Cellular and Molecular Pathology of Adrenocortical Carcinoma



Information molecular and genetic alterations as well as about morphological stages of adrenocortical tumorigenesis is sparse in comparison with our understanding of the development of more common neoplasms like those arising in breast or colon tissue. Breast and colon cancer have well-defined pre-cancerous or cancerous precursor lesions, carcinoma in situ, and adenoma, respectively. Stages and related genetic and epigenetic alterations are well defined. In contrast, adrenocortical tumorigenesis is less well defined. It is still a matter of debate whether adrenocortical carcinomas (ACCs) arise from normal tissue via the stages of hyperplasia or adenoma. It is certainly known that some hereditary diseases predispose to the development of ACC and, in fact, some of the alterations caused by these genetic syndromes can also be found in sporadic ACCs (see Chapter 10). The contributions of p53, IGF2, and WNT/β-catenin signaling pathway to adrenocortical tumorigenesis are discussed in chapters in this book dedicated to hereditary syndromes and their underlying genetic changes. This chapter will focus on the contributions of other known or suggested pathways, genomic and genetic alterations, as well as common principles of carcinogenesis, such as aneuploidy and clonal origin.


Comparative Genomic Hybridization Papillary Thyroid Cancer TP53 Mutation Adrenocortical Carcinoma Adrenocortical Tumor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Fialkow PJ (1976) Clonal origin of human tumors. Biochim Biophys Acta 458(3):283–321PubMedGoogle Scholar
  2. 2.
    Lyon MF (1961) Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190:372–373PubMedCrossRefGoogle Scholar
  3. 3.
    Gicquel C (1994) Clonal analysis of human adrenocortical carcinomas and secreting adenomas. Clin Endocrinol (Oxf) 40(4):465–477CrossRefGoogle Scholar
  4. 4.
    Beuschlein F (1994) Clonal composition of human adrenocortical neoplasms. Cancer Res54(18):4927–4932PubMedGoogle Scholar
  5. 5.
    Diaz-Cano SJ (2000) Clonality as expression of distinctive cell kinetics patterns in nodular hyperplasias and adenomas of the adrenal cortex. Am J Pathol 156(1):311–319PubMedGoogle Scholar
  6. 6.
    Blanes A, Diaz-Cano SJ (2006) DNA and kinetic heterogeneity during the clonal evolution of adrenocortical proliferative lesions. Hum Pathol 37(10):1295–1303PubMedCrossRefGoogle Scholar
  7. 7.
    Hansemann DP (1891) Ueber Pathologische Mitosen. Arch Pathol Anat Phys Klin Med 119:299–326Google Scholar
  8. 8.
    Boveri T (1914) Zur Frage der Entstehung maligner Tumoren. Fischer, JenaGoogle Scholar
  9. 9.
    Hardy PA, Zacharias H (2005) Reappraisal of the Hansemann-Boveri hypothesis on the origin of tumors. Cell Biol Int 29(12):983–992PubMedCrossRefGoogle Scholar
  10. 10.
    Holland AJ, Cleveland DW (2009) Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. Nat Rev Mol Cell Biol 10(7):478–487PubMedCrossRefGoogle Scholar
  11. 11.
    Klein FA (1985) Flow cytometric determinations of ploidy and proliferation patterns of adrenal neoplasms: an adjunct to histological classification. J Urol 134(5):862–826Google Scholar
  12. 12.
    Bowlby LS et al (1986) Flow cytometric analysis of adrenal cortical tumor DNA. Relationship between cellular DNA and histopathologic classification. Cancer 58(7):1499–1505PubMedCrossRefGoogle Scholar
  13. 13.
    Amberson JB (1987) Flow cytometric analysis of nuclear DNA from adrenocortical neoplasms. A retrospective study using paraffin-embedded tissue. Cancer 59(12):2091–2095PubMedCrossRefGoogle Scholar
  14. 14.
    Cibas ES (1990) Cellular DNA profiles of benign and malignant adrenocortical tumors. Am J Surg Pathol 14(10):948–955PubMedCrossRefGoogle Scholar
  15. 15.
    Takehara K (2005) Proliferative activity and genetic changes in adrenal cortical tumors examined by flow cytometry, fluorescence in situ hybridization and immunohistochemistry. Int J Urol 12(2):121–127PubMedCrossRefGoogle Scholar
  16. 16.
    Kjellman M (1996) Genetic aberrations in adrenocortical tumors detected using comparative genomic hybridization correlate with tumor size and malignancy. Cancer Res 56(18):4219–4223PubMedGoogle Scholar
  17. 17.
    Kjellman M (1999) Genotyping of adrenocortical tumors: very frequent deletions of the MEN1 locus in 11q13 and of a 1-centimorgan region in 2p16. J Clin Endocrinol Metab 84(2):730–735PubMedCrossRefGoogle Scholar
  18. 18.
    Zhao J (1999) Analysis of genomic alterations in sporadic adrenocortical lesions. Gain of chromosome 17 is an early event in adrenocortical tumorigenesis. Am J Pathol 155(4):1039–1045PubMedGoogle Scholar
  19. 19.
    Sidhu S (2002) Comparative genomic hybridization analysis of adrenocortical tumors. J Clin Endocrinol Metab 87(7):3467–3474PubMedCrossRefGoogle Scholar
  20. 20.
    Dohna M (2000) Adrenocortical carcinoma is characterized by a high frequency of chromosomal gains and high-level amplifications. Genes Chromosomes Cancer 28(2):145–152PubMedCrossRefGoogle Scholar
  21. 21.
    Stephan EA (2008) Adrenocortical carcinoma survival rates correlated to genomic copy number variants. Mol Cancer Ther 7(2):425–431PubMedCrossRefGoogle Scholar
  22. 22.
    Barzon L (2001) Molecular analysis of CDKN1C and TP53 in sporadic adrenal tumors. Eur J Endocrinol 145(2):207–212PubMedCrossRefGoogle Scholar
  23. 23.
    Ohgaki H et al (1993) p53 mutations in sporadic adrenocortical tumors. Int J Cancer 54(3):408–410PubMedCrossRefGoogle Scholar
  24. 24.
    Reincke M (1994) p53 mutations in human adrenocortical neoplasms: immunohistochemical and molecular studies. J Clin Endocrinol Metab 78(3):790–794PubMedCrossRefGoogle Scholar
  25. 25.
    Reincke M (1996) p53 mutations in adrenal tumors: Caucasian patients do not show the exon 4 “hot spot” found in Taiwan. J Clin Endocrinol Metab81(10):3636–3638PubMedCrossRefGoogle Scholar
  26. 26.
    Sidhu S (2005) Mutation and methylation analysis of TP53 in adrenal carcinogenesis. Eur J Surg Oncol31(5):549–554PubMedCrossRefGoogle Scholar
  27. 27.
    Lin SR et al (1994) Mutations of the p53 gene in human functional adrenal neoplasms. J Clin Endocrinol Metab78(2):483–491PubMedCrossRefGoogle Scholar
  28. 28.
    Gicquel C, Le Bouc Y (1997) Molecular markers for malignancy in adrenocortical tumors. Horm Res 47(4–6):269–272PubMedCrossRefGoogle Scholar
  29. 29.
    Libe R (2007) Somatic TP53 mutations are relatively rare among adrenocortical cancers with the frequent 17p13 loss of heterozygosity. Clin Cancer Res 13(3):844–850PubMedCrossRefGoogle Scholar
  30. 30.
    Wachenfeld C (2001) Discerning malignancy in adrenocortical tumors: are molecular markers useful? Eur J Endocrinol 145(3):335–341PubMedCrossRefGoogle Scholar
  31. 31.
    Heppner C (1999) MEN1 gene analysis in sporadic adrenocortical neoplasms. J Clin Endocrinol Metab 84(1):216–219PubMedCrossRefGoogle Scholar
  32. 32.
    Gortz B (1999) MEN1 gene mutation analysis of sporadic adrenocortical lesions. Int J Cancer 80(3):373–379PubMedCrossRefGoogle Scholar
  33. 33.
    Schulte KM (1999) MEN I gene mutations in sporadic adrenal adenomas. Hum Genet 105(6):603–610PubMedCrossRefGoogle Scholar
  34. 34.
    Gicquel C (1994) Rearrangements at the 11p15 locus and overexpression of insulin-like growth factor-II gene in sporadic adrenocortical tumors. J Clin Endocrinol Metab 78(6):1444–1453PubMedCrossRefGoogle Scholar
  35. 35.
    Gicquel C (1997) Structural and functional abnormalities at 11p15 are associated with the malignant phenotype in sporadic adrenocortical tumors: study on a series of 82 tumors. J Clin Endocrinol Metab 82(8):2559–2565PubMedCrossRefGoogle Scholar
  36. 36.
    Leboulleux S (2001) Loss of heterozygosity at the mannose 6-phosphate/insulin-like growth factor 2 receptor locus: a frequent but late event in adrenocortical tumorigenesis. Eur J Endocrinol 144(2):163–168PubMedCrossRefGoogle Scholar
  37. 37.
    Pilon C (1999) Inactivation of the p16 tumor suppressor gene in adrenocortical tumors. J Clin Endocrinol Metab 84(8):2776–2779PubMedCrossRefGoogle Scholar
  38. 38.
    Hussussian CJ (1994) Germline p16 mutations in familial melanoma. Nat Genet 8(1):15–21PubMedCrossRefGoogle Scholar
  39. 39.
    Reincke M (1993) No evidence for oncogenic mutations in guanine nucleotide-binding proteins of human adrenocortical neoplasms. J Clin Endocrinol Metab 77(5):1419–1422PubMedCrossRefGoogle Scholar
  40. 40.
    Yoshimoto K (1993) Rare mutations of the Gs alpha subunit gene in human endocrine tumors. Mutation detection by polymerase chain reaction-primer-introduced restriction analysis. Cancer 72(4):1386–1393PubMedCrossRefGoogle Scholar
  41. 41.
    Davies E (1997) Somatic mutations of the angiotensin II (AT1) receptor gene are not present in aldosterone-producing adenoma. J Clin Endocrinol Metab, 1997. 82(2):611–615CrossRefGoogle Scholar
  42. 42.
    Reincke M (1997) Deletion of the adrenocorticotropin receptor gene in human adrenocortical tumors: implications for tumorigenesis. J Clin Endocrinol Metab 82(9):3054–3058PubMedCrossRefGoogle Scholar
  43. 43.
    Latronico AC (1995) No evidence for oncogenic mutations in the adrenocorticotropin receptor gene in human adrenocortical neoplasms. J Clin Endocrinol Metab 80(3):875–877PubMedCrossRefGoogle Scholar
  44. 44.
    Lin SR (1998) Alterations of RET oncogene in human adrenal tumors. Jpn J Cancer Res 89(6):634–640PubMedGoogle Scholar
  45. 45.
    Couto JP (2009) How molecular pathology is changing and will change the therapeutics of patients with follicular cell-derived thyroid cancer. J Clin Pathol 62(5):414–421PubMedCrossRefGoogle Scholar
  46. 46.
    Sobrinho-Simoes M (2008) Intragenic mutations in thyroid cancer. Endocrinol Metab Clin North Am 37(2):333–362, viiiPubMedCrossRefGoogle Scholar
  47. 47.
    Karnoub AE, Weinberg RA (2008) Ras oncogenes: split personalities. Nat Rev Mol Cell Biol 9(7):517–531PubMedCrossRefGoogle Scholar
  48. 48.
    DeFeo D (1981) Analysis of two divergent rat genomic clones homologous to the transforming gene of Harvey murine sarcoma virus. Proc Natl Acad Sci U S A 78(6):3328–3332PubMedCrossRefGoogle Scholar
  49. 49.
    Chang EH (1982) Human genome contains four genes homologous to transforming genes of Harvey and Kirsten murine sarcoma viruses. Proc Natl Acad Sci U S A 79(16):4848–4852PubMedCrossRefGoogle Scholar
  50. 50.
    Hall A (1983) Identification of transforming gene in two human sarcoma cell lines as a new member of the ras gene family located on chromosome 1. Nature 303(5916):396–400PubMedCrossRefGoogle Scholar
  51. 51.
    Xu GF (1990) The neurofibromatosis type 1 gene encodes a protein related to GAP. Cell 62(3):599–608PubMedCrossRefGoogle Scholar
  52. 52.
    Kamata T, Feramisco JR (1984) Epidermal growth factor stimulates guanine nucleotide binding activity and phosphorylation of ras oncogene proteins. Nature 310(5973):147–150PubMedCrossRefGoogle Scholar
  53. 53.
    Molloy CJ (1989) PDGF induction of tyrosine phosphorylation of GTPase activating protein. Nature 342(6250):711–714PubMedCrossRefGoogle Scholar
  54. 54.
    Kotoula V (2009) Mutational analysis of the BRAF, RAS and EGFR genes in human adrenocortical carcinomas. Endocr Relat Cancer 16(2):565–572PubMedCrossRefGoogle Scholar
  55. 55.
    Ameur N (2009) Mutational status of EGFR, BRAF, PI3KCA and JAK2 genes in endocrine tumors. Int J Cancer 124(3):751–753PubMedCrossRefGoogle Scholar
  56. 56.
    Lin SR (1998) Mutations of K-ras oncogene in human adrenal tumours in Taiwan. Br J Cancer 77(7):1060–1065PubMedGoogle Scholar
  57. 57.
    Yashiro T (1994) Point mutations of ras genes in human adrenal cortical tumors: absence in adrenocortical hyperplasia. World J Surg 18(4):455–60; discussion 460–461PubMedCrossRefGoogle Scholar
  58. 58.
    Serrano M (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88(5):593–602PubMedCrossRefGoogle Scholar
  59. 59.
    Benanti JA, Galloway DA (2004) Normal human fibroblasts are resistant to RAS-induced senescence. Mol Cell Biol 24(7):2842–2852PubMedCrossRefGoogle Scholar
  60. 60.
    Benanti JA, Galloway DA (2004) The normal response to RAS: senescence or transformation? Cell Cycle 3(6):715–717PubMedGoogle Scholar
  61. 61.
    Montagut C, Settleman J (2009) Targeting the RAF-MEK-ERK pathway in cancer therapy. Cancer Lett 283(2):125–134PubMedCrossRefGoogle Scholar
  62. 62.
    Davies H (2002) Mutations of the BRAF gene in human cancer. Nature417(6892):949–954PubMedCrossRefGoogle Scholar
  63. 63.
    Namba H (2003) Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J Clin Endocrinol Metab88(9):4393–4397PubMedCrossRefGoogle Scholar
  64. 64.
    Michaloglou C (2008) BRAF(E600) in benign and malignant human tumours. Oncogene 27(7):877–895PubMedCrossRefGoogle Scholar
  65. 65.
    Michaloglou C (2005) BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436(7051):720–724PubMedCrossRefGoogle Scholar
  66. 66.
    Masi G (2009) Investigation of BRAF and CTNNB1 activating mutations in adrenocortical tumors. J Endocrinol Invest 32(7):597–600PubMedGoogle Scholar
  67. 67.
    Brose MS (2002) BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res 62(23):6997–7000PubMedGoogle Scholar
  68. 68.
    Gorden A (2003) Analysis of BRAF and N-RAS mutations in metastatic melanoma tissues. Cancer Res 63(14):3955–3957PubMedGoogle Scholar
  69. 69.
    Fassnacht, M (2003) N-terminal proopiomelanocortin acts as a mitogen in adrenocortical tumor cells and decreases adrenal steroidogenesis. J Clin Endocrinol Metab 88(5):2171–2179PubMedCrossRefGoogle Scholar
  70. 70.
    Liu P (2009) Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 8(8):627–644PubMedCrossRefGoogle Scholar
  71. 71.
    Fassnacht M (2005) AKT is highly phosphorylated in pheochromocytomas but not in benign adrenocortical tumors. J Clin Endocrinol Metab 90(7):4366–4370PubMedCrossRefGoogle Scholar
  72. 72.
    Barlaskar FM (2009) Preclinical targeting of the type I insulin-like growth factor receptor in adrenocortical carcinoma. J Clin Endocrinol Metab 94(1):204–212PubMedCrossRefGoogle Scholar
  73. 73.
    Sasano H (1998) Vascularity in human adrenal cortex. Mod Pathol 11(4):329–333PubMedGoogle Scholar
  74. 74.
    Diaz-Cano SJ (2001) Contribution of the microvessel network to the clonal and kinetic profiles of adrenal cortical proliferative lesions. Hum Pathol 32(11):1232–1239PubMedCrossRefGoogle Scholar
  75. 75.
    Bernini GP (2002) Angiogenesis in human normal and pathologic adrenal cortex. J Clin Endocrinol Metab 87(11):4961–4965PubMedCrossRefGoogle Scholar
  76. 76.
    Giordano TJ (2009) Molecular classification and prognostication of adrenocortical tumors by transcriptome profiling. Clin Cancer Res 15(2):668–676PubMedCrossRefGoogle Scholar
  77. 77.
    de Fraipont F (2000) Expression of the angiogenesis markers vascular endothelial growth factor-A, thrombospondin-1, and platelet-derived endothelial cell growth factor in human sporadic adrenocortical tumors: correlation with genotypic alterations. J Clin Endocrinol Metab 85(12):4734–4741PubMedCrossRefGoogle Scholar
  78. 78.
    Britvin TA (2005) Vascular endothelium growth factor in the sera of patients with adrenal tumors. Bull Exp Biol Med 140(2):228–230PubMedCrossRefGoogle Scholar
  79. 79.
    Kolomecki K (2001) Usefulness of VEGF, MMP-2, MMP-3 and TIMP-2 serum level evaluation in patients with adrenal tumours. Endocr Regul 35(1):9–16PubMedGoogle Scholar
  80. 80.
    Jurczynska J (2009) Peripheral blood concentrations of vascular endothelial growth factor and its soluble receptors (R1 and R2) in patients with adrenal cortex tumours treated by surgery. Endokrynol Pol 60(1):9–13PubMedGoogle Scholar
  81. 81.
    Lacroix A (2009) Aberrant G-protein coupled receptor expression in relation to adrenocortical overfunction. Clin Endocrinol (Oxf), Aug 29 epub ahead of printGoogle Scholar
  82. 82.
    Lacroix A (2001) Ectopic and abnormal hormone receptors in adrenal Cushing’s syndrome. Endocr Rev 22(1):75–110PubMedCrossRefGoogle Scholar
  83. 83.
    Louiset E (2008) Ectopic expression of serotonin7 receptors in an adrenocortical carcinoma co-secreting renin and cortisol. Endocr Relat Cancer 15(4):1025–1034PubMedCrossRefGoogle Scholar
  84. 84.
    Horvath A (2006) A genome-wide scan identifies mutations in the gene encoding phosphodiesterase 11A4 (PDE11A) in individuals with adrenocortical hyperplasia. Nat Genet 38(7):794–800PubMedCrossRefGoogle Scholar
  85. 85.
    Horvath A et al (2008) Mutation in PDE8B, a cyclic AMP-specific phosphodiesterase in adrenal hyperplasia. N Engl J Med 358(7):750–752PubMedCrossRefGoogle Scholar
  86. 86.
    Kirschner LS (2000) Mutations of the gene encoding the protein kinase A type I-alpha regulatory subunit in patients with the Carney complex. Nat Genet 26(1):89–92PubMedCrossRefGoogle Scholar
  87. 87.
    Willenberg HS (1998) Aberrant interleukin-1 receptors in a cortisol-secreting adrenal adenoma causing Cushing’s syndrome. N Engl J Med 339(1):27–31PubMedCrossRefGoogle Scholar
  88. 88.
    Schteingart DE (2001) Overexpression of CXC chemokines by an adrenocortical carcinoma: a novel clinical syndrome. J Clin Endocrinol Metab 86(8):3968–3974PubMedCrossRefGoogle Scholar
  89. 89.
    Luton JP (1990) Clinical features of adrenocortical carcinoma, prognostic factors, and the effect of mitotane therapy. N Engl J Med 322(17):1195–1201PubMedCrossRefGoogle Scholar
  90. 90.
    Icard P (2001) Adrenocortical carcinomas: surgical trends and results of a 253-patient series from the French Association of Endocrine Surgeons study group. World J Surg 25(7):891–897PubMedCrossRefGoogle Scholar
  91. 91.
    Fidler WJ (1977) Ovarian thecal metaplasia in adrenal glands. Am J Clin Pathol 67(4):318–323PubMedGoogle Scholar
  92. 92.
    Wont TW, Warner NE (1971) Ovarian thecal metaplasia in the adrenal gland. Arch Pathol 92(5):319–328PubMedGoogle Scholar
  93. 93.
    Ulrich-Lai YM (2006) Chronic stress induces adrenal hyperplasia and hypertrophy in a subregion-specific manner. Am J Physiol Endocrinol Metab 291(5):E965–973PubMedCrossRefGoogle Scholar
  94. 94.
    Else T, Hammer GD (2005) Genetic analysis of adrenal absence: agenesis and aplasia. Trends Endocrinol Metab 16(10):458–468PubMedCrossRefGoogle Scholar
  95. 95.
    Zwermann O (2005) ACTH 1-24 inhibits proliferation of adrenocortical tumors in vivo. Eur J Endocrinol 153(3):435–444PubMedCrossRefGoogle Scholar
  96. 96.
    Tacon LJ (2009) The glucocorticoid receptor is overexpressed in malignant adrenocortical tumors. J Clin Endocrinol Metab 94(11):4591–4599PubMedCrossRefGoogle Scholar
  97. 97.
    Gazdar AF (1990) Establishment and characterization of a human adrenocortical carcinoma cell line that expresses multiple pathways of steroid biosynthesis. Cancer Res 50(17):5488–5496PubMedGoogle Scholar
  98. 98.
    Somjen D (2003) Carboxy derivatives of isoflavones as affinity carriers for cytotoxic drug targeting in adrenocortical H295R carcinoma cells. J Endocrinol 179(3):395–403PubMedCrossRefGoogle Scholar
  99. 99.
    Barzon L (2008) Expression of aromatase and estrogen receptors in human adrenocortical tumors. Virchows Arch 452(2):181–191PubMedCrossRefGoogle Scholar
  100. 100.
    Montanaro D (2005) Antiestrogens upregulate estrogen receptor beta expression and inhibit adrenocortical H295R cell proliferation. J Mol Endocrinol 35(2):245–256PubMedCrossRefGoogle Scholar
  101. 101.
    Parker KL, Schimmer BP (1997) Steroidogenic factor 1: a key determinant of endocrine development and function. Endocr Rev 18(3):361–377PubMedCrossRefGoogle Scholar
  102. 102.
    Luo X (1999) Steroidogenic factor 1 (SF-1) is essential for endocrine development and function. J Steroid Biochem Mol Biol 69(1–6):13–18PubMedCrossRefGoogle Scholar
  103. 103.
    Beuschlein F (2002) Steroidogenic factor-1 is essential for compensatory adrenal growth following unilateral adrenalectomy. Endocrinology 143(8):3122–3135PubMedCrossRefGoogle Scholar
  104. 104.
    Doghman M (2009) Inhibition of adrenocortical carcinoma cell proliferation by steroidogenic factor-1 inverse agonists. J Clin Endocrinol Metab 94(6):2178–2183PubMedCrossRefGoogle Scholar
  105. 105.
    Doghman M (2007) Increased steroidogenic factor-1 dosage triggers adrenocortical cell proliferation and cancer. Mol Endocrinol 21(12):2968–2987PubMedCrossRefGoogle Scholar
  106. 106.
    Almeida MQ (2010) Steroidogenic factor 1 overexpression and gene amplification are more frequent in adrenocortical tumors from children than from adults. J Clin Endocrinol Metab 95(3):1458–1462Google Scholar
  107. 107.
    Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61(5):759–767PubMedCrossRefGoogle Scholar
  108. 108.
    Lynch HT (2009) Review of the Lynch syndrome: history, molecular genetics, screening, differential diagnosis, and medicolegal ramifications. Clin Genet 76(1):1–18PubMedCrossRefGoogle Scholar
  109. 109.
    Imai K, Yamamoto H (2008) Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. Carcinogenesis 29(4):673–680PubMedCrossRefGoogle Scholar
  110. 110.
    Allred DC et al (2001) Histological and biological evolution of human premalignant breast disease. Endocr Relat Cancer 8(1):47–61PubMedCrossRefGoogle Scholar
  111. 111.
    Bevona C (2003) Cutaneous melanomas associated with nevi. Arch Dermatol 139(12):1620–1624; discussion 1624PubMedCrossRefGoogle Scholar
  112. 112.
    Tadjine M (2008) Frequent mutations of beta-catenin gene in sporadic secreting adrenocortical adenomas. Clin Endocrinol (Oxf) 68(2):264–270Google Scholar
  113. 113.
    Tissier F (2005) Mutations of beta-catenin in adrenocortical tumors: activation of the Wnt signaling pathway is a frequent event in both benign and malignant adrenocortical tumors. Cancer Res 65(17):7622–7627PubMedGoogle Scholar
  114. 114.
    Soon PS (2008) Loss of heterozygosity of 17p13, with possible involvement of ACADVL and ALOX15B, in the pathogenesis of adrenocortical tumors. Ann Surg 247(1):157–164PubMedCrossRefGoogle Scholar
  115. 115.
    Gicquel C (2001) Molecular markers and long-term recurrences in a large cohort of patients with sporadic adrenocortical tumors. Cancer Res 61(18):6762–6767PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Internal Medicine – Division of Metabolism, Endocrinology & DiabetesUniversity of Michigan Health System, University of MichiganAnn ArborUSA

Personalised recommendations