# Rotational Motion

• Jay Newman
Chapter

Once the translational motion of an object is accounted for, all the other motions of the object can best be described in the stationary reference frame of the center of mass. A reasonable image to keep in mind is to imagine following a seagull in a helicopter that tracks its translational motion. If you took a video of the seagull you would see quite different motion than you would from the ground. The seagull would appear always ahead of you but would rotate and change its “shape” as it flapped its wings (e.g., see the film Winged Migration). You’ve probably seen such wildlife videos that can track animals and “subtract” their translational motion leaving only the other collective motions about their “centers”: lions seemingly running “in place” as the scenery flies by. In physics, we’ve already shown how to account for the translational motion of the center of mass. Aside from a possible constant velocity drift in the absence of any forces, motion of the center of mass is caused by...

## Keywords

Angular Momentum Angular Velocity Rotational Motion Angular Acceleration Linear Speed
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.