Adrenocortical Cell Lines

  • Jeniel Parmar
  • Anita Kulharya
  • William Rainey


Initially, primary cultures of adrenocortical cells have traditionally been utilized to study the mechanisms controlling adrenocortical steroidogenesis. However, the eventual onset of senescence in culture creates a recurring need for the costly and difficult isolation of fresh cultures, and subsequently increases the risk of contamination. For these reasons, the use of primary cultures has been increasingly replaced by immortalized cell lines. This chapter describes the major adrenocortical cell lines that are available for the study of physiologic and pathologic adrenocortical functions.


Adrenal Tumor Adrenal Cell Adrenocortical Cell Zona Fasciculata RL251 Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Arnold J (1866) Ein Beitrag zu der feiner Struktur und dem Chemismus der Nebennieren. Virchows Arch 35:64–107CrossRefGoogle Scholar
  2. 2.
    Simpson ER WM (1988) Regulation of the synthesis of steroidogenic enzymes in adrenal cortical cells by ACTH. Annu Rev Physiol 50:427–440PubMedCrossRefGoogle Scholar
  3. 3.
    Cardoso CC et al (2009) New methods for investigating experimental human adrenal tumorigenesis. Mol Cell Endocrinol 300:175–179PubMedCrossRefGoogle Scholar
  4. 4.
    Gospodarowicz D et al (1977) Control of bovine adrenal cortical cell proliferation by fibroblast growth factor. Lack of effect of epidermal growth factor. Endocrinology 100:1080–1089PubMedCrossRefGoogle Scholar
  5. 5.
    O’Hare MJ, Neville AM (1973) Morphological responses to corticotrophin and cyclic AMP by adult rat adrenocortical cells in monolayer culture. J Endocrinol 56:529–536PubMedCrossRefGoogle Scholar
  6. 6.
    Gazdar AF et al (1990) Establishment and characterization of a human adrenocortical carcinoma cell line that expresses multiple pathways of steroid biosynthesis. Cancer Res 50:5488–5496PubMedGoogle Scholar
  7. 7.
    Parmar J, Rainey WE (2009) Comparisons of adrenocortical cell lines as in vitro test systems. Adrenal toxicology,  Chapter 8, pp. 183–204
  8. 8.
    Rogriquez H et al (1997) Transcription of the human genes for cytochrome P450scc and P450c17 is regulated differently in human adrenal NCI-H295 cells than in mouse adrenal Y1 cells. J Endocrinol Metab 82:365–371CrossRefGoogle Scholar
  9. 9.
    Yasumura Y et al (1966) Clonal analysis of differentiated function in animal cell cultures. I. Possible correlated maintenance of differentiated function and the diploid karyotype. Cancer Res 26:529–535PubMedGoogle Scholar
  10. 10.
    Auersperg N et al (1990) V-K-ras transformation induces reversion to an earlier developmental form in adult rat adrenal cells. Differentiation 43:29–36PubMedCrossRefGoogle Scholar
  11. 11.
    Mellon SH et al (1994) Steroidogenic adrenocortical cell lines produced by genetically targeted tumorigenesis in transgenic mice. Mol Endocrinol 8:97–108PubMedCrossRefGoogle Scholar
  12. 12.
    Mukai K et al (2002) Conditionally immortalized adrenocortical cell lines at undifferentiated states exhibit inducible expression of glucocorticoid-synthesizing genes. Eur J Biochem 269:69–81PubMedCrossRefGoogle Scholar
  13. 13.
    Pan J et al (1995) Influence of cell type on the steroidogenic potential and basal cyclic AMP levels of ras-oncogene-transformed rat cells. Differentiation 58:321–328PubMedCrossRefGoogle Scholar
  14. 14.
    Huang N et al (2005) Regulation of cytochrome b5 gene transcription by Sp3, GATA-6, and steroidogenic factor 1 in human adrenal NCI-H295A cells. Mol Endocrinol 19:2020–2034PubMedCrossRefGoogle Scholar
  15. 15.
    Samandari E et al (2007) Human adrenal corticocarcinoma NCI-H295R cells produce more androgens than NCI-H295A cells and differ in 3beta-hydroxysteroid dehydrogenase type 2 and 17,20 lyase activities. J Endocrinol 195:459–472PubMedCrossRefGoogle Scholar
  16. 16.
    Bird IM et al (1993a). Human NCI-H295 adrenocortical carcinoma cells: a model for angiotensin-II-responsive aldosterone secretion. Endocrinology 133:1555–1561PubMedCrossRefGoogle Scholar
  17. 17.
    Rainey WE et al (1994) The NCI-H295 cell line: a pluripotent model for human adrenocortical studies. Mol Cell Endocrinol 100:45–50PubMedCrossRefGoogle Scholar
  18. 18.
    Clark BJ et al (1995) The steroidogenic acute regulatory protein is induced by angiotensin II and K+ in H295R adrenocortical cells. Mol Cell Endocrinol 115:215–219PubMedCrossRefGoogle Scholar
  19. 19.
    Bird IM et al (1995b). Potassium negatively regulates angiotensin II type 1 receptor expression in human adrenocortical H295R cells. Hypertension 25:1129–1134PubMedGoogle Scholar
  20. 20.
    Bird IM et al (1996b). Differential control of 17 alpha-hydroxylase and 3 beta-hydroxysteroid dehydrogenase expression in human adrenocortical H295R cells. J Clin Endocrinol Metab 81:2171–2178PubMedCrossRefGoogle Scholar
  21. 21.
    Denner K et al (1996) Differential regulation of 11 beta-hydroxylase and aldosterone synthase in human adrenocortical H295R cells. Mol Cell Endocrinol 121:87–91PubMedCrossRefGoogle Scholar
  22. 22.
    Schteingart DE et al (2001) Overexpression of CXC chemokines by an adrenocortical carcinoma: a novel clinical syndrome. J Clin Endocrinol Metab 86:3968–3974PubMedCrossRefGoogle Scholar
  23. 23.
    Ueno M et al (2001) Characterization of a newly established cell line derived from human adrenocortical carcinoma. Int J Urol 8:17–22PubMedCrossRefGoogle Scholar
  24. 24.
    Leibovitz A et al (1973) New human cancer cell culture lines. I. SW-13, small-cell carcinoma of the adrenal cortex. J Natl Cancer Inst 51:691–697PubMedGoogle Scholar
  25. 25.
    Almeida MQ et al (2008) Expression of insulin-like growth factor-II and its receptor in pediatric and adult adrenocortical tumors. J Clin Endocrinol Metab 93:3524–3531PubMedCrossRefGoogle Scholar
  26. 26.
    Schimmer BP (1979) Adrenocortical Y1 cells. Methods Enzymol 58:570–574PubMedCrossRefGoogle Scholar
  27. 27.
    Schimmer BP, Zimmerman AE (1976) Steroidogenesis and extracellular cAMP accumulation in adrenal tumor cell cultures. Mol Cell Endocrinol 4:263–270PubMedCrossRefGoogle Scholar
  28. 28.
    Havelock JC et al (2004) Ovarian granulosa cell lines. Mol Cell Endocrinol 228:67–78PubMedCrossRefGoogle Scholar
  29. 29.
    Rainey WE et al (2004) Adrenocortical cell lines. Mol Cell Endocrinol 228:23–38PubMedCrossRefGoogle Scholar
  30. 30.
    Rainey MD et al (2006) Analysing the DNA damage and replication checkpoints in DT40 cells. Subcell Biochem 40:107–117PubMedGoogle Scholar
  31. 31.
    Roskelly CD, Auersperg N (1995) Rapid ras-oncogene-mediated transformation maintains steroidogenic differentiation in adrenocortical parenchymal cells. Differentiation 59:103–111CrossRefGoogle Scholar
  32. 32.
    Auersperg N (1978) Effects of culture conditions on the growth and differentiation of transformed rat adrenocortical cells. Cancer Res 38:1872–1884PubMedGoogle Scholar
  33. 33.
    Auersperg N et al (1977) Transformation of cultured rat adrenocortical cells by Kirsten murine sarcoma virus (Ki-MSV). Int J Cancer 19:81–89PubMedCrossRefGoogle Scholar
  34. 34.
    Ragazzon B et al (2006) Adrenocorticotropin-dependent changes in SF-1/DAX-1 ratio influence steroidogenic genes expression in a novel model of glucocorticoid-producing adrenocortical cell lines derived from targeted tumorigenesis. Endocrinology 147:1805–1818PubMedCrossRefGoogle Scholar
  35. 35.
    Compagnone NA et al (1997) Characterization of adrenocortical cell lines produced by genetically targeted tumorigenesis in transgenic mice. Steroids 62:238–243PubMedCrossRefGoogle Scholar
  36. 36.
    Cheng CY, Hornsby PJ (1992) Expression of 11 beta-hydroxylase and 21-hydroxylase in long-term cultures of bovine adrenocortical cells requires extracellular matrix factors. Endocrinology 130:2883–2889PubMedCrossRefGoogle Scholar
  37. 37.
    Hornsby PJ, McAllister JM (1991) Culturing steroidogenic cells. Methods Enzymol 206:371–380PubMedCrossRefGoogle Scholar
  38. 38.
    McAllister JM et al (1994) The effects of growth factors and phorbol esters on steroid biosynthesis in isolated human theca interna and granulosa-lutein cells in long term culture. J Clin Endocrinol Metab 79:106–112PubMedCrossRefGoogle Scholar
  39. 39.
    Bird IM et al (1993b). Angiotensin-II stimulates an increase in cAMP and expression of 17 alpha-hydroxylase cytochrome P450 in fetal bovine adrenocortical cells. Endocrinology 132:932–934PubMedCrossRefGoogle Scholar
  40. 40.
    Bird IM et al (1994) Regulation of type 1 angiotensin II receptor messenger ribonucleic acid expression in human adrenocortical carcinoma H295 cells. Endocrinology 134:2468–2474PubMedCrossRefGoogle Scholar
  41. 41.
    Hilbers U et al (1999) Local renin-angiotensin system is involved in K+-induced aldosterone secretion from human adrenocortical NCI-H295 cells. Hypertension 33:1025–1030PubMedGoogle Scholar
  42. 42.
    Inagaki K et al (2007) Regulatory expression of bone morphogenetic protein-6 system in aldosterone production by human adrenocortical cells. Regul Pept 138:133–140PubMedCrossRefGoogle Scholar
  43. 43.
    Nogueira EF et al (2007) Angiotensin-II acute regulation of rapid response genes in human, bovine, and rat adrenocortical cells. J Mol Endocrinol 39:365–374PubMedCrossRefGoogle Scholar
  44. 44.
    Nogueira EF et al (2009) Role of angiotensin II-induced rapid response genes in the regulation of enzymes needed for aldosterone synthesis. J Mol Endocrinol 42:319–330PubMedCrossRefGoogle Scholar
  45. 45.
    Otani H et al (2008) Aldosterone breakthrough caused by chronic blockage of angiotensin II type 1 receptors in human adrenocortical cells: possible involvement of bone morphogenetic protein-6 actions. Endocrinology 149:2816–2825PubMedCrossRefGoogle Scholar
  46. 46.
    Romero DG et al (2006a). RGS2 is regulated by angiotensin II and functions as a negative feedback of aldosterone production in H295R human adrenocortical cells. Endocrinology 147:3889–3897PubMedCrossRefGoogle Scholar
  47. 47.
    Shah BH et al (2006) Mechanisms of endothelin-1-induced MAP kinase activation in adrenal glomerulosa cells. J Steroid Biochem Mol Biol 102:79–88PubMedCrossRefGoogle Scholar
  48. 48.
    Hanley NA et al (1993) Parathyroid hormone and parathyroid hormone-related peptide stimulate aldosterone production in the human adrenocortical cell line, NCI-H295. Endocr J 1:447–450Google Scholar
  49. 49.
    Mountjoy KG et al (1994) ACTH induces up-regulation of ACTH receptor mRNA in mouse and human adrenocortical cell lines. Mol Cell Endocrinol 99:R17–20PubMedCrossRefGoogle Scholar
  50. 50.
    Bird IM et al (1995a). Hormonal regulation of angiotensin II type 1 receptor expression and AT1-R mRNA levels in human adrenocortical cells. Endocr Res 21:169–182PubMedCrossRefGoogle Scholar
  51. 51.
    Rainey WE et al (1993b). Regulation of human adrenal carcinoma cell (NCI-H295) production of C19 steroids. J Clin Endocrinol Metab 77:731–737PubMedCrossRefGoogle Scholar
  52. 52.
    Rainey WE et al (1993a). Effect of angiotensin II on human luteinized granulosa cells. Fertil Steril 59:143–147PubMedGoogle Scholar
  53. 53.
    Kanczkowski W et al (2009) Differential expression and action of Toll-like receptors in human adrenocortical cells. Mol Cell Endocrinol 300:57–65PubMedCrossRefGoogle Scholar
  54. 54.
    Lucki N, Sewer MB (2009) The cAMP-responsive element binding protein (CREB) regulates the expression of acid ceramidase (ASAH1) in H295R human adrenocortical cells. Biochim Biophys Acta 75:390–399Google Scholar
  55. 55.
    Noda M et al (2007) Mono-(2-ethylhexyl) phthalate (MEHP) induces nuclear receptor 4A subfamily in NCI-H295R cells: a possible mechanism of aromatase suppression by MEHP. Mol Cell Endocrinol 274:8–18PubMedCrossRefGoogle Scholar
  56. 56.
    Romero DG et al (2006c). Angiotensin II-mediated protein kinase D activation stimulates aldosterone and cortisol secretion in H295R human adrenocortical cells. Endocrinology 147:6046–6055PubMedCrossRefGoogle Scholar
  57. 57.
    Song R et al (2009) Cytotoxicity and gene expression profiling of two hydroxylated polybrominated diphenyl ethers in human H295R adrenocortical carcinoma cells. Toxicol Lett 185:23–31PubMedCrossRefGoogle Scholar
  58. 58.
    Stigliano A et al (2008) Modulation of proteomic profile in H295R adrenocortical cell line induced by mitotane. Endocr Relat Cancer 15:1–10PubMedCrossRefGoogle Scholar
  59. 59.
    Xing Y et al (2009) The farnesoid X receptor regulates transcription of 3beta-hydroxysteroid dehydrogenase type 2 in human adrenal cells. Mol Cell Endocrinol 299:153–162PubMedCrossRefGoogle Scholar
  60. 60.
    Ye P et al (2009a). Differential effects of high and low steroidogenic factor-1 expression on CYP11B2 expression and aldosterone production in adrenocortical cells. Endocrinology 150:1303–1309PubMedCrossRefGoogle Scholar
  61. 61.
    Ye P et al (2009b). Contrasting effects of eplerenone and spironolactone on adrenal cell steroidogenesis. Horm Metab Res 41:35–39PubMedCrossRefGoogle Scholar
  62. 62.
    Deshpande N et al (1967) In vivo steroidogenesis by the human adrenal gland. Steroids 9:393–404PubMedCrossRefGoogle Scholar
  63. 63.
    Lanman JT, Silverman LM (1957) In vitro steroidogenesis in the human neonatal adrenal gland, including observations on human adult and monkey adrenal glands. Endocrinology 60:433–445PubMedCrossRefGoogle Scholar
  64. 64.
    Villee DB (1972) The development of steroidogenesis. Am J Med 53:533–544PubMedCrossRefGoogle Scholar
  65. 65.
    McAllister JM, Hornsby PJ (1988) Dual regulation of 3 beta-hydroxysteroid dehydrogenase, 17 alpha- hydroxylase, and dehydroepiandrosterone sulfotransferase by adenosine 3',5'-monophosphate and activators of protein kinase C in cultured human adrenocortical cells. Endocrinology 122:2012–2018PubMedCrossRefGoogle Scholar
  66. 66.
    Rainey WE et al (1991) Regulation of 3 beta-hydroxysteroid dehydrogenase in adrenocortical cells: effects of angiotensin-II and transforming growth factor beta. Endocr Res 17:281–296PubMedCrossRefGoogle Scholar
  67. 67.
    Holland OB et al (1993) Angiotensin increases aldosterone synthase mRNA levels in human NCI-H295 cells. Mol Cell Endocrinol 94:R9–13PubMedCrossRefGoogle Scholar
  68. 68.
    Pezzi V et al (1997) Ca(2+)-regulated expression of aldosterone synthase is mediated by calmodulin and calmodulin-dependent protein kinases. Endocrinology 138:835–838PubMedCrossRefGoogle Scholar
  69. 69.
    Clyne CD et al (1997) Angiotensin II and potassium regulate human CYP11B2 transcription through common cis-elements. Mol Endocrinol 11:638–649PubMedCrossRefGoogle Scholar
  70. 70.
    Leers-Sucheta S et al (1997) Synergistic activation of the human type II 3á-hydroxysteroid dehydrogenase/delta 5 – delta 4 isomerase promoter by the transcription factor steroidogenic factor-1/adrenal 4-binding protein and phorbol ester. J Biol Chem 272:7960–7967PubMedCrossRefGoogle Scholar
  71. 71.
    Bollag WB et al (2008) Phorbol ester increases mitochondrial cholesterol content in NCI H295R cells. Mol Cell Endocrinol 296:53–57PubMedCrossRefGoogle Scholar
  72. 72.
    Brenner T, O’Shaughnessy KM (2008) Both TASK-3 and TREK-1 two-pore loop K channels are expressed in H295R cells and modulate their membrane potential and aldosterone secretion. Am J Physiol Endocrinol Metab 295:E1480–1486PubMedCrossRefGoogle Scholar
  73. 73.
    Burton TJ et al (2009) Expression of the epithelial Na(+) channel and other components of an aldosterone response pathway in human adrenocortical cells. Eur J Pharmacol 61:176–181CrossRefGoogle Scholar
  74. 74.
    Gizard F et al (2002) The transcriptional regulating protein of 132 kDa (TReP-132) enhances P450scc gene transcription through interaction with steroidogenic factor-1 in human adrenal cells. J Biol Chem 277:39144–39155PubMedCrossRefGoogle Scholar
  75. 75.
    Guo W et al (1995) Expression of DAX-1, the gene responsible for X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism, in the hypothalamic-pituitary-adrenal/gonadal axis. Biochem Mol Med 56:8–13PubMedCrossRefGoogle Scholar
  76. 76.
    Isaka T et al (2009) Azelnidipine inhibits aldosterone synthesis and secretion in human adrenocortical cell line NCI-H295R. Eur J Pharmacol 605:49–52PubMedCrossRefGoogle Scholar
  77. 77.
    Kempna P et al (2007) Pioglitazone inhibits androgen production in NCI-H295R cells by regulating gene expression of CYP17 and HSD3B2. Mol Pharmacol 71:787–798PubMedCrossRefGoogle Scholar
  78. 78.
    Lehoux JG, Lefebvre A (2007) Angiotensin II activates p44/42 MAP kinase partly through PKCepsilon in H295R cells. Mol Cell Endocrinol 265-266:121–125PubMedCrossRefGoogle Scholar
  79. 79.
    Muller-Vieira U et al (2005) The adrenocortical tumor cell line NCI-H295R as an in vitro screening system for the evaluation of CYP11B2 (aldosterone synthase) and CYP11B1 (steroid-11beta-hydroxylase) inhibitors. J Steroid Biochem Mol Biol 96:259–270PubMedCrossRefGoogle Scholar
  80. 80.
    Qin H et al (2009) The Role of Calcium Influx Pathways in Phospholipase D Activation in Bovine Adrenal Glomerulosa Cells. J Endocrinol 202:77–86PubMedCrossRefGoogle Scholar
  81. 81.
    Romero DG et al (2006b). Interleukin-8 synthesis, regulation, and steroidogenic role in H295R human adrenocortical cells. Endocrinology 147:891–898PubMedCrossRefGoogle Scholar
  82. 82.
    Sugawara T et al (2006) CREM confers cAMP responsiveness in human steroidogenic acute regulatory protein expression in NCI-H295R cells rather than SF-1/Ad4BP. J Endocrinol 191:327–337PubMedCrossRefGoogle Scholar
  83. 83.
    Vilain E et al (1997) DAX1 gene expression upregulated by steroidogenic factor 1 in an adrenocortical carcinoma cell line. Biochem Mol Med 61:1–8PubMedCrossRefGoogle Scholar
  84. 84.
    Shoemaker RH (2006) The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer 6:813–823PubMedCrossRefGoogle Scholar
  85. 85.
    Bodrogi I. (1989) Third-line chemotherapy of resistant advanced testicular cancer. Prog Clin Biol Res 303:749–758PubMedGoogle Scholar
  86. 86.
    Fisher RI et al (1981) Adjuvant immunotherapy or chemotherapy for malignant melanoma. Preliminary report of the National Cancer Institute randomized clinical trial. Surg Clin North Am 61:1267–1277PubMedGoogle Scholar
  87. 87.
    Lopez Garcia N (1980) Contribution to the study of adenocarcinoma of the endometrium [Part I: Introduction. Part II: Material and methods]. Rev Esp Oncol 27:443–521 contdPubMedGoogle Scholar
  88. 88.
    Weiss RB et al (1980) m-AMSA: an exciting new drug in the National Cancer Institute Drug Development Program. Cancer Clin Trials 3:203–209PubMedGoogle Scholar
  89. 89.
    La Rocca RV et al (1990) Suramin in adrenal cancer: modulation of steroid hormone production, cytotoxicity in vitro, and clinical antitumor effect. J Clin Endocrinol Metab 71:497–504PubMedCrossRefGoogle Scholar
  90. 90.
    Schteingart DE et al (1993) Comparison of the adrenalytic activity of mitotane and a methylated homolog on normal adrenal cortex and adrenal cortical carcinoma. Cancer Chemother Pharmacol 31:459–466PubMedCrossRefGoogle Scholar
  91. 91.
    Fallo F et al (1996) Effects of taxol on the human NCI-H295 adrenocortical carcinoma cell line. Endocr Res 22:709–715PubMedGoogle Scholar
  92. 92.
    Fallo F et al (1998) Paclitaxel is an effective antiproliferative agent on the human NCI-H295 adrenocortical carcinoma cell line. Chemotherapy 44:129–134PubMedCrossRefGoogle Scholar
  93. 93.
    Fassnacht M et al (2000) New mechanisms of adrenostatic compounds in a human adrenocortical cancer cell line. Eur J Clin Invest 30 Suppl 3:76–82CrossRefGoogle Scholar
  94. 94.
    Betz MJ et al (2005) Peroxisome proliferator-activated receptor-gamma agonists suppress adrenocortical tumor cell proliferation and induce differentiation. J Clin Endocrinol Metab 90:3886–3896PubMedCrossRefGoogle Scholar
  95. 95.
    van Koetsveld PM et al (2006) Potent inhibitory effects of type I interferons on human adrenocortical carcinoma cell growth. J Clin Endocrinol Metab 91:4537–4543PubMedCrossRefGoogle Scholar
  96. 96.
    Doghman M et al (2008) The T cell factor/beta-catenin antagonist PKF115-584 inhibits proliferation of adrenocortical carcinoma cells. J Clin Endocrinol Metab 93:3222–3225PubMedCrossRefGoogle Scholar
  97. 97.
    Barlaskar FM et al (2009) Preclinical targeting of the type I insulin-like growth factor receptor in adrenocortical carcinoma. J Clin Endocrinol Metab 94:204–212PubMedCrossRefGoogle Scholar
  98. 98.
    Ghorab Z et al (2003) Melan A (A103) is expressed in adrenocortical neoplasms but not in renal cell and hepatocellular carcinomas. Appl Immunohistochem Mol Morphol 11:330–333PubMedGoogle Scholar
  99. 99.
    Mizutani T et al (2002) Maintenance of integrated proviral gene expression requires Brm, a catalytic subunit of SWI/SNF complex. J Biol Chem 277:15859–15864PubMedCrossRefGoogle Scholar
  100. 100.
    Hornsby PJ et al (1989) Replicative senescence and differentiated gene expression in cultured adrenocortical cells. Exp Gerontol 24:539–558PubMedCrossRefGoogle Scholar
  101. 101.
    Cong YS et al (2002) Human telomerase and its regulation. Microbiol Mol Biol Rev 66:407–425PubMedCrossRefGoogle Scholar
  102. 102.
    Cohen AI et al (1957) In vitro response of experimental adrenal tumors to corticotropin (ACTH). Proc Soc Exp Biol Med 95:304–309PubMedGoogle Scholar
  103. 103.
    Buonassisi V et al (1962) Hormone-producing cultures of adrenal and pituitary tumor origin. Proc Natl Acad Sci U S A 48:1184–1190PubMedCrossRefGoogle Scholar
  104. 104.
    Kowal J, Fiedler R (1968) Adrenal cells in tissue culture. I. Assay of steroid products; steroidogenic responses to peptide hormones. Arch Biochem Biophys 128:406–421PubMedCrossRefGoogle Scholar
  105. 105.
    Parker KL et al (1985) Expression of murine 21-hydroxylase in mouse adrenal glands and in transfected Y1 adrenocortical tumor cells. Proc Natl Acad Sci U S A 82:7860–7864PubMedCrossRefGoogle Scholar
  106. 106.
    Pierson RWJ (1967) Metabolism of steroid hormones in adrenal cortex tumor cultures. Endocrinology 81:693–707PubMedCrossRefGoogle Scholar
  107. 107.
    Schimmer BP (1985) Isolation of ACTH-resistant Y1 adrenal tumor cells. Methods Enzymol 109:350–356PubMedCrossRefGoogle Scholar
  108. 108.
    Cuprak LJ et al (1977) Scanning electron microscopy of induced cell rounding of mouse adrenal cortex tumor cells in culture. Tissue Cell 9:667–680PubMedCrossRefGoogle Scholar
  109. 109.
    Mattson P, Kowal J (1978) The ultrastructure of functional mouse adrenal cortical tumor cells in vitro. Differentiation 11:75–88PubMedCrossRefGoogle Scholar
  110. 110.
    Voorhees H et al (1984) Rounding and steroidogenesis of enzyme- and ACTH-treated Y-1 mouse adrenal tumor cells. Cell Biol Intl 8:483–497CrossRefGoogle Scholar
  111. 111.
    Schimmer BP et al (1995) Adrenocorticotropin-resistant mutants of the Y1 adrenal cell line fail to express the adrenocorticotropin receptor. J Cell Physiol 163:164–171PubMedCrossRefGoogle Scholar
  112. 112.
    Black SM et al (1993) Regulation of proteins in the cholesterol side-chain cleavage system in JEG-3 and Y-1 cells. Endocrinology 132:539–545PubMedCrossRefGoogle Scholar
  113. 113.
    Guo IC et al (1993) Differential regulation of the CYP11A1 (P450scc) and ferredoxin genes in adrenal and placental cells. DNA Cell Biol 12:849–860PubMedCrossRefGoogle Scholar
  114. 114.
    Lin X et al (2001) Salt-inducible kinase is involved in the ACTH/cAMP-dependent protein kinase signaling in Y1 mouse adrenocortical tumor cells. Mol Endocrinol 15:1264–1276PubMedCrossRefGoogle Scholar
  115. 115.
    Wong M et al (1989) The roles of cAMP and cAMP-dependent protein kinase in the expression of cholesterol side chain cleavage and steroid 11 beta-hydroxylase genes in mouse adrenocortical tumor cells. J Biol Chem 264:12867–12871PubMedGoogle Scholar
  116. 116.
    Mitani F et al (1998) Localization of replicating cells in rat adrenal cortex during the late gestational and early postnatal stages. Endocr Res 24:983–986PubMedCrossRefGoogle Scholar
  117. 117.
    Rice DA et al (1989) A cAMP-responsive element regulates expression of the mouse steroid 11 beta-hydroxylase gene. J Biol Chem 264:14011–14015PubMedGoogle Scholar
  118. 118.
    Lin D et al (1995) Role of steroidogenic acute regulatory protein in adrenal and gonadal steroidogenesis. Science 267:1828–1831PubMedCrossRefGoogle Scholar
  119. 119.
    Lopez D et al (2001) Effects of mutating different steroidogenic factor-1 protein regions on gene regulation. Endocrine 14:353–362PubMedCrossRefGoogle Scholar
  120. 120.
    Temel RE et al (1997) Scavenger receptor class B, type I (SR-BI) is the major route for the delivery of high density lipoprotein cholesterol to the steroidogenic pathway in cultured mouse adrenocortical cells. Proc Natl Acad Sci U S A 94:13600–13605PubMedCrossRefGoogle Scholar
  121. 121.
    Endoh A et al (1996) The zona reticularis is the site of biosynthesis of dehydroepiandrosterone and dehydroepiandrosterone sulfate in the adult human adrenal cortex resulting from its low expression of 3 beta-hydroxysteroid dehydrogenase. J Clin Endocrinol Metabo 81:3558–3565CrossRefGoogle Scholar
  122. 122.
    Auersperg N et al (1981) Morphological and functional differentiation of Kirsten murine sarcoma virus-transformed rat adrenocortical cell lines. Cancer Res 41:1763–1771PubMedGoogle Scholar
  123. 123.
    Kananen K et al (1996) Gonadectomy permits adrenocortical tumorigenesis in mice transgenic for the mouse inhibin alpha-subunit promoter/simian virus 40 T-antigen fusion gene: evidence for negative autoregulation of the inhibin alpha-subunit gene. Mol Endocrinol 10:1667PubMedCrossRefGoogle Scholar
  124. 124.
    Rilianawati et al (1998) Direct luteinizing hormone action triggers adrenocortical tumorigenesis in castrated mice transgenic for the murine inhibin alpha-subunit promoter/simian virus 40 T-antigen fusion gene. Mol Endocrinol 12:801–809PubMedCrossRefGoogle Scholar
  125. 125.
    Chang CW et al (1991) The response of 21-hydroxylase messenger ribonucleic acid levels to adenosine 3',5'-monophosphate and 12-O-tetradecanoylphorbol-13-acetate in bovine adrenocortical cells is dependent on culture conditions. Endocrinology 128:604–610PubMedCrossRefGoogle Scholar
  126. 126.
    Thomas M et al (2002) Cooperation of hTERT, SV40 T antigen and oncogenic Ras in tumorigenesis: a cell transplantation model using bovine adrenocortical cells. Neoplasia 4:493–500PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of PhysiologyMedical College of GeorgiaAugustaUSA
  2. 2.Department of Pediatrics, Pathology and CytogeneticsMedical College of GeorgiaAugustaUSA

Personalised recommendations