Advertisement

The Insulin-Like Growth Factor System in Adrenocortical Growth Control and Carcinogenesis

  • Christian Fottner
  • Ina M. Niederle
  • Matthias M. Weber
Chapter

Abstract

In recent years there has been growing evidence for a central role of the insulin-like growth factor (IGF) system in tumorigenesis and tumor growth. IGFs inhibit apoptosis, induce transformation, and promote tumor growth in many types of malignancies. Previously published data indicate that the IGF system is a major regulator of normal adrenocortical growth and development.

Keywords

Adrenocortical Cell IGFBP2 Level Adrenocortical Tumor IGFBP2 Expression IGF2 mRNA 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Schutt BS et al (2004) Integrin-mediated action of insulin-like growth factor binding protein-2 in tumor cells. J Mol Endocrinol 32:859–68Google Scholar
  2. 2.
    Baserga R (1995) The IGFIR: a key to tumor growth? Cancer Res 555:249–252Google Scholar
  3. 3.
    Macaulay VM (1992) Insulin-like growth factors and cancer. Br J Cancer 65:311–320PubMedGoogle Scholar
  4. 4.
    Samani AA et al (2007) The role of the IGF system in cancer growth and metastasis: overview and recent insights. Endocr Rev 28:20–47PubMedCrossRefGoogle Scholar
  5. 5.
    Doerr ME, Jones JI (1996) The roles of integrins and extracellular matrix proteins in the insulin-like growth factor I-stimulated chemotaxis of human breast cancer cells. J Biol Chem 271:2443–7Google Scholar
  6. 6.
    Khandwala HM et al (2000) The effects of insulin-like growth factors on tumourigenesis and neoplastic growth. Endocrine Reviews 21:215–244PubMedCrossRefGoogle Scholar
  7. 7.
    Chitnis MM et al (2008) The type 1 insulin-like growth factor receptor pathway. Clin Cancer Res 14:6364–70Google Scholar
  8. 8.
    Pollak MN (2008) Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer 8:915–28Google Scholar
  9. 9.
    Mesiano S, Jaffe RB (1997) Development and functional biology of the primate fetal adrenal cortex. Endocr Rev 18:378–403PubMedCrossRefGoogle Scholar
  10. 10.
    Penhoat A et al (1988) Characterization of insulin-like growth factor I and insulin receptors on cultured bovine adrenal fasciculata cells. Role of these peptides on adrenal cell function. Endocrinology 122:2518–1526Google Scholar
  11. 11.
    Weber MM et al (1994) Identification and characterization of insulin-like growth factor I (IGF1) and IGF2/mannose-6-phosphate (IGF2R) receptors in bovine adrenocortical cells. Eur J Endocrinol 130:165–170CrossRefGoogle Scholar
  12. 12.
    Penhoat A et al (1994) Regulation of adrenal cell-differentiated functions by growth factors. Horm Res 42:39–43PubMedCrossRefGoogle Scholar
  13. 13.
    Mesiano S et al (1992) Mitogenic action, regulation and localization of insulin-like growth factors in the human fetal adrenal gland. J Clin Endocrinol Metab 76:968–976CrossRefGoogle Scholar
  14. 14.
    Han VK et al (1992) Insulin-like growth factor-II (IGF2) messenger ribonucleic acid is expressed in steroidogenic cells of the developing ovine adrenal gland: evidence of an autocrine/paracrine role for IGF2. Endocrinology 131:1300–1309Google Scholar
  15. 15.
    Voutilainen R, Miller WL (1987) Coordinate tropic hormone regulation of mRNAs for insulin-like growth factor II and the cholesterol side-chain-cleavage enzyme, P450scc [corrected], in human steroidogenic tissues. Proc Natl Acad Sci USA 84:1590–1594PubMedCrossRefGoogle Scholar
  16. 16.
    Mesiano S et al (1997) Insulin-like growth factors augment steroid production and expression of steroidogenic enzymes in human fetal adrenal cortical cells: Implications for adrenal androgen regulation. J Clin Endocrinol Metab 82:1390–1396PubMedCrossRefGoogle Scholar
  17. 17.
    L’Allemand D et al (1996) Insulin-like growth factors enhance steroidogenic enzyme and corticotropin receptor messenger ribonucleic acid levels and corticotropin responsiveness in cultured human adrenocortical cells. J Clin Endocrinol Metab 81:3892–3897PubMedCrossRefGoogle Scholar
  18. 18.
    Pham-Huu-Trung MT et al (1991) Effects of insulin-like growth factor-I (IGF1) on enzymatic activity in human adrenocortical cells. Interactions with ACTH. J Steroid Biochem Molec Biol 39:903–909PubMedCrossRefGoogle Scholar
  19. 19.
    Glasscock GF et al (1992) Effects of continuous infusion of insulin-like growth factor I and II, alone and in combination with thyroxine or growth hormone, on the neonatal hypophysectomized rat. Endocrinology 130:203–210PubMedCrossRefGoogle Scholar
  20. 20.
    Rogler CE et al (1994) Altered body composition and increased frequency of diverse malignancies in insulin-like growth factor-II transgenic mice. J Biol Chem 260:13779–13784Google Scholar
  21. 21.
    Rainey WE et al (2002) The adrenal genetic puzzle: how do the fetal and adult pieces differ? Endocr Res 28:611–622PubMedCrossRefGoogle Scholar
  22. 22.
    Wilson DM et al (1987) Transplantation of IGF2 secreting tumours in to nude rodents. Endocrinology 120:1896–1901PubMedCrossRefGoogle Scholar
  23. 23.
    Ward A et al (1994) Disproportionate growth in mice with IGF2 transgenes. Proc Natl Acad Sci USA 91:10365–10369PubMedCrossRefGoogle Scholar
  24. 24.
    Fottner C et al (1998) Regulation of steroidogenesis by insulin-like growth factors (IGFs) in adult human adrenocortical cells: IGF1 and more potently IGF2 preferentially enhance androgen biosynthesis through interaction with the IGFIR and IGF-binding proteins. J Endocrinol 158:409–417PubMedCrossRefGoogle Scholar
  25. 25.
    Fottner C et al (2007) The divergent effect of insulin-like growth factor binding protein (IGFBP-) 1 on the steroidogenic effect of IGF1 and IGF2 in bovine adrenocortical cells is not due to its phosphorylation status. Growth Hormone and IGF-Research 13:219Google Scholar
  26. 26.
    Miller WL (1999) The molecular basis of premature adrenarche: a hypothesis. Acta Pediatr Suppl 88:60–66CrossRefGoogle Scholar
  27. 27.
    Baquedano MS et al (2005) Expression of the IGF System in Human Adrenal Tissues from Early Infancy to Late Puberty: Implications for the Development of Adrenarche. Pediatr Res 58:451–458PubMedCrossRefGoogle Scholar
  28. 28.
    Kasayama S et al (2007) Independent association between insulin-like growth factor-I and dehydroepiandrosterone sulphate in women in middle adulthood. Clin Endocrinol 66:797–802CrossRefGoogle Scholar
  29. 29.
    Barbieri RL et al (1986) Insulin stimulates androgen accumulation in incubations of ovarian stroma obtained from women with hyperandrogenism. J Clin Endocrinol Metab 62:904–910PubMedCrossRefGoogle Scholar
  30. 30.
    Ross JT et al (2007) Intrafetal insulin-like growth factor-I infusion stimulates adrenal growth but not steroidogenesis in the sheep fetus during late gestation. Endocrinology 148:5424–5432PubMedCrossRefGoogle Scholar
  31. 31.
    Han VK et al (1987) Cellular localization of somatomedin (insulin-like growth factor) messenger RNA in the human fetus. Science 236:193–197PubMedCrossRefGoogle Scholar
  32. 32.
    Ilvesmäki V et al (1993) Insulin-like growth factors (IGFs) and their receptors in adrenal tumors: high IGF2 expression in functional ACCs. J Clin Endocrinol Metab 77:852–8Google Scholar
  33. 33.
    Kamio T et al (1991) Immunoreactivity and receptor expression of insulin-like growth factor I and insulin in human adrenal tumors. Am J Pathol 138:83–91PubMedGoogle Scholar
  34. 34.
    Shigematsu K et al (1989) Receptor autoradiographic localization of insulin-like growth factor-I (IGF1) binding sites in human fetal and adult adrenal glands. Life Sci 45:383–389PubMedCrossRefGoogle Scholar
  35. 35.
    Pillion DJ et al (1988) Distribution of receptors for insulin and insulin-like growth factor I (somatomedin C) in the adrenal gland. Biochem Biophys Res Commun 154:138–145PubMedCrossRefGoogle Scholar
  36. 36.
    Weber MM et al (1997) Insulin-like growth factor receptors in normal and tumorous adult human adrenocortical glands. Eur J Endocrinol 136:296–303PubMedCrossRefGoogle Scholar
  37. 37.
    Belgorosky A et al (2009) Expression of the IGF and the aromatase/estrogen receptor systems in human adrenal tissues from early infancy to late puberty: Implications for the development of adrenarche. Rev Endocr Metab Disord 10:51–61PubMedCrossRefGoogle Scholar
  38. 38.
    Weber MM et al (1998) Adrenocortical and adrenomedullary cells, In: Bidey ES (ed) Endocrine cell culture, Cambridge University Press, CambridgeGoogle Scholar
  39. 39.
    Coulter CL (2005) Fetal adrenal development: insight gained from adrenal tumors, Trends in Endocrinology and Metabolism 16:235–242PubMedCrossRefGoogle Scholar
  40. 40.
    Logie A et al (1999) Autocrine role of IGF2 in proliferation of human ACC NCL H295R cell line. J Mol Endocrinol 23:23–32PubMedCrossRefGoogle Scholar
  41. 41.
    LeRoith D, Roberts Jr CT (2003) The Insulin-like growth factor system and cancer. Cancer letters 195:127–137PubMedGoogle Scholar
  42. 42.
    Fottner C et al (1999) Characterization of Insulin-like growth factor binding proteins (IGFBPs) secreted by bovine adrenocortical cells in primary culture: Regulation by Insulin-like growth factors (IGFs) and adrenocorticotropin (ACTH). Hormone and Metabolism Res 31:203–208CrossRefGoogle Scholar
  43. 43.
    Fottner C et al (2001) Identification and characterization of Insulin-like growth factor binding protein-expression and – secretion by adult human adrenocortical cells: Differential regulation by IGFs and adrenocorticotropin. J Endocrinol 168:465–474PubMedCrossRefGoogle Scholar
  44. 44.
    Grimberg A, Cohen P (2000) Role of insulin-like growth factors and their binding proteins in growth control and carcinogenesis. J Cell Physiol 183:1–9PubMedCrossRefGoogle Scholar
  45. 45.
    Weber MM et al (1995) Insulin-like growth factor II (IGF2) is more potent than IGF1 in stimulating cortisol secretion from cultured bovine adrenocortical cells: Interactions with the IGFIR and IGF-binding proteins. Endocrinology 136:3714–3720PubMedCrossRefGoogle Scholar
  46. 46.
    Maile LA, Holly JM (1999) Insulin-like growth factor binding protein (IGFBP) proteolysis: occurrence, identification, role and regulation. Growth Horm IGF Res 9:85–95PubMedCrossRefGoogle Scholar
  47. 47.
    Miell JP et al (1997) Insulin-like growth factor binding protein concentration and post-translational modification in embryological fluid. Mol Hum Reprod 3:343–349PubMedCrossRefGoogle Scholar
  48. 48.
    Conover CA, De Leon DD (1994) Acid-activated insulin-like growth factor-binding protein-3 proteolysis in normal and transformed cells. Role of cathepsin D. J Biol Chem 269:7076–7080PubMedGoogle Scholar
  49. 49.
    Hoeflich A et al (2002) Insulin-like growth factor binding protein-2 (IGFBP-2) separates hypertrophic and hyperplastic effects of Growth Hormone (GH)/IGF1 excess on adrenocortical cells in vivo. FASEB-J 16:1721–1731PubMedCrossRefGoogle Scholar
  50. 50.
    Hoeflich A et al (1999) Overexpression of insulin-like growth factor-binding protein-2 in transgenic mice reduces postnatal body weight gain. Endocrinology 140:5488–5496PubMedCrossRefGoogle Scholar
  51. 51.
    Weber MM et al (1999) Postnatal overexpression of insulin-like growth factor II in transgenic mice is associated with adrenocortical hyperplasia and enhanced steroidogenesis. Endocrinology 140:1537–1543PubMedCrossRefGoogle Scholar
  52. 52.
    Conlon MA et al (1995) Long R3 Insulin-like growth factor I (IGF1) infusion stimulates organ growth but reduces plasma IGF1, IGF2 and IGF binding protein concentrations in the guinea pig. J Endocrinol 146:247–253PubMedCrossRefGoogle Scholar
  53. 53.
    Weber MM et al (2000) The role of the insulin-like growth factor (IGF) system in adrenocortical tumourigenesis. Eur J Clin Invest 30:69–75PubMedCrossRefGoogle Scholar
  54. 54.
    Boulle N et al (2000) Fibroblast growth factor-2 inhibits the maturation of pro-insulin-like growth factor-II (Pro-IGF2) and the expression of insulin-like growth factor binding protein-2 (IGFBP-2) in the human adrenocortical tumor cell line NCI-H295R. Endocrinology 141:3127–3136PubMedCrossRefGoogle Scholar
  55. 55.
    De Fraipont F et al (2002) Transcription profiling of benign and malignant adrenal tumors by cDNA macro-array analysis. Endocr Res 28: 785–786PubMedCrossRefGoogle Scholar
  56. 56.
    Edgren M et al (1997) Biological characteristics of ACC: a study of p53, IGF, EGF-r, Ki-67 and PCNA in 17 ACCs. Anticancer Res 17: 1303–1310PubMedGoogle Scholar
  57. 57.
    Schneid H et al (1992) Abnormalities of insulin-like growth factor (IGF1 and IGF2) genes in human tumor tissue. Growth Regulation 2:45–54PubMedGoogle Scholar
  58. 58.
    Boulle N et al (1998) Increased levels of insulin-like growth factor II (IGF2) and IGF-Binding Protein-2 are associated with malignancy in sporadic adrenocortical tumors. J Clin Endocrinol Metab 83: 1713–1720PubMedCrossRefGoogle Scholar
  59. 59.
    Gicquel C et al (1994) Rearrangements at the 11p15 locus and overexpression of insulin-like growth factor-II gene in sporadic adrenocortical tumors. J Clin Endocrinol Metab 78:1444–1453PubMedCrossRefGoogle Scholar
  60. 60.
    Gicquel C et al (1997) Structural and functional abnormalities at 11p15 are associated with the malignant phenotype in sporadic adrenocortical tumors: Study on a series of 82 tumors. J Clin Endocrinol Metab 82:2559–2565PubMedCrossRefGoogle Scholar
  61. 61.
    Gicquel C et al (2001) Molecular markers and long-term recurrences in a large cohort of patients with sporadic adrenocortical tumors. Cancer Res 61:6762–6767PubMedGoogle Scholar
  62. 62.
    Giordano TJ et al (2003) Distinct transcriptional profiles of adrenocortical tumors uncovered by DNA microarray analysis. Am J Pathol 162:521–531PubMedGoogle Scholar
  63. 63.
    Erickson LA et al (2001) Pathological features and expression of insulin-like growth factor-2 in adrenocortical neoplasms. Endocr Pathol 12:429–435PubMedCrossRefGoogle Scholar
  64. 64.
    Wilkin F et al (2000) Pediatric adrenocortical tumors: molecular events leading to Insulin-like growth factor II gene overexpression. J Clin Endocrinol Metab 85:2048–2056PubMedCrossRefGoogle Scholar
  65. 65.
    Almeida MQ et al (2008) Expression of insulin-like growth factor-II and its receptor in pediatric and adult adrenocortical tumors. J Clin Endocrinol Metab 93: 3524–3531PubMedCrossRefGoogle Scholar
  66. 66.
    De Fraipont F et al (2005) Gene expression profiling of human adrenocortical tumors using complementary deoxyribonucleic Acid microarrays identifies several candidate genes as markers of malignancy. J Clin Endocrinol Metab 90:1819–1829PubMedCrossRefGoogle Scholar
  67. 67.
    West AN et al (2007) Gene expression profiling of childhood adrenocortical tumors. Cancer Res 67: 600–608PubMedCrossRefGoogle Scholar
  68. 68.
    Slater EP et al (2006) Analysis by cDNA microarrays of gene expression patterns of human adrenocortical tumors. Eur J Endocrinol 154:587–598PubMedCrossRefGoogle Scholar
  69. 69.
    De Reyniès A et al (2009) Gene expression profiling reveals a new classification of adrenocortical tumors and identifies molecular predictors of malignancy and survival. J Clin Oncol 27:1108–1115PubMedCrossRefGoogle Scholar
  70. 70.
    Giordano TJ et al (2009) Molecular classification and prognostication of adrenocortical tumors by transcriptome profiling. Clin Cancer Res 15:668–676PubMedCrossRefGoogle Scholar
  71. 71.
    Velázquez-Fernández D et al (2005) Expression profiling of adrenocortical neoplasms suggests a molecular signature of malignancy. Surgery 138:1087–1094PubMedCrossRefGoogle Scholar
  72. 72.
    Barlaskar FM et al (2009) Preclinical targeting of the type I insulin-like growth factor receptor in ACC. J Clin Endocrinol Metab 94:204–212PubMedCrossRefGoogle Scholar
  73. 73.
    Leboulleux S et al (2001) Loss of heterozygosity at the mannose-6-phosphate/insulin-like growth factor II receptor locus: a frequent but late event in adrenocortical tumorigenesis. Eur J Endocrinol 144:163–168PubMedCrossRefGoogle Scholar
  74. 74.
    Boulle N et al (2001) Evaluation of plasma insulin-like growth factor binding protein-2 as a marker for adrenocortical tumors. Eur J Endocrinol 144:29–36PubMedCrossRefGoogle Scholar
  75. 75.
    Faical S et al (1998) Immunodetection of Insulin-like growth factor I (IGF1) in normal and pathological adrenocortical tissue. Endocr Pathol 9:63–70PubMedCrossRefGoogle Scholar
  76. 76.
    Gicquel C et al (1995) Recent advances in the pathogenesis of adrenocortical tumours. Eur J Endocrinol 133:133–144PubMedCrossRefGoogle Scholar
  77. 77.
    Fernandez-Ranvier GG et al (2008) Identification of biomarkers of ACC using genomewide gene expression profiling. Arch Surg 143:841–846PubMedCrossRefGoogle Scholar
  78. 78.
    Rosati R et al (2008) High frequency of loss of heterozygosity at 11p15 and IGF2 overexpression are not related to clinical outcome in childhood adrenocortical tumors positive for the R337H TP53 mutation. Cancer Genet Cytogenet 186:19–24PubMedCrossRefGoogle Scholar
  79. 79.
    Assié G et al (2007) Prognostic Parameters of Metastatic ACC. J Clin Endocrinol Metab 92:148–154PubMedCrossRefGoogle Scholar
  80. 80.
    De Souza AT et al (1995) M6P/IGF2R gene is mutated in human hepatocellular carcinomas with loss of heterozygosity. Nature Genet. 11:447–449PubMedCrossRefGoogle Scholar
  81. 81.
    Hill D. Relative abundance and molecular size of immunoreactive insulin-like growth factors I and II in human fetal tissues (1990) Early Hum Dev 21:49–58Google Scholar
  82. 82.
    Mesiano S et al (1993) Mitogenic action, regulation, and localization of insulin-like growth factors in the human fetal adrenal gland. J Clin Endocrinol Metab 76:968–976PubMedCrossRefGoogle Scholar
  83. 83.
    Wolf E et al (1994) Consequences of postnatally elevated insulin-like growth factor-II in transgenic mice: endocrine changes and effects on body and organ growth. Endocrinology 135:1877–1886PubMedCrossRefGoogle Scholar
  84. 84.
    Blackburn A et al (1997) Actions and interactions of growth hormone and insulin-like growth factor-II: body and organ growth of transgenic mice. Transgenic Res 6:213–222PubMedCrossRefGoogle Scholar
  85. 85.
    van Buul-Offers SC et al (1995) Overexpression of human insulin-like growth factor-II in transgenic mice causes increased weight of the thymus. J Endocrinol 144:91–502CrossRefGoogle Scholar
  86. 86.
    Zaina S et al (2003) Shortened life span, bradycardia, and hypotension in mice with targeted expression of an Igf2 transgene in smooth muscle cells. Endocrinology 144:2695–2703PubMedCrossRefGoogle Scholar
  87. 87.
    Cecim M et al (1991) Elevated corticosterone levels in transgenic mice expressing human or bovine growth hormone genes. Neuroendocrinology 53:313–316PubMedCrossRefGoogle Scholar
  88. 88.
    Wolf E et al (1998) What is the function of IGF2 in postnatal life? Answers from transgenic mouse models. Growth Horm IGF Res 8:185–193PubMedCrossRefGoogle Scholar
  89. 89.
    Libé R, Bertherat J (2005) Molecular genetics of adrenocortical tumours, from familial to sporadic disease. Eur J Endocrinol 153:477–487Google Scholar
  90. 90.
    Liu J et al (1995) H19 and insulin-like growth factor-II gene expression in adrenal tumors and cultured adrenal cells. J Clin Endocrinol Metab 80:492–496PubMedCrossRefGoogle Scholar
  91. 91.
    Toretsky JA, Helman LJ (1996) Involvement of IGF2 in human cancer. J Endocrinol 149:367–372PubMedCrossRefGoogle Scholar
  92. 92.
    Kirschner LS (2002) Signaling pathways in ACC. Ann N Y Acad Sci 58:222–239CrossRefGoogle Scholar
  93. 93.
    Bourcigaux N et al (2000) High expression of cyclin E and G1 CDK and loss of function of p57KIP2 are involved in proliferation of malignant sporadic adrenocortical tumors. J Clin Endocrinol Metab 85:322–330PubMedCrossRefGoogle Scholar
  94. 94.
    Paquette J et al (1998) The INS 5ʹ variable number of tandem repeats is associated with IGF2 expression in humans. J Biol Chem 273:14158–14164PubMedCrossRefGoogle Scholar
  95. 95.
    Yano T et al (1989) Genetic changes in human ACCs. J Natl Cancer Inst 81:518–523PubMedCrossRefGoogle Scholar
  96. 96.
    Schneid H et al (1993) Parental allele specific methylation of the human insulin-like growth factor-II gene and Beckwith Wiedemann syndrome. J Med Genet 30:353–362PubMedCrossRefGoogle Scholar
  97. 97.
    Martinerie C et al (2001) Altered expression of novH is associated with human adrenocortical tumorigenesis. J Clin Endocrinol Metab 86:3929–3940PubMedCrossRefGoogle Scholar
  98. 98.
    Thibout H et al (2003) Characterization of human NOV in biological fluids: an enzyme immunoassay for the quantification of human NOV in sera from patients with diseases of the adrenal gland and of the nervous system. J Clin Endocrinol Metab 88:327–336PubMedCrossRefGoogle Scholar
  99. 99.
    Makos Wales B et al (1995) p53 activates expression of HIC-1, a new candidate tumor suppressor gene on 17p13.3. Nat Med 1:570–582CrossRefGoogle Scholar
  100. 100.
    Neuberg M et al (1997) The p53/IGF-1 receptor axis in the regulation of programmed cell death. Endocrine 7:107–9Google Scholar
  101. 101.
    Werner H, Le Roith D (2000) New concepts in regulation and function of the insulin-like growth factors: implications for understanding normal growth and neoplasia. Cell Mol Life Sci. 57:932–42Google Scholar
  102. 102.
    Werner H et al (2000) Regulation of the insulin-like growth factor-I receptor gene by oncogenes and antioncogenes: implications in human cancer. Mol Genet Metab 71:315–20Google Scholar
  103. 103.
    Girnita L et al (2000) Increased expression of insulin-like growth factor I receptor in malignant cells expressing aberrant p53:functional impact. Cancer Res 60:5278–5283PubMedGoogle Scholar
  104. 104.
    Werner H et al (1996) Wild type and mutant p53 differentially regulate transcription of the insulin-like growth factor I receptor gene. Proc Natl Acad Sci USA 93:8318–8323PubMedCrossRefGoogle Scholar
  105. 105.
    Reincke M et al (1994) p53 mutations in human adrenocortical neoplasms: immunohistochemical and molecular studies. J Clin Endocrinol Metab 78:790–796PubMedCrossRefGoogle Scholar
  106. 106.
    Hoeflich A et al (1996) Coordinate expression of insulin-like growth factor II (IGF2) and IGF2/mannose-6-phosphate receptor mRNA during differentiation of human colon carcinoma cells (caco-2). Eur J Endocrinol 135:49–59PubMedCrossRefGoogle Scholar
  107. 107.
    Weber MM et al (2002) Overexpression of the insulin-like growth factor I receptor in human colon carcinomas. Cancer 95:2086–2095PubMedCrossRefGoogle Scholar
  108. 108.
    Rubin R, Baserga R (1995) Insulin-like growth factor I receptor. Its role in cell proliferation, apoptosis, and tumourigenicity. Lab Invest 73:311–331PubMedGoogle Scholar
  109. 109.
    Singleton JR et al (1996) Insulin-like growth factor I receptor prevents apoptosis and enhances neuroblastoma tumorigenesis. Cancer Res 56:4522–4529PubMedGoogle Scholar
  110. 110.
    Sullivan KA et al (1995) Insulin-like growth factor II in the pathogenesis of human neuroblastoma. Am J Pathol 147:1790–1798PubMedGoogle Scholar
  111. 111.
    Menouny M et al (1997) Role of insulin-like growth factor binding protein-2 and its limited proteolysis in neuroblastoma cell proliferation: modulation by transforming growth factor-beta and retinoic acid. Endocrinology 138:683–690PubMedCrossRefGoogle Scholar
  112. 112.
    Gelato MC, Vassalotti J (1990) Insulin-like growth factor II: possible local growth factor in pheochromocytoma. J Clin Endocrinol and Metabol 7:1168–1174CrossRefGoogle Scholar
  113. 113.
    Haselbacher GK et al (1987) Insulin-like growth factor II in human adrenal pheochromocytomas and Wilms tumors: expression at the mRNA and protein level. PNAS 84:1104–1106PubMedCrossRefGoogle Scholar
  114. 114.
    Fottner C et al (2006) Overexpression of the insulin-like growth factor I receptor on human pheochromocytomas. J Mol Endocrinol 36:279–287PubMedCrossRefGoogle Scholar
  115. 115.
    Holzenberger M et al (2003) IGFIR regulates lifespan and resistance to oxidative stress in mice. Nature 421:182–187PubMedCrossRefGoogle Scholar
  116. 116.
    Lithgow G, Gill MS (2003) Cost-free longevity in mice? Nature 421:125–127PubMedCrossRefGoogle Scholar
  117. 117.
    Dahmer MK et al (1989) Characterization of insulin-like growth factor-I receptors in PC12 pheochromocytoma cells and bovine adrenal medulla. J Neurochem 53:1036–1042PubMedCrossRefGoogle Scholar
  118. 118.
    Dahmer MK, Perlman RL (1988) Insulin and insulin-like growth factors stimulate deoxyribonucleic acid synthesis in PC12 pheochromocytoma cells. Endocrinology 22:2109–2113CrossRefGoogle Scholar
  119. 119.
    Nielsen FC, Gammeltoft S (1988) Insulin-like growth factors are mitogens for rat pheochromocytoma PC 12 cells. Biochem Biophys Res Commun 154:1018–1023PubMedCrossRefGoogle Scholar
  120. 120.
    Forbes BE et al (2002) Characteristics of binding of insulin-like growth factor (IGF)-I and IGF2 analogues to the type 1 IGF receptor determined by BIAcore analysis. Eur J Biochem 269:961–968PubMedCrossRefGoogle Scholar
  121. 121.
    Foncea R et al (1997) Insulin-like growth factor-I rapidly activates multiple signal transduction pathways in cultured rat cardiac myocytes. J Biol Chem 272:19115–9124Google Scholar
  122. 122.
    Kulik G et al (1997) Antiapoptotic signalling by the insulin-like growth factor I receptor, phosphatidylinositol 3-kinase, and Akt. Mol Cell Biol 17:1595–1606PubMedGoogle Scholar
  123. 123.
    O’Gorman DB et al (1999) Decreased insulin-like growth factor-II/mannose-6-phosphate receptor expression enhances tumorigenicity in JEG-3 cells. Cancer Res 59:5692–5694PubMedGoogle Scholar
  124. 124.
    Souza RF et al (1999) Expression of the wild-type insulin-like growth factor II receptor gene suppresses growth and causes death in colorectal carcinoma cells. Oncogene 18:4063–4068PubMedCrossRefGoogle Scholar
  125. 125.
    Lau MM et al (1994) Loss of the imprinted IGF2/cation-independent mannose 6-phosphate receptor results in fetal overgrowth and perinatal lethality. Genes and Development 8:2953–2963PubMedCrossRefGoogle Scholar
  126. 126.
    Ludwig T et al (1996) Mouse mutants lacking the type 2 IGF receptor (IGF2R) are rescued from perinatal lethality in Igf2 and Igf1r null backgrounds. Developmental Biology 177:517–535PubMedCrossRefGoogle Scholar
  127. 127.
    Wang Z et al (1994) Regulation of embryonic growth and lysosomal targeting by the imprinted IGF 2/Mpr gene. Nature 372:464–467PubMedCrossRefGoogle Scholar
  128. 128.
    Hankins GR et al (1996) M6P/IGF2 receptor: a candidate breast tumor suppressor gene. Oncogene 12:2003–2009PubMedGoogle Scholar
  129. 129.
    Oates AJ et al (1998) The mannose 6-phosphate/insulin-like growth factor 2 receptor (M6P/IGF2R), a putative breast tumor suppressor gene. Breast Cancer Res Treat 47:269–281PubMedCrossRefGoogle Scholar
  130. 130.
    Ozturk M (1999) Genetic aspects of hepatocellular carcinogenesis. Seminars in Liver Disease 19:235–242PubMedCrossRefGoogle Scholar
  131. 131.
    Scott CD, Firth SM (2004) The role of the M6P/IGF2 receptor in cancer: tumor suppression or garbage disposal? Horm Metab Res 36, 261–71Google Scholar
  132. 132.
    Xu Y et al (1997) Aberrant imprinting of the insulin-like growth factor II receptor gene in Wilms’ tumor. Oncogene 14:1041–1046PubMedCrossRefGoogle Scholar
  133. 133.
    Ilvesmäki V et al (1992) Insulin-like growth factor binding proteins in the human adrenal gland. Mol Cell Endocrinol 97:71–79CrossRefGoogle Scholar
  134. 134.
    Logie A et al (2000) Establishment and characterization of a human ACC xenograft model. Endocrinology 141:3165–3171PubMedCrossRefGoogle Scholar
  135. 135.
    Baxter RC, Martin JL (1989) Binding proteins for the insulin-like growth factors: structure, regulation and function. Prog Growth Factor Research 1:49–68CrossRefGoogle Scholar
  136. 136.
    Holly J, Perks C (2006) The role of Insulin-like growth factor binding proteins. Neuroendocrinology 83:154–160PubMedCrossRefGoogle Scholar
  137. 137.
    Pollak MN (2004) Insulin-like growth factors and neoplasia. Nat Rev Cancer 4:505–18Google Scholar
  138. 138.
    Pollak MN et al (2004) Insulin-like growth factors and cancer. Nat Rev Cancer 14:277–286Google Scholar
  139. 139.
    Hoeflich A et al (2001) Insulin-like growth factor binding protein 2 in tumorigenesis: protector or promoter? Cancer Res 61:8601–8610PubMedGoogle Scholar
  140. 140.
    Hoeflich A et al (2000) Overexpression of insulin-like growth factor-binding protein 2 results in increased tumorigenic potential in Y-1 adrenocortical tumor cells. Cancer Res 60:834–838PubMedGoogle Scholar
  141. 141.
    Shi Z et al (2007) Primary pigmented nodular adrenocortical disease reveals insulin-like growth factor binding protein-2 regulation by protein kinase A. Growth Horm IGF Res 17:113–121PubMedCrossRefGoogle Scholar
  142. 142.
    Engstrom W et al (1987) Expression of growth regulatory genes in primary human testicular neoplasms. Int J Androl 10:79–84PubMedCrossRefGoogle Scholar
  143. 143.
    Cazals V et al (1994) Insulin-like growth factors, their binding proteins, and transforming growth factor-1 in oxidant-arrested lung alveolar epithelial cells. J Biol Chem 269:14111–14117PubMedGoogle Scholar
  144. 144.
    Wang D et al (1994) Insulin-like growth factor-binding protein-2: the effect of human chorionic gonadotropin on its gene regulation and protein secretion and its biological effects in rat Leydig cells. Mol Endocrinol 8:69–76PubMedCrossRefGoogle Scholar
  145. 145.
    Becher OJ et al (2008) IGFBP2 is overexpressed by pediatric malignant astrocytomas and induces the repair enzyme DNA-PK. J Child Neurol 23:1205–1213PubMedCrossRefGoogle Scholar
  146. 146.
    Besnard V et al (2001) Distinct patterns of insulin-like growth factor binding protein (IGFBP)-2 and IGFBP-3 expression in oxidant exposed lung epithelial cells. Biochem Biophys Acta 1538:47–58PubMedCrossRefGoogle Scholar
  147. 147.
    Hoeflich A et al (2003) Increased activity of catalase in tumor cells overexpressing IGFBP-2. Horm Metab Res 35:816–821PubMedCrossRefGoogle Scholar
  148. 148.
    Iliopoulos D et al (2009) MicroRNA signature of primary pigmented nodular adrenocortical disease: clinical correlations and regulation of Wnt signaling. Cancer Res 69:3278–3282PubMedCrossRefGoogle Scholar
  149. 149.
    Stratakis CA (2009) New genes and/or molecular pathways associated with adrenal hyperplasias and related adrenocortical tumors. Mol Cell Endocrinol 300:152–157PubMedCrossRefGoogle Scholar
  150. 150.
    Miyamoto S et al (2007) Matrix metalloproteinase-7 triggers the matricrine action of insulin-like growth factor-II via proteinase activity on insulin-like growth factor binding protein 2 in the extracellular matrix. Cancer Sci 98:685–91Google Scholar
  151. 151.
    Rorive S et al (2008) Matrix metalloproteinase-9 interplays with the IGFBP2-IGFII complex to promote cell growth and motility in astrocytomas. Glia 56:1679–1690PubMedCrossRefGoogle Scholar
  152. 152.
    Cazals V et al (1999) Role for NF-KB in mediating the effects of hyperoxia on IGF-binding protein 2 promoter activity in lung alveolar epithelial cells. Biochim Biophys Acta 1448:349–362PubMedCrossRefGoogle Scholar
  153. 153.
    Perks CM et al (2007) IGF2 and IGFBP-2 differentially regulate PTEN in human breast cancer cells. Oncogene 26:5966–5972PubMedCrossRefGoogle Scholar
  154. 154.
    Hwang PH et al (2005) PTEN/MMAC1 enhances the growth inhibition by anticancer drugs with downregulation of IGF2 expression in gastric cancer cells. Exp Mol Med 37:391–398PubMedGoogle Scholar
  155. 155.
    Moorehead RA et al (2003) Insulin-like growth factor-II regulates PTEN expression in the mammary gland. J Biol Chem 278:50422–50427PubMedCrossRefGoogle Scholar
  156. 156.
    Dunlap SM et al (2007) Insulin-like growth factor binding protein 2 promotes glioma development and progression. PNAS 104:11736–11741PubMedCrossRefGoogle Scholar
  157. 157.
    Kang-Park S, Lee YI (2003) PTEN modulates insulin-like growth factor II (IGF2)-mediated signaling; the protein phosphatase activity of PTEN downregulates IGF2 expression in hepatoma cells. FEBS Lett 545:203–208PubMedCrossRefGoogle Scholar
  158. 158.
    Martin JL, Baxter RC (2007) Expression of insulin-like growth factor binding protein-2 by MCF-7 breast cancer cells is regulated through the phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin pathway. Endocrinology 148:2532–41Google Scholar
  159. 159.
    Chakrabarty S, Kondratick L (2006) Insulin-like growth factor binding protein-2 stimulates proliferation and activates multiple cascades of the mitogen-activated protein kinase pathways in NIH-OVCAR3 human epithelial ovarian cancer cells. Cancer Biol Ther 5:189–197PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Christian Fottner
    • 1
  • Ina M. Niederle
    • 1
  • Matthias M. Weber
    • 1
  1. 1.Schwerpunkt Endokrinologie und Stoffwechselerkrankungen, I. Medizinische Klinik und Poliklinik, UniversitätsmedizinJohannes Gutenberg Universität MainzMainzGermany

Personalised recommendations