant electrodes. Aud Neurotol 11(suppl 1):27–33.CrossRefGoogle Scholar
  98. 98.
    Aschendorff A, Kubalek R, Turowsi B (2005) Quality control after cochlear implant surgery by means of rotational tomography. Otol Neurotol 26:34–37.CrossRefGoogle Scholar
  99. 99.
    Aschendorff A, Kromeier J, Klenzner T (2007) Quality control after insertion of the nucleus contour and contour advance electrode in adults. Ear Hear 28:75S–79S.CrossRefGoogle Scholar
  100. 100.
    Stakhovskaya O, Sridhar D, Bonham B, et al. (2007) Frequency Map for the Human Cochlear Spiral Ganglion: Implications for Cochlear Implants. JARO 8:220–233.Google Scholar
  101. 101.
    Buechner A, Brendel M, Krueger B, et al. (2008) Current steering and results from novel speech coding strategies. Otol Neurotol 29:203–207.CrossRefGoogle Scholar
  102. 102.
    Bonham BH, Litvak LM (2008) Current focusing and steering: Modeling, physiology, and psychophysics. Hear Res 242:141–153.CrossRefGoogle Scholar
  103. 103.
    Middlebrooks J, Snyder R (2007) Auditory prosthesis with a penetrating nerve array. J Assoc Res Otolaryngol 8:258–279.CrossRefGoogle Scholar
  104. 104.
    Middlebrooks J, Snyder R (2008) Intraneural stimulation for auditory prosthesis: Modiolar trunk and intracranial stimulation sites. Hear Res 242:52–63.CrossRefGoogle Scholar
  105. 105.
    Fraysse B, Dillier N, Klenzner T, et al. (1998) Cochlear implants for adults obtaining marginal benefit from acoustic amplification. Am J Otol 19:591–597.Google Scholar
  106. 106.
    Adunka O, Kiefer J, Unkelbach M, et al. (2004) Development and evaluation of an improved electrode design for electric acoustic stimulation. Laryngoscope 114:1237–1241.CrossRefGoogle Scholar
  107. 107.
    Roland JT, Zeitler D, Jethanamest D, et al. (2008) Evaluation of the short hybrid electrode in human temporal bones. Otol Neurotol 29:482–488.CrossRefGoogle Scholar
  108. 108.
    Fraysse B, Macias AR, Sterkers O, et al. (2006) Residual hearing conservation and electroacoustic stimulation with the nucleus 24 contour advance cochlear implant. Otol Neurotol 27:624–633.CrossRefGoogle Scholar
  109. 109.
    Lenarz T, Stover T, Buechner A, et al. (2006) Temporal bone results and hearing preservation with a new straight electrode. Aud Neurotol 11(suppl 1):34–41.CrossRefGoogle Scholar
  110. 110.
    James C, Albegger K, Battmer R, Burdo S, Deggouj N, Deguine O, Dillier N, Gersdorff M, Laszig R, Lenarz T, Rodriguez MM, Mondain M, Offeciers E, Macías AR, Ramsden R, Sterkers O, Von Wallenberg E, Weber B, Fraysse B (2005) Preservation of residual hearing with cochlear implantation: How and why. Acta Otolaryngol 125(5):481–491.CrossRefGoogle Scholar
  111. 111.
    Briggs RJS, Tykocinski M, Xu J, et al. (2006) Comparison of round window and cochleostomy approaches with a prototype hearing preservation electrode. Aud Neurotol 11(suppl 1):42–48.CrossRefGoogle Scholar
  112. 112.
    Arcand B, Bhatti P, Butala N, et al. (2004) Active positioning device for a perimodiolar cochlear electrode array. Microsyst Technol 10:478–483.CrossRefGoogle Scholar
  113. 113.
    Skinner MW, Holden TA, Whiting BR, et al. (2007) In vivo estimates of the position of advanced bionics electrode arrays in the human cochlea. Ann Otol Rhinol Laryngol Suppl 197:2–24.Google Scholar
  114. 114.
    Finley CC, Holden TA, Holden LK, et al. (2008) Role of electrode placement as a contributor to variability in cochlear implant outcomes. Otol Neurotol 29:920–928.CrossRefGoogle Scholar
  115. 115.
    Abbas PJ, Brown CJ, Shallop JK, et al. (1999) Summary of results using the nucleus CI24M implant to record the electrically evoked compound action potential. Ear Hear 20:45–59.CrossRefGoogle Scholar
  116. 116.
    van der Beek FB, Boermans PP, Verbist BM, et al. (2005) Clinical evaluation of the Clarion CII HiFocus 1 with and without positioner. Ear Hear 26:577–592.CrossRefGoogle Scholar
  117. 117.
    Miller CA, Abbas PJ, Brown CJ (2000) An improved method of reducing stimulus artifact in the electrically evoked whole-nerve potential. Ear Hear 21:280–290.CrossRefGoogle Scholar
  118. 118.
    Miller CA, Abbas PJ, Rubinstein JT (1999) An empirically based model of the electrically evoked compound action potential. Hear Res 135:1–18.CrossRefGoogle Scholar
  119. 119.
    Hashimoto T, Elder CM, Vitek JL (2002) A template subtraction method for stimulus artifact removal in high-frequency deep brain stimulation. J Neurosci Methods 113:181–186.CrossRefGoogle Scholar
  120. 120.
    Heffer LF, Fallon JB (2008) A novel stimulus artifact removal technique for high-rate electrical stimulation. J Neurosci Methods 170:277–284.CrossRefGoogle Scholar
  121. 121.
    September 17 (2007) Guidance for Industry and FDA Staff - Recognition and Use of Consensus Standards: U.S. Food and Drug Administration.Google Scholar
  122. 122.
    Harnack D, Winter C, Meissner W, et al. (2004) The effects of electrode material, charge density and stimulation duration on the safety of high-frequency stimulation of the subthalamic nucleus in rats. J Neurosci Methods 138:207–216.CrossRefGoogle Scholar
  123. 123.
    Mendes GC, Brandao TR, Silva CL (2007) Ethylene oxide sterilization of medical devices: A review. Am J Infect Control 35:574–581.CrossRefGoogle Scholar
  124. 124.
    Lazzi G (2005) Thermal effects of bioimplants. IEEE Eng Med Biol Mag 24:75–81.CrossRefGoogle Scholar
  125. 125.
    Balkany T, Hodges A, Menapace C, et al. (2007) Nucleus Freedom North American clinical trial. Otolaryngol Head Neck Surg 136:757–762.CrossRefGoogle Scholar
  126. 126.
    Koch DB, Osberger MJ, Segel P, et al. (2004) HiResolution and conventional sound processing in the HiResolution bionic ear: Using appropriate outcome measures to assess speech recognition ability. Audiol Neurootol 9:214–223.CrossRefGoogle Scholar
  127. 127.
    Arnoldner C, Riss D, Brunner M, et al. (2007) Speech and music perception with the new fine structure speech coding strategy: Preliminary results. Acta Otolaryngol 127:1298–1303.CrossRefGoogle Scholar
  128. 128.
    Skinner MW, Binzer SM, Fredrickson JM, et al. (1988) Comparison of benefit from vibrotactile aid and cochlear implant for postlinguistically deaf adults. Laryngoscope 98:1092–1099.CrossRefGoogle Scholar
  129. 129.
    Miyamoto RT, Osberger MJ, Robbins AM, et al. (1991) Comparison of speech perception abilities in deaf children with hearing aids or cochlear implants. Otolaryngol Head Neck Surg 104:42–46.Google Scholar
  130. 130.
    Wilson BS, Dorman MF (2007) The surprising performance of present-day cochlear implants. IEEE Trans Biomed Eng 54:969–972.CrossRefGoogle Scholar
  131. 131.
    Chung K, Zeng FG, Acker KN (2006) Effects of directional microphone and adaptive multichannel noise reduction algorithm on cochlear implant performance. J Acoust Soc Am 120:2216–2227.CrossRefGoogle Scholar
  132. 132.
    Chung K, Waltzman S, Zeng FG (2004) Using hearing aid directional microphones and noise reduction algorithms to enhance cochlear implant performance. Acoust Res Lett Online 5:56–61.Google Scholar
  133. 133.
    Schleich P, Nopp P, D’Haese P (2004) Head shadow, squelch, and summation effects in bilateral users of the MED-EL COMBI 40/40+ cochlear implant. Ear Hear 25:197–204.CrossRefGoogle Scholar
  134. 134.
    Laback B, Majdak P (2008) Binaural jitter improves interaural time-difference sensitivity of cochlear implantees at high pulse rates. Proc Natl Acad Sci USA 105:814–817.CrossRefGoogle Scholar
  135. 135.
    Long CJ, Carlyon RP, Litovsky RY, et al. (2006) Binaural unmasking with bilateral cochlear implants. J Assoc Res Otolaryngol 7:352–360.CrossRefGoogle Scholar
  136. 136.
    von Ilberg C, Kiefer J, Tillein J, et al. (1999) Electric-acoustic stimulation of the auditory system. New technology for severe hearing loss. ORL J Otorhinolaryngol Relat Spec 61:334–340.CrossRefGoogle Scholar
  137. 137.
    Gantz BJ, Turner C (2004) Combining acoustic and electrical speech processing: Iowa/Nucleus hybrid implant. Acta Otolaryngol 124:344–347.CrossRefGoogle Scholar
  138. 138.
    Chang JE, Bai JY, Zeng FG (2006) Unintelligible low-frequency sound enhances simulated cochlear-implant speech recognition in noise. IEEE Trans Biomed Eng 53:2598–2601.CrossRefGoogle Scholar
  139. 139.
    Kong YY, Stickney GS, Zeng FG (2005) Speech and melody recognition in binaurally combined acoustic and electric hearing. J Acoust Soc Am 117:1351–1361.CrossRefGoogle Scholar
  140. 140.
    Dorman MF, Gifford RH, Spahr AJ, et al. (2008) The benefits of combining acoustic and electric stimulation for the recognition of speech, voice and melodies. Audiol Neurootol 13:105–112.CrossRefGoogle Scholar
  141. 141.
    Turner C, Gantz B, Vidal C, et al. (2004) Speech recognition in noise for cochlear implant listeners: Benefits of residual acoustic hearing. J Acoust Soc Am 115:1729–1735.CrossRefGoogle Scholar
  142. 142.
    Badi AN, Kertesz TR, Gurgel RK, et al. (2003) Development of a novel eighth-nerve intraneural auditory neuroprosthesis. Laryngoscope 113:833–842.CrossRefGoogle Scholar
  143. 143.
    Middlebrooks JC, Snyder RL (2007) Auditory prosthesis with a penetrating nerve array. J Assoc Res Otolaryngol 8:258–279.CrossRefGoogle Scholar
  144. 144.
    Schwartz MS, Otto SR, Shannon RV, et al. (2008) Auditory brainstem implants. Neurotherapeutics 5:128–136.CrossRefGoogle Scholar
  145. 145.
    McCreery DB (2008) Cochlear nucleus auditory prostheses. Hear Res 242:64–73.CrossRefGoogle Scholar
  146. 146.
    Colletti V (2006) Auditory outcomes in tumor vs. nontumor patients fitted with auditory brainstem implants. Adv Otorhinolaryngol 64:167–185.Google Scholar
  147. 147.
    Lenarz T, Lim HH, Reuter G, et al. (2006) The auditory midbrain implant: A new auditory prosthesis for neural deafness-concept and device description. Otol Neurotol 27:838–843.CrossRefGoogle Scholar
  148. 148.
    Lim HH, Lenarz T, Joseph G, et al. (2007) Electrical stimulation of the midbrain for hearing restoration: Insight into the functional organization of the human central auditory system. J Neurosci 27:13541–13551.CrossRefGoogle Scholar
  149. 149.
    Rousche PJ, Normann RA (1999) Chronic intracortical microstimulation (ICMS) of cat sensory cortex using the Utah Intracortical Electrode Array. IEEE Trans Rehabil Eng 7:56–68.CrossRefGoogle Scholar
  150. 150.
    de Balthasar C, Patel S, Roy A, et al. (2008) Factors affecting perceptual thresholds in epiretinal prostheses. Invest Ophthalmol Vis Sci 49:2303–2314.CrossRefGoogle Scholar
  151. 151.
    Della Santina CC, Migliaccio AA, Patel AH (2007) A multichannel semicircular canal neural prosthesis using electrical stimulation to restore 3-d vestibular sensation. IEEE Trans Biomed Eng 54:1016–1030.CrossRefGoogle Scholar
  152. 152.
    Merfeld DM, Haburcakova C, Gong W, et al. (2007) Chronic vestibulo-ocular reflexes evoked by a vestibular prosthesis. IEEE Trans Biomed Eng 54:1005–1015.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Fan-Gang Zeng
    • 1
    Email author
  • Stephen Rebscher
    • 1
  • William V. Harrison
    • 1
  • Xiaoan Sun
    • 1
  • Haihong Feng
    • 1
  1. 1.Departments of Anatomy and Neurobiology, Biomedical Engineering, Cognitive Sciences and Otolaryngology – Head and Neck SurgeryUniversity of CaliforniaIrvineUSA

Personalised recommendations