Pharmacotherapy for Hormone Excess in Adrenocortical Carcinoma



The morbidity caused by adrenocortical carcinoma (ACC) derives both from the spread of malignant cells into other organs and from the consequences of hormone excess. Consequently, the goals of treatment in ACC include both control of tumor growth and mitigation of the effects derived from hormone excess.


Adrenocortical Carcinoma Zona Glomerulosa Abiraterone Acetate Zona Fasciculata Steroidogenic Enzyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Clark BJ et al (1994) The purification, cloning and expression of a novel luteinizing hormone-induced mitochondrial protein in MA-10 mouse Leydig tumor cells. Characterization of the steroidogenic acute regulatory protein (StAR). J Biol Chem 269:28314–28322PubMedGoogle Scholar
  2. 2.
    Stocco DM, Clark BJ (1996) Regulation of the acute production of steroids in steroidogenic cells. Endocr Rev 17:221–244PubMedGoogle Scholar
  3. 3.
    Sherbet DP et al (2007) Cofactors, redox state, and directional preferences of hydroxysteroid dehydrogenases. Mol Cell Endocrinol 265–266:83–88CrossRefPubMedGoogle Scholar
  4. 4.
    Mizrachi D, Auchus RJ (2009) Androgens, estrogens, and hydroxysteroid dehydrogenases. Mol Cell Endocrinol 301:37–42CrossRefPubMedGoogle Scholar
  5. 5.
    Nelson DR et al (1993) The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol 12:1–51CrossRefPubMedGoogle Scholar
  6. 6.
    Sherbet DP et al (2009) Biochemical factors governing the steady-state estrone/estradiol ratios catalyzed by human 17beta-hydroxysteroid dehydrogenases types 1 and 2 in HEK-293 cells. Endocrinology 150:4154–4162CrossRefPubMedGoogle Scholar
  7. 7.
    Jornvall H et al (1995) Short-chain dehydrogenases/reductases (SDR). Biochemistry 34:6003–6013CrossRefPubMedGoogle Scholar
  8. 8.
    Jez JM, Penning TM (2001) The aldo-keto reductase (AKR) superfamily: an update. Chem Biol Interact 130–132:499–525.CrossRefPubMedGoogle Scholar
  9. 9.
    Lorence MC et al (1990) Human 3β-hydroxysteroid dehydrogenase/Δ5→Δ4 isomerase from placenta: expression in nonsteroidogenic cells of a protein that catalyzes the dehydrogenation/isomerization of C21 and C19 steroids. Endocrinology 126:2493–2498CrossRefPubMedGoogle Scholar
  10. 10.
    Rhéaume E et al (1991) Structure and expression of a new complementary DNA encoding the almost exclusive 3β-hydroxysteroid dehydrogenase/Δ54-isomerase in human adrenals and gonads. Mol Endocrinol 5:1147–1157CrossRefPubMedGoogle Scholar
  11. 11.
    Nakamura Y et al (2009) Type 5 17β-hydroxysteroid dehydrogenase (AKR1C3) contributes to testosterone production in the adrenal reticularis. J Clin Endocrinol Metab 94:2192–2198CrossRefPubMedGoogle Scholar
  12. 12.
    Miller WL (1988) Molecular biology of steroid hormone synthesis. Endocr Rev 9:295–318CrossRefPubMedGoogle Scholar
  13. 13.
    Auchus RJ et al (1998) Cytochrome b 5 augments the 17,20 lyase activity of human P450c17 without direct electron transfer. J Biol Chem 273:3158–3165CrossRefPubMedGoogle Scholar
  14. 14.
    Auchus RJ, Rainey WE (2004) Adrenarche – physiology, biochemistry and human disease. Clin Endocrinol (Oxf) 60:288–296CrossRefGoogle Scholar
  15. 15.
    Hammer F et al (2005) No evidence for hepatic conversion of dehydroepiandrosterone (DHEA) sulfate to DHEA: in vivo and in vitro studies. J Clin Endocrinol Metab 90:3600–3605CrossRefPubMedGoogle Scholar
  16. 16.
    Bose H et al (2002) Rapid regulation of steroidogenesis by mitochondrial protein import. Nature 417:87–91CrossRefPubMedGoogle Scholar
  17. 17.
    Artemenko IP et al (2001) Mitochondrial processing of newly synthesized steroidogenic acute regulatory protein (StAR), but not total StAR, mediates cholesterol transfer to cytochrome P450 side chain cleavage enzyme in adrenal cells. J Biol Chem 276:46583–46596CrossRefPubMedGoogle Scholar
  18. 18.
    Tsujishita Y, Hurley JH (2000) Structure and lipid transport mechanism of a StAR-related domain. Nat Struct Biol 7:408–414CrossRefPubMedGoogle Scholar
  19. 19.
    Gospodarowicz D et al (1977) Control of bovine adrenal cortical cell proliferation by fibroblast growth factor. Lack of effect of epidermal growth factor. Endocrinology 100:1080–1089CrossRefPubMedGoogle Scholar
  20. 20.
    Hornsby PJ et al (1987) Loss of expression of a differentiated function gene steroid 17α-hydroxylase, as adrenocortical cells senesce in culture. Proc Natl Acad Sci USA 84:1580–1584CrossRefPubMedGoogle Scholar
  21. 21.
    Voutilainen R, Miller WL (1987) Coordinate tropic hormone regulation of mRNAs for insulin-like growth factor II and the cholesterol side-chain cleavage enzyme, P450scc, in human steroidogenic tissues. Proc Natl Acad Sci USA 84:1590–1594CrossRefPubMedGoogle Scholar
  22. 22.
    Parker KL, Schimmer BP (1997) Steroidogenic factor 1: a key determinant of endocrine development and function. Endocr Rev 18:361–377CrossRefPubMedGoogle Scholar
  23. 23.
    Luo X et al (1994) A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 77:481–490CrossRefPubMedGoogle Scholar
  24. 24.
    Grondal S et al (1990) Steroid profile in urine: a useful tool in the diagnosis and follow up of adrenocortical carcinoma. Acta Endocrinol (Copenh) 122:656–663Google Scholar
  25. 25.
    Sakai Y et al (1994) Mechanism of abnormal production of adrenal androgens in patients with adrenocortical adenomas and carcinomas. J Clin Endocrinol Metab 78:36–40CrossRefPubMedGoogle Scholar
  26. 26.
    Samandari E et al (2007) Human adrenal corticocarcinoma NCI-H295R cells produce more androgens than NCI-H295A cells and differ in 3β-hydroxysteroid dehydrogenase type 2 and 17,20 lyase activities. J Endocrinol 195:459–472CrossRefPubMedGoogle Scholar
  27. 27.
    Osborne CK, Schiff R (2005) Estrogen-receptor biology: continuing progress and therapeutic implications. J Clin Oncol 23:1616–1622CrossRefPubMedGoogle Scholar
  28. 28.
    O’Donnell A et al (2004) Hormonal impact of the 17α-hydroxylase/C(17,20)-lyase inhibitor abiraterone acetate (CB7630) in patients with prostate cancer. Br J Cancer 90:2317–2325Google Scholar
  29. 29.
    Attard G et al (2008) Phase I Clinical Trial of a Selective Inhibitor of CYP17, Abiraterone Acetate, Confirms That Castration-Resistant Prostate Cancer Commonly Remains Hormone Driven. J Clin Oncol 26:463–4571CrossRefGoogle Scholar
  30. 30.
    Auchus RJ (2001) The genetics, pathophysiology, and management of human deficiencies of P450c17. Endocrinol Metab Clin North Am 30:101–119CrossRefPubMedGoogle Scholar
  31. 31.
    Osborne CK (1998) Tamoxifen in the treatment of breast cancer. N Engl J Med 339:1609–1618CrossRefPubMedGoogle Scholar
  32. 32.
    Nishizaka MK et al (2003) Efficacy of low-dose spironolactone in subjects with resistant hypertension. Am J Hypertens 16:925–930CrossRefPubMedGoogle Scholar
  33. 33.
    Fiebeler A et al (2005) Aldosterone synthase inhibitor ameliorates angiotensin II-induced organ damage. Circulation 111:3087–3094CrossRefPubMedGoogle Scholar
  34. 34.
    Irony I et al (1987) Pathophysiology of deoxycorticosterone-secreting adrenal tumors. J Clin Endocrinol Metab 65:836–840CrossRefPubMedGoogle Scholar
  35. 35.
    Palmer BF (2004) Managing hyperkalemia caused by inhibitors of the renin-angiotensin-aldosterone system. N Engl J Med 351:585–592CrossRefPubMedGoogle Scholar
  36. 36.
    Laragh J (2001) Laragh’s lessons in pathophysiology and clinical pearls for treating hypertension. Am J Hypertens 14:84–89CrossRefPubMedGoogle Scholar
  37. 37.
    Burgess E (2004) Eplerenone in hypertension. Expert Opin Pharmacother 5:2573–2581CrossRefPubMedGoogle Scholar
  38. 38.
    Levy DG et al (2004) Distinguishing the antihypertensive and electrolyte effects of eplerenone. J Clin Endocrinol Metab 89:2736–2740CrossRefPubMedGoogle Scholar
  39. 39.
    Miller JW, Crapo L (1993) The medical treatment of Cushing’s syndrome. Endocr Rev 14:443–458PubMedGoogle Scholar
  40. 40.
    White PC et al (1997) 11β-hydroxysteroid dehydrogenase and the syndrome of apparent mineralocorticoid excess. Endocr Rev 18:135–156CrossRefPubMedGoogle Scholar
  41. 41.
    Stewart PM et al (1995) 11β-Hydroxysteroid dehydrogenase activity in Cushing’s syndrome: explaining the mineralocorticoid excess state of the ectopic adrenocorticotropin syndrome. J Clin Endocrinol Metab 80:3617–3620CrossRefPubMedGoogle Scholar
  42. 42.
    Wortsman J, Soler NG (1977) Mitotane. Spironolactone antagonism in Cushing’s syndrome. JAMA 238:2527CrossRefPubMedGoogle Scholar
  43. 43.
    Feldman D (1986) Ketoconazole and other imidazole derivatives as inhibitors of steroidogenesis. Endocr Rev 7:409–420CrossRefPubMedGoogle Scholar
  44. 44.
    Small EJ et al (2004) Antiandrogen withdrawal alone or in combination with ketoconazole in androgen-independent prostate cancer patients: a phase III trial (CALGB 9583). J Clin Oncol 22:1025–1033CrossRefPubMedGoogle Scholar
  45. 45.
    Santen RJ, Misbin RI (1981) Aminoglutethimide: review of pharmacology and clinical use. Pharmacotherapy 1:95–120PubMedGoogle Scholar
  46. 46.
    Santen RJ et al (1977) Adrenal suppression with aminoglutethimide. I. Differential e-fects of aminoglutethimide on glucocorticoid metabolism as a rationale for use of hydrocortisone. J Clin Endocrinol Metab 45:469–479CrossRefPubMedGoogle Scholar
  47. 47.
    Hartzband PI et al (1988) Assessment of hypothalamic-pituitary-adrenal (HPA) axis dysfunction: comparison of ACTH stimulation, insulin-hypoglycemia and metyrapone. J Endocrinol Invest 11:769–776PubMedGoogle Scholar
  48. 48.
    Orth DN (1978) Metyrapone is useful only as adjunctive therapy in Cushing’s disease. Ann Intern Med 89:128–130PubMedGoogle Scholar
  49. 49.
    Drake WM et al (1998) Emergency and prolonged use of intravenous etomidate to control hypercortisolemia in a patient with Cushing’s syndrome and peritonitis. J Clin Endocrinol Metab 83:3542–3544CrossRefPubMedGoogle Scholar
  50. 50.
    Schulte HM et al (1990) Infusion of low dose etomidate: correction of hypercortisolemia in patients with Cushing’s syndrome and dose-response relationship in normal subjects. J Clin Endocrinol Metab 70:1426–1430CrossRefPubMedGoogle Scholar
  51. 51.
    Allolio B et al (1988) Nonhypnotic low-dose etomidate for rapid correction of hypercortisolaemia in Cushing’s syndrome. Klin Wochenschr 66:361–364CrossRefPubMedGoogle Scholar
  52. 52.
    Dewis P et al (1983) Experience with trilostane in the treatment of Cushing’s syndrome. Clin Endocrinol (Oxf) 18:533–540CrossRefGoogle Scholar
  53. 53.
    Clark RD (2008) Glucocorticoid receptor antagonists. Curr Top Med Chem 8:813–838CrossRefPubMedGoogle Scholar
  54. 54.
    Nieman LK et al (1985) Successful treatment of Cushing’s syndrome with the glucocorticoid antagonist RU 486. J Clin Endocrinol Metab 61:536–540CrossRefPubMedGoogle Scholar
  55. 55.
    van der Lely AJ et al (1991) Rapid reversal of acute psychosis in the Cushing syndrome with the cortisol-receptor antagonist mifepristone (RU 486). Ann Intern Med 114:143–144PubMedGoogle Scholar
  56. 56.
    Swiglo BA et al (2008) Clinical review: antiandrogens for the treatment of hirsutism: a systematic review and metaanalyses of randomized controlled trials. J Clin Endocrinol Metab 93:1153–1160CrossRefPubMedGoogle Scholar
  57. 57.
    Blume-Peytavi U, Hahn S (2008) Medical treatment of hirsutism. Dermatol Ther 21:329–339CrossRefPubMedGoogle Scholar
  58. 58.
    Venturoli S et al (1999) A prospective randomized trial comparing low dose flutamide, finasteride, ketoconazole, and cyproterone acetate-estrogen regimens in the treatment of hirsutism. J Clin Endocrinol Metab 84:1304–1310CrossRefPubMedGoogle Scholar
  59. 59.
    Ibanez L et al (2000) Treatment of hirsutism, hyperandrogenism, oligomenorrhea, dyslipidemia, and hyperinsulinism in nonobese, adolescent girls: effect of flutamide. J Clin Endocrinol Metab 85:3251–3255CrossRefPubMedGoogle Scholar
  60. 60.
    Moreno S et al (2006) Feminizing adreno-cortical carcinomas in male adults. A dire prognosis. Three cases in a series of 801 adrenalectomies and review of the literature. Ann Endocrinol (Paris) 67:32–38Google Scholar
  61. 61.
    Rugo HS (2008) The breast cancer continuum in hormone-receptor-positive breast cancer in postmenopausal women: evolving management options focusing on aromatase inhibitors. Ann Oncol 19:16–27CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Division of Endocrinology and Metabolism, Department of Internal MedicineUT Southwestern Medical Center DallasDallasUSA

Personalised recommendations