WNT/β-Catenin Signaling in Adrenocortical Carcinoma

  • Sébastien Gaujoux
  • Frédérique Tissier
  • Jérôme Bertherat


The WNT/β-catenin signaling pathway plays a major role in the development of various tissues, including the adrenal cortex. β-Catenin fulfills a dual role as a structural component in cell–cell adhesion and as the key transcription cofactor of T-cell factor/lymphoid enhancer factor (TCF/LEF).


Familial Adenomatous Polyposis Adenomatous Polyposis Coli Familial Adenomatous Polyposis Patient Adrenocortical Tumor Carney Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bienz M (2005) Beta-catenin: a pivot between cell adhesion and Wnt signalling. Curr Biol 15(2):R64–67PubMedCrossRefGoogle Scholar
  2. 2.
    Kemler R (1993) From cadherins to catenins: cytoplasmic protein interactions and regulation of cell adhesion. Trends Genet 9(9):317–321PubMedCrossRefGoogle Scholar
  3. 3.
    Lilien J, Balsamo J (2005) The regulation of cadherin-mediated adhesion by tyrosine phosphorylation/dephosphorylation of beta-catenin. Curr Opin Cell Biol 17(5):459–465PubMedCrossRefGoogle Scholar
  4. 4.
    Giles RH et al (2003) Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta 1653(1):1–24PubMedGoogle Scholar
  5. 5.
    Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810PubMedCrossRefGoogle Scholar
  6. 6.
    Nusse R (2005) Cell biology: relays at the membrane. Nature 438(7069):747–749PubMedCrossRefGoogle Scholar
  7. 7.
    Polakis P (2000) Wnt signaling and cancer. Genes Dev 14(15):1837–1851PubMedGoogle Scholar
  8. 8.
    Huang H, He X (2008) Wnt/beta-catenin signaling: new (and old) players and new insights. Curr Opin Cell Biol 20(2):119–125PubMedCrossRefGoogle Scholar
  9. 9.
    Liu C et al (2002) Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108(6):837–847PubMedCrossRefGoogle Scholar
  10. 10.
    Aberle H et al (1997) Beta-catenin is a target for the ubiquitin-proteasome pathway. Embo J 16(13):3797–3804PubMedCrossRefGoogle Scholar
  11. 11.
    Winston JT et al (1999) The SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro. Genes Dev 13(3):270–283PubMedCrossRefGoogle Scholar
  12. 12.
    Townsley FM et al (2004) Pygopus and Legless target Armadillo/beta-catenin to the nucleus to enable its transcriptional co-activator function. Nat Cell Biol 6(7):626–633PubMedCrossRefGoogle Scholar
  13. 13.
    Clevers H, van de Wetering M (1997) TCF/LEF factor earn their wings. Trends Genet 13(12):485–489PubMedCrossRefGoogle Scholar
  14. 14.
    Polakis P (1999) The oncogenic activation of beta-catenin. Curr Opin Genet Dev 9(1):515–21CrossRefGoogle Scholar
  15. 15.
    Behrens J, Lustig B (2004) The Wnt connection to tumorigenesis. Int J Dev Biol 48(5–6):477–487PubMedCrossRefGoogle Scholar
  16. 16.
    Johnson ML et al (2004) LRP5 and Wnt signaling: a union made for bone. J Bone Miner Res 19(11):1749–1757PubMedCrossRefGoogle Scholar
  17. 17.
    Li L et al (1999) Axin and Frat1 interact with dvl and GSK, bridging Dvl to GSK in Wnt-mediated regulation of LEF-1. Embo J 18(15):4233–4240PubMedCrossRefGoogle Scholar
  18. 18.
    Kishida S et al (1999) DIX domains of Dvl and axin are necessary for protein interactions and their ability to regulate beta-catenin stability. Mol Cell Biol 19(6):4414–4422PubMedGoogle Scholar
  19. 19.
    Peifer M, Polakis P (2000) Wnt signaling in oncogenesis and embryogenesis–a look outside the nucleus. Science 287(5458):1606–1609PubMedCrossRefGoogle Scholar
  20. 20.
    Aberle H et al (1994) Assembly of the cadherin–catenin complex in vitro with recombinant proteins. J Cell Sci 107(Pt 12):3655–3663PubMedGoogle Scholar
  21. 21.
    Hulsken J et al (1994) E-cadherin and APC compete for the interaction with beta-catenin and the cytoskeleton. J Cell Biol 127(6 Pt 2):2061–2069PubMedCrossRefGoogle Scholar
  22. 22.
    Yost C et al (1996) The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev 10(12):1443–1454PubMedCrossRefGoogle Scholar
  23. 23.
    Munemitsu S et al (1996) Deletion of an amino-terminal sequence beta-catenin in vivo and promotes hyperphosphorylation of the adenomatous polyposis coli tumor suppressor protein. Mol Cell Biol 16(8):4088–4094PubMedGoogle Scholar
  24. 24.
    Rubinfeld B et al (1995) The APC protein and E-cadherin form similar but independent complexes with alpha-catenin, beta-catenin, and plakoglobin. J Biol Chem 270(10):5549–5555PubMedCrossRefGoogle Scholar
  25. 25.
    Behrens J et al (1996) Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 382(6592):638–642PubMedCrossRefGoogle Scholar
  26. 26.
    Aberle H et al (1996) Single amino acid substitutions in proteins of the armadillo gene family abolish their binding to alpha-catenin. J Biol Chem 271(3):1520–1526PubMedCrossRefGoogle Scholar
  27. 27.
    Huber O et al (1996) Nuclear localization of beta-catenin by interaction with transcription factor LEF-1. Mech Dev 59(1):3–10PubMedCrossRefGoogle Scholar
  28. 28.
    Molenaar M et al (1996) XTcf-3 transcription factor mediates betacatenin-induced axis formation in Xenopus embryos. Cell 86(3):391–399PubMedCrossRefGoogle Scholar
  29. 29.
    van de Wetering M et al (1997) Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 88(6):789–799PubMedCrossRefGoogle Scholar
  30. 30.
    Kraus C et al (1994) Localization of the human beta-catenin gene (CTNNB1) to 3p21: a region implicated in tumor development. Genomics 23(1):272–274PubMedCrossRefGoogle Scholar
  31. 31.
    van Hengel J et al (1995) Assignment of the human beta-catenin gene (CTNNB1) to 3p22–>p21.3 by fluorescence in situ hybridization. Cytogenet Cell Genet 70(1–2):68–70PubMedCrossRefGoogle Scholar
  32. 32.
    Nollet F et al (1996) Genomic organization of the human beta-catenin gene (CTNNB1). Genomics 32(3):413–424PubMedCrossRefGoogle Scholar
  33. 33.
    Zeng L et al (1997) The mouse fused locus encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell 90(1):181–192PubMedCrossRefGoogle Scholar
  34. 34.
    Salahshor S, Woodgett JR (2005) The links between axin and carcinogenesis. J Clin Pathol 58(3):225–236PubMedCrossRefGoogle Scholar
  35. 35.
    Fearnhead NS et al (2001) The ABC of APC. Hum Mol Genet 10(7):721–733PubMedCrossRefGoogle Scholar
  36. 36.
    Hsu W et al (1999) Identification of a domain of Axin that binds to the serine/threonine protein phosphatase 2A and a self-binding domain. J Biol Chem 274(6):3439–3445PubMedCrossRefGoogle Scholar
  37. 37.
    Zhang Y et al (2002) Casein kinase I and casein kinase II differentially regulate axin function in Wnt and JNK pathways. J Biol Chem 277(20):17706–17712PubMedCrossRefGoogle Scholar
  38. 38.
    Satoh S, et al (2000) AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nat Genet 24(3):245–250PubMedCrossRefGoogle Scholar
  39. 39.
    Dong X et al (2001) Genomic structure, chromosome mapping and expression analysis of the human AXIN2 gene. Cytogenet Cell Genet 93(1–2):26–28PubMedCrossRefGoogle Scholar
  40. 40.
    Jho EH et al (2002) Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol 22(4):1172–1183PubMedCrossRefGoogle Scholar
  41. 41.
    Lustig B et al (2002) Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol Cell Biol 22(4):1184–1193PubMedCrossRefGoogle Scholar
  42. 42.
    Yan D et al (2001) Elevated expression of axin2 and hnkd mRNA provides evidence that Wnt/beta-catenin signaling is activated in human colon tumors. Proc Natl Acad Sci USA 98(26):14973–14978PubMedCrossRefGoogle Scholar
  43. 43.
    Bienz M (2002) The subcellular destinations of APC proteins. Nat Rev Mol Cell Biol 3(5):328–338PubMedCrossRefGoogle Scholar
  44. 44.
    Kinzler KW et al (1991) Identification of FAP locus genes from chromosome 5q21. Science 253(5020):661–665PubMedCrossRefGoogle Scholar
  45. 45.
    Groden J et al (1991) Identification and characterization of the familial adenomatous polyposis coli gene. Cell 66(3):589–600PubMedCrossRefGoogle Scholar
  46. 46.
    Rubinfeld B et al (1996) Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science 272(5264):1023–1026PubMedCrossRefGoogle Scholar
  47. 47.
    Yamamoto H et al (1999) Phosphorylation of axin, a Wnt signal negative regulator, by glycogen synthase kinase-3beta regulates its stability. J Biol Chem 274(16):10681–10684PubMedCrossRefGoogle Scholar
  48. 48.
    Rivera MN et al (2007) An X chromosome gene, WTX, is commonly inactivated in Wilms tumor. Science 315(5812):642–645PubMedCrossRefGoogle Scholar
  49. 49.
    Major MB et al (2007) Wilms tumor suppressor WTX negatively regulates WNT/beta-catenin signaling. Science 316(5827):1043–1046PubMedCrossRefGoogle Scholar
  50. 50.
    Perotti D et al (2008) Functional inactivation of the WTX gene is not a frequent event in Wilms’ tumors. Oncogene 27(33):4625–4632PubMedCrossRefGoogle Scholar
  51. 51.
    Ruteshouser EC et al (2008) Wilms tumor genetics: mutations in WT1, WTX, and CTNNB1 account for only about one-third of tumors. Genes Chromosomes Cancer 47(6):461–470PubMedCrossRefGoogle Scholar
  52. 52.
    Jenkins ZA et al (2009) Germline mutations in WTX cause a sclerosing skeletal dysplasia but do not predispose to tumorigenesis. Nat Genet 41(1):95–100PubMedCrossRefGoogle Scholar
  53. 53.
    Grohmann A et al (2007) AMER1 regulates the distribution of the tumor suppressor APC between microtubules and the plasma membrane. J Cell Sci 120(Pt 21):3738–3747PubMedCrossRefGoogle Scholar
  54. 54.
    Cavallo RA et al (1998) Drosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature 395(6702):604–608PubMedCrossRefGoogle Scholar
  55. 55.
    Roose J et al (1998) The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors. Nature 395(6702):608–612PubMedCrossRefGoogle Scholar
  56. 56.
    Chen G et al (1999) A functional interaction between the histone deacetylase Rpd3 and the corepressor Groucho in Drosophila development. Genes Dev 13(17):2218–2230PubMedCrossRefGoogle Scholar
  57. 57.
    Hecht A et al (2000) The p300/CBP acetyltransferases function as transcriptional coactivators of beta-catenin in vertebrates. Embo J 19(8):1839–1850PubMedCrossRefGoogle Scholar
  58. 58.
    Levy L et al (2004) Acetylation of beta-catenin by p300 regulates beta-catenin-Tcf4 interaction. Mol Cell Biol 24(8):3404–3414PubMedCrossRefGoogle Scholar
  59. 59.
    Wolf D et al (2002) Acetylation of beta-catenin by CREB-binding protein (CBP). J Biol Chem 277(28):25562–25567PubMedCrossRefGoogle Scholar
  60. 60.
    Lammi L et al (2004) Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. Am J Hum Genet 74(5):1043–1050PubMedCrossRefGoogle Scholar
  61. 61.
    Mostowska A et al (2006) Axis inhibition protein 2 (AXIN2) polymorphisms may be a risk factor for selective tooth agenesis. J Hum Genet 51(3):262–266PubMedCrossRefGoogle Scholar
  62. 62.
    He TC et al (1998) A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA 95(5):2509–2514PubMedCrossRefGoogle Scholar
  63. 63.
    Shtutman M et al (1999) The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci USA 96(10):5522–5527PubMedCrossRefGoogle Scholar
  64. 64.
    Tetsu O, McCormick F (1999) Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398(6726):422–426PubMedCrossRefGoogle Scholar
  65. 65.
    Zhang X et al (2001) Regulation of vascular endothelial growth factor by the Wnt and K-ras pathways in colonic neoplasia. Cancer Res 61(16):6050–6054PubMedGoogle Scholar
  66. 66.
    Brabletz T et al (1999) Beta-catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. Am J Pathol 155(4):1033–1038PubMedGoogle Scholar
  67. 67.
    Conacci-Sorrell ME et al (2002) Nr-CAM is a target gene of the betacatenin/LEF-1 pathway in melanoma and colon cancer and its expression enhances motility and confers tumorigenesis. Genes Dev 16(16):2058–2072PubMedCrossRefGoogle Scholar
  68. 68.
    Crawford HC et al (1999) The metalloproteinase matrilysin is a target of beta-catenin transactivation in intestinal tumors. Oncogene 18(18):2883–2891PubMedCrossRefGoogle Scholar
  69. 69.
    Moon RT et al (2004) WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet 5(9):691–701PubMedCrossRefGoogle Scholar
  70. 70.
    Chiang JM et al (2002) Nuclear beta-catenin expression is closely related to ulcerative growth of colorectal carcinoma. Br J Cancer 86(7):1124–1129PubMedCrossRefGoogle Scholar
  71. 71.
    Clements WM et al (2002) Beta-catenin mutation is a frequent cause of Wnt pathway activation in gastric cancer. Cancer Res 62(12):3503–3506PubMedGoogle Scholar
  72. 72.
    Laurent-Puig P et al (2001) Genetic alterations associated with hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis. Gastroenterology 120(7):1763–1773PubMedCrossRefGoogle Scholar
  73. 73.
    Kartheuser A et al (1999) Familial adenomatous polyposis associated with multiple adrenal adenomas in a patient with a rare 3′ APC mutation. J Med Genet 36(1):65–67PubMedGoogle Scholar
  74. 74.
    Ono C et al (1991) A case of familial adenomatous polyposis complicated by thyroid carcinoma, carcinoma of the ampulla of vater and adrenocortical adenoma. Jpn J Surg 21(2):234–240PubMedCrossRefGoogle Scholar
  75. 75.
    Seki M et al (1992) Loss of normal allele of the APC gene in an adrenocortical carcinoma from a patient with familial adenomatous polyposis. Hum Genet 89(3):298–300PubMedCrossRefGoogle Scholar
  76. 76.
    Wakatsuki S et al (1998) Adrenocortical tumor in a patient with familial adenomatous polyposis: a case associated with a complete inactivating mutation of the APC gene and unusual histological features. Hum Pathol 29(3):302–306PubMedCrossRefGoogle Scholar
  77. 77.
    Kim AC et al (2008) Targeted disruption of beta-catenin in Sf1-expressing cells impairs development and maintenance of the adrenal cortex. Development 135(15):2593–2602PubMedCrossRefGoogle Scholar
  78. 78.
    Gummow BM et al (2003) Convergence of Wnt signaling and steroidogenic factor-1 (SF-1) on transcription of the rat inhibin alpha gene. J Biol Chem 278(29):26572–26579PubMedCrossRefGoogle Scholar
  79. 79.
    Kim AC et al (2009) In search of adrenocortical stem and progenitor cells. Endocr Rev 30(3):241–263PubMedCrossRefGoogle Scholar
  80. 80.
    Val P, Swain A (2010) Gene dosage effects and transcriptional regulation of early mammalian adrenal cortex development. Mol Cell Endocrinol 323(1):105–114PubMedCrossRefGoogle Scholar
  81. 81.
    Beuschlein F et al (1994) Clonal composition of human adrenocortical neoplasms. Cancer Res 54(18):4927–4932PubMedGoogle Scholar
  82. 82.
    Gicquel C et al (1994) Clonal analysis of human adrenocortical carcinomas and secreting adenomas. Clin Endocrinol (Oxf) 40(4):465–477CrossRefGoogle Scholar
  83. 83.
    Libe R et al (2007) Adrenocortical cancer: pathophysiology and clinical management. Endocr Relat Cancer 14(1):13–28PubMedCrossRefGoogle Scholar
  84. 84.
    Reincke M et al (1994) p53 mutations in human adrenocortical neoplasms: immunohistochemical and molecular studies. J Clin Endocrinol Metab 78(3):790–794PubMedCrossRefGoogle Scholar
  85. 85.
    Sidhu S et al (2002) Comparative genomic hybridization analysis of adrenocortical tumors. J Clin Endocrinol Metab 87(7):3467–3474PubMedCrossRefGoogle Scholar
  86. 86.
    Kirschner LS et al (2000) Mutations of the gene encoding the protein kinase A type I-alpha regulatory subunit in patients with the Carney complex. Nat Genet 26(1):89–92PubMedCrossRefGoogle Scholar
  87. 87.
    Boulle N et al (1998) Increased levels of insulin-like growth factor II (IGF-II) and IGF-binding protein-2 are associated with malignancy in sporadic adrenocortical tumors. J Clin Endocrinol Metab 83(5):1713–1720PubMedCrossRefGoogle Scholar
  88. 88.
    Libe R, Bertherat J (2005) Molecular genetics of adrenocortical tumours, from familial to sporadic diseases. Eur J Endocrinol 153(4):477–487PubMedCrossRefGoogle Scholar
  89. 89.
    Gaujoux S et al (2008) Wnt/beta-catenin and 3′,5′-cyclic adenosine 5′-monophosphate/protein kinase A signaling pathways alterations and somatic beta-catenin gene mutations in the progression of adrenocortical tumors. J Clin Endocrinol Metab 93(10):4135–4140PubMedCrossRefGoogle Scholar
  90. 90.
    Tadjine M et al (2008) Frequent mutations of beta-catenin gene in sporadic secreting adrenocortical adenomas. Clin Endocrinol (Oxf) 68(2):264–270Google Scholar
  91. 91.
    Tadjine M et al (2008) Detection of somatic beta-catenin mutations in primary pigmented nodular adrenocortical disease (PPNAD). Clin Endocrinol (Oxf) 69(3):367–373CrossRefGoogle Scholar
  92. 92.
    Tissier F et al (2005) Mutations of beta-catenin in adrenocortical tumors: activation of the Wnt signaling pathway is a frequent event in both benign and malignant adrenocortical tumors. Cancer Res 65(17):7622–7627PubMedGoogle Scholar
  93. 93.
    Bernichtein S et al (2008) Adrenal gland tumorigenesis after gonadectomy in mice is a complex genetic trait driven by epistatic loci. Endocrinology 149(2):651–661PubMedCrossRefGoogle Scholar
  94. 94.
    Bielinska M et al (2005) Gonadotropin-induced adrenocortical neoplasia in NU/J nude mice. Endocrinology 146(9):3975–3984PubMedCrossRefGoogle Scholar
  95. 95.
    Groussin L et al (2002) Mutations of the PRKAR1A gene in Cushing’s syndrome due to sporadic primary pigmented nodular adrenocortical disease. J Clin Endocrinol Metab 87(9):4324–4329PubMedCrossRefGoogle Scholar
  96. 96.
    Bertherat J et al (2003) Molecular and functional analysis of PRKAR1A and its locus (17q22-24) in sporadic adrenocortical tumors:17q losses, somatic mutations, and protein kinase A expression and activity. Cancer Res 63(17):5308–5319PubMedGoogle Scholar
  97. 97.
    Bossis I, Stratakis CA (2004) Minireview: PRKAR1A: normal and abnormal functions. Endocrinology 145(12):5452–5458PubMedCrossRefGoogle Scholar
  98. 98.
    Horvath A et al (2008) Large deletions of the PRKAR1A gene in Carney complex. Clin Cancer Res 14(2):388–395PubMedCrossRefGoogle Scholar
  99. 99.
    Horvath A et al (2006) Serial analysis of gene expression in adrenocortical hyperplasia caused by a germline PRKAR1A mutation. J Clin Endocrinol Metab 91(2):584–596PubMedCrossRefGoogle Scholar
  100. 100.
    Iliopoulos D et al (2009) MicroRNA signature of primary pigmented nodular adrenocortical disease: clinical correlations and regulation of Wnt signaling. Cancer Res 69(8):3278–3282PubMedCrossRefGoogle Scholar
  101. 101.
    Li G, Iyengar R (2002) Calpain as an effector of the Gq signaling pathway for inhibition of Wnt/beta-catenin-regulated cell proliferation. Proc Natl Acad Sci USA 99(20):13254–13259PubMedCrossRefGoogle Scholar
  102. 102.
    Liu J et al (2001) Siah-1 mediates a novel beta-catenin degradation pathway linking p53 to the adenomatous polyposis coli protein. Mol Cell 7(5):927–936PubMedCrossRefGoogle Scholar
  103. 103.
    Matsuzawa SI, Reed JC (2001) Siah-1, SIP, and Ebi collaborate in a novel pathway for beta-catenin degradation linked to p53 responses. Mol Cell 7(5):915–926PubMedCrossRefGoogle Scholar
  104. 104.
    Hino S et al (2005) Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase stabilizes beta-catenin through inhibition of its ubiquitination. Mol Cell Biol 25(20):9063–9072PubMedCrossRefGoogle Scholar
  105. 105.
    Taurin S et al (2006) Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase. J Biol Chem 281(15):9971–9976PubMedCrossRefGoogle Scholar
  106. 106.
    Hagen T, Vidal-Puig A (2002) Characterisation of the phosphorylation of beta-catenin at the GSK3 priming site Ser45. Biochem Biophys Res Commun 294(2):324–328PubMedCrossRefGoogle Scholar
  107. 107.
    Kikuchi A (2003) Tumor formation by genetic mutations in the components of the Wnt signaling pathway. Cancer Sci 94(3):225–229PubMedCrossRefGoogle Scholar
  108. 108.
    Wu R et al (2001) Diverse mechanisms of beta-catenin deregulation in ovarian endometrioid adenocarcinomas. Cancer Res 61(22):8247–8255PubMedGoogle Scholar
  109. 109.
    Bourdeau I et al (2004) Gene array analysis of macronodular adrenal hyperplasia confirms clinical heterogeneity and identifies several candidate genes as molecular mediators. Oncogene 23(8):1575–1585PubMedCrossRefGoogle Scholar
  110. 110.
    Giordano TJ et al (2003) Distinct transcriptional profiles of adrenocortical tumors uncovered by DNA microarray analysis. Am J Pathol 162(2):521–531PubMedGoogle Scholar
  111. 111.
    Doghman M et al (2008) The T cell factor/beta-catenin antagonist PKF115-584 inhibits proliferation of adrenocortical carcinoma cells. J Clin Endocrinol Metab 93(8):3222–3225PubMedCrossRefGoogle Scholar
  112. 112.
    Bernard MH et al (2003) A case report in favor of a multistep adrenocortical tumorigenesis. J Clin Endocrinol Metab 88(3):998–1001PubMedCrossRefGoogle Scholar
  113. 113.
    Gicquel C et al (2001) Molecular markers and long-term recurrences in a large cohort of patients with sporadic adrenocortical tumors. Cancer Res 61(18):6762–6767PubMedGoogle Scholar
  114. 114.
    Morin PJ et al (1997) Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275(5307):1787–1790PubMedCrossRefGoogle Scholar
  115. 115.
    Smith TG et al (2000) Adrenal masses are associated with familial adenomatous polyposis. Dis Colon Rectum 43(12):1739–1742PubMedCrossRefGoogle Scholar
  116. 116.
    Marchesa P et al (1997) Adrenal masses in patients with familial adenomatous polyposis. Dis Colon Rectum 40(9):1023–1028PubMedCrossRefGoogle Scholar
  117. 117.
    Traill Z et al (1995) Adrenal carcinoma in a patient with Gardner’s syndrome: imaging findings. AJR Am J Roentgenol 165(6):1460–1461PubMedGoogle Scholar
  118. 118.
    Lepourcelet M et al (2004) Small-molecule antagonists of the oncogenic Tcf/betacatenin protein complex. Cancer Cell 5(1):91–102PubMedCrossRefGoogle Scholar
  119. 119.
    Sukhdeo K et al (2007) Targeting the beta-catenin/TCF transcriptional complex in the treatment of multiple myeloma. Proc Natl Acad Sci USA 104(18):7516–7521PubMedCrossRefGoogle Scholar
  120. 120.
    Doghman M et al (2007) Increased steroidogenic factor-1 dosage triggers adrenocortical cell proliferation and cancer. Mol Endocrinol 21(12):2968–2987PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Sébastien Gaujoux
    • 1
    • 2
  • Frédérique Tissier
    • 1
    • 3
  • Jérôme Bertherat
    • 1
    • 4
  1. 1.Endocrinology, Metabolism and Cancer DepartmentInstitut Cochin, INSERM U567, CNRS UMR8104ParisFrance
  2. 2.Department of Digestive and Endocrine Surgery, Assistance Publique Hôpitaux de Paris, Hôpital CochinParis Descartes UniversityParisFrance
  3. 3.Department of Pathology, Assistance Publique Hôpitaux de Paris, Hôpital CochinParis Descartes UniversityParisFrance
  4. 4.Reference center for rare adrenal disorders, Assistance Publique Hôpitaux de Paris Hôpital CochinParis Descartes UniversityParisFrance

Personalised recommendations