Telomeres and Telomerase in Adrenocortical Carcinoma



Telomeres are the outer ends of chromosomes and consist of noncoding hexameric repeats of DNA (TTAGGG). There are two main challenges inherently connected to these structures. First, they need to be protected by special mechanisms to prevent their recognition as DNA breaks by DNA surveillance mechanisms and potential processing by the DNA repair machinery. Second, due to the semiconservative mechanism of DNA replication using RNA primers, small stretches of telomeric sequences are lost with each cell division. This is referred to as the “end-replication problem”. The first challenge is met by a specialized structure of the telomere and its association with protein factors that prevent its recognition as damaged DNA and regulate the access of the DNA repair machinery. In the absence of mechanisms to overcome the end-replication problem, the ongoing loss of telomere sequences in somatic cells ultimately leads to critically short and dysfunctional telomeres that will lead to signaling events, resulting in the removal of these cells from the pool of proliferating cells by mechanisms such as senescence, crisis, or potentially apoptosis. These mechanisms prevent the accumulation of telomere dysfunction-induced genomic aberrations.


Idiopathic Pulmonary Fibrosis Adrenocortical Carcinoma Telomere Repeat Amplification Protocol Telomere Repeat Amplification Protocol Dyskeratosis Congenita 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Harley CB et al (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345(6274):458–460PubMedCrossRefGoogle Scholar
  2. 2.
    Levy MZ et al (1992) Telomere end-replication problem and cell aging. J Mol Biol 225(4):951–960PubMedCrossRefGoogle Scholar
  3. 3.
    Bodnar AG et al (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279(5349):349–352PubMedCrossRefGoogle Scholar
  4. 4.
    Lee HW et al (1998) Essential role of mouse telomerase in highly proliferative organs. Nature 392(6676):5569–574PubMedCrossRefGoogle Scholar
  5. 5.
    Deng Y et al (2008) Telomere dysfunction and tumour suppression: the senescence connection. Nat Rev Cancer 8(6):450–458PubMedCrossRefGoogle Scholar
  6. 6.
    Karlseder J et al (1999) p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 283(5406):1321–1325PubMedCrossRefGoogle Scholar
  7. 7.
    Artandi SE, Attardi LD (2005) Pathways connecting telomeres and p53 in senescence, apoptosis, cancer. Biochem Biophys Res Commun 331(3):881–890PubMedCrossRefGoogle Scholar
  8. 8.
    Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636PubMedCrossRefGoogle Scholar
  9. 9.
    Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621CrossRefGoogle Scholar
  10. 10.
    Hornsby PJ (2001) Cell proliferation in mammalian aging. In: Masoro EJA, Austad SN (eds) Handbook of the biology of aging. Academic, San Diego, CA, pp 207–266Google Scholar
  11. 11.
    Taylor RS et al (1996) Detection of telomerase activity in malignant and nonmalignant skin conditions. J Invest Dermatol 106(4):759–765PubMedCrossRefGoogle Scholar
  12. 12.
    Weng NP et al (1996) Regulated expression of telomerase activity in human T lymphocyte development and activation. J Exp Med 183(6):2471–2479PubMedCrossRefGoogle Scholar
  13. 13.
    Wright WE et al (1996) Telomerase activity in human germline and embryonic tissues and cells. Dev Genet 18(2):173–179PubMedCrossRefGoogle Scholar
  14. 14.
    Greider CW, Blackburn EH (1987) The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell 51(6):887–898PubMedCrossRefGoogle Scholar
  15. 15.
    Morin GB (1989) The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell 59(3): 521–529PubMedCrossRefGoogle Scholar
  16. 16.
    Thomson JA et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147PubMedCrossRefGoogle Scholar
  17. 17.
    Curcio MJ, Belfort M (2007) The beginning of the end: links between ancient retroelements and modern telomerases. Proc Natl Acad Sci USA 104(22):9107–9108PubMedCrossRefGoogle Scholar
  18. 18.
    Kim NW et al (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266(5193):2011–2015PubMedCrossRefGoogle Scholar
  19. 19.
    Bryan TM et al (1997) Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat Med 3(11):1271–1274PubMedCrossRefGoogle Scholar
  20. 20.
    Muntoni A, Reddel RR (2005) The first molecular details of ALT in human tumor cells. Hum Mol Genet 14(Spec No. 2):R191–196Google Scholar
  21. 21.
    Bhattacharyya S et al (2010) Unwinding protein complexes in ALTernative telomere maintenance. J Cell Biochem 109(1):7–15Google Scholar
  22. 22.
    Griffith JD et al (1999) Mammalian telomeres end in a large duplex loop. Cell 97(4):503–514PubMedCrossRefGoogle Scholar
  23. 23.
    de Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19(18):2100–2110PubMedCrossRefGoogle Scholar
  24. 24.
    Chong L et al (1995) A human telomeric protein. Science 270(5242):1663–1667PubMedCrossRefGoogle Scholar
  25. 25.
    Broccoli D et al (1997) Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nat Genet 17(2):231–235PubMedCrossRefGoogle Scholar
  26. 26.
    Baumann P, Cech TR (2001) Pot1, the putative telomere end-binding protein in fission yeast and humans. Science 292(5519):1171–1175PubMedCrossRefGoogle Scholar
  27. 27.
    Liu D et al (2004) Telosome, a mammalian telomere-associated complex formed by multiple telomeric proteins. J Biol Chem 279 (49):51338–51342PubMedCrossRefGoogle Scholar
  28. 28.
    Houghtaling BR et al (2004) A dynamic molecular link between the telomere length regulator TRF1 and the chromosome end protector TRF2. Curr Biol 14(18):1621–1631PubMedCrossRefGoogle Scholar
  29. 29.
    Kim SH et al (1999) TIN2, a new regulator of telomere length in human cells. Nat Genet 23(4):405–412Google Scholar
  30. 30.
    Li B et al (2000) Identification of human Rap1: implications for telomere evolution. Cell 101(5):471–483PubMedCrossRefGoogle Scholar
  31. 31.
    Liu D et al (2004) PTOP interacts with POT1 and regulates its localization to telomeres. Nat Cell Biol 6(7):673–680PubMedCrossRefGoogle Scholar
  32. 32.
    Ye JZ et al (2004) TIN2 binds TRF1 and TRF2 simultaneously and stabilizes the TRF2 complex on telomeres. J Biol Chem 279(45):47264–47271PubMedCrossRefGoogle Scholar
  33. 33.
    Ye JZ et al (2004) POT1-interacting protein PIP1: a telomere length regulator that recruits POT1 to the TIN2/TRF1 complex. Genes Dev 18(14):1649–1654PubMedCrossRefGoogle Scholar
  34. 34.
    Guo X et al (2007) Dysfunctional telomeres activate an ATM-ATR-dependent DNA damage response to suppress tumorigenesis. Embo J 26(22):4709–4719PubMedCrossRefGoogle Scholar
  35. 35.
    Hockemeyer D et al (2006) Recent expansion of the telomeric complex in rodents: Two distinct POT1 proteins protect mouse telomeres. Cell 126(1):63–77PubMedCrossRefGoogle Scholar
  36. 36.
    Takai H et al (2003) DNA damage foci at dysfunctional telomeres. Curr Biol 13(17):1549–1556PubMedCrossRefGoogle Scholar
  37. 37.
    Karlseder J (2003) Telomere repeat binding factors: keeping the ends in check. Cancer Lett 194(2):189–197PubMedCrossRefGoogle Scholar
  38. 38.
    Lechel A et al (2005) The cellular level of telomere dysfunction determines induction of senescence or apoptosis in vivo. EMBO Rep 6(3):275–281PubMedCrossRefGoogle Scholar
  39. 39.
    Goytisolo FA et al (2001) The absence of the dna-dependent protein kinase catalytic subunit in mice results in anaphase bridges and in increased telomeric fusions with normal telomere length and G-strand overhang. Mol Cell Biol 21(11):3642–3651PubMedCrossRefGoogle Scholar
  40. 40.
    van Steensel B et al (1998) TRF2 protects human telomeres from end-to-end fusions. Cell 92(3):401–413PubMedCrossRefGoogle Scholar
  41. 41.
    Brown JP et al (1997) Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts. Science 277(5327):831–834PubMedCrossRefGoogle Scholar
  42. 42.
    Jacobs JJ, de Lange T (2005) p16INK4a as a second effector of the telomere damage pathway. Cell Cycle 4(10): 1364–1368PubMedGoogle Scholar
  43. 43.
    Shay JW, Wright WE (2005) Senescence and immortalization: role of telomeres and telomerase. Carcinogenesis 26(5):867–874PubMedCrossRefGoogle Scholar
  44. 44.
    Acilan C et al (2007) DNA repair pathways involved in anaphase bridge formation. Genes Chromosomes Cancer 46(6):522–531PubMedCrossRefGoogle Scholar
  45. 45.
    Else T (2009) Telomeres and telomerase in adrenocortical tissue maintenance, carcinogenesis, and aging. J Mol Endocrinol 43(4):131–141PubMedCrossRefGoogle Scholar
  46. 46.
    Hornsby PJ (2007) Senescence as an anticancer mechanism. J Clin Oncol 25(14):1852–1857PubMedCrossRefGoogle Scholar
  47. 47.
    Ju Z, Rudolph KL (2006) Telomeres and telomerase in cancer stem cells. Eur J Cancer 42(9):1197–1203PubMedCrossRefGoogle Scholar
  48. 48.
    Else T et al (2009) Genetic p53 deficiency partially rescues the adrenocortical dysplasia phenotype at the expense of increased tumorigenesis. Cancer Cell 15(6):465–476PubMedCrossRefGoogle Scholar
  49. 49.
    Artandi SE et al (2000) Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406(6796):641–645PubMedCrossRefGoogle Scholar
  50. 50.
    Blasco MA et al (1997) Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91(1):25–34PubMedCrossRefGoogle Scholar
  51. 51.
    Chin L et al (1999) p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97(4):527–538PubMedCrossRefGoogle Scholar
  52. 52.
    Keegan CE et al (2005) Urogenital and caudal dysgenesis in adrenocortical dysplasia (acd) mice is caused by a splicing mutation in a novel telomeric regulator. Hum Mol Genet 14(1):113–123PubMedCrossRefGoogle Scholar
  53. 53.
    Rudolph KL et al (1999) Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96(5):701–712PubMedCrossRefGoogle Scholar
  54. 54.
    Else T et al (2007) Tpp1/Acd maintains genomic stability through a complex role in telomere protection. Chromosome Res 15(8):1001–1013PubMedCrossRefGoogle Scholar
  55. 55.
    Hockemeyer D et al (2007) Telomere protection by mammalian Pot1 requires interaction with Tpp1. Nat Struct Mol Biol 14(8):754–761PubMedCrossRefGoogle Scholar
  56. 56.
    Hande MP et al (1999) Telomere length dynamics and chromosomal instability in cells derived from telomerase null mice. J Cell Biol 144(4):589–601PubMedCrossRefGoogle Scholar
  57. 57.
    He H et al (2006) POT1b protects telomeres from end-to-end chromosomal fusions and aberrant homologous recombination. Embo J 25(21):5180–5190PubMedCrossRefGoogle Scholar
  58. 58.
    Wu L et al (2006) Pot1 deficiency initiates DNA damage checkpoint activation and aberrant homologous recombination at telomeres. Cell 126(1):49–62PubMedCrossRefGoogle Scholar
  59. 59.
    Murnane JP (2006) Telomeres and chromosome instability. DNA Repair (Amst) 5 (9-10):1082–1092CrossRefGoogle Scholar
  60. 60.
    Murnane JP, Sabatier L (2004) Chromosome rearrangements resulting from telomere dysfunction and their role in cancer. Bioessays 26(11):1164–1174PubMedCrossRefGoogle Scholar
  61. 61.
    O’Hagan RC et al (2002) Telomere dysfunction provokes regional amplification and deletion in cancer genomes. Cancer Cell 2(2):149–155PubMedCrossRefGoogle Scholar
  62. 62.
    Gordon KE et al (2003) High levels of telomere dysfunction bestow a selective disadvantage during the progression of human oral squamous cell carcinoma. Cancer Res 63(2):458–467PubMedGoogle Scholar
  63. 63.
    Chin K et al (2004) In situ analyses of genome instability in breast cancer. Nat Genet 36(9):984–988PubMedCrossRefGoogle Scholar
  64. 64.
    Rudolph KL et al (2001) Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nat Genet 28(2):155–159PubMedCrossRefGoogle Scholar
  65. 65.
    Meeker AK, Argani P (2004) Telomere shortening occurs early during breast tumorigenesis: a cause of chromosome destabilization underlying malignant transformation? J Mammary Gland Biol Neoplasia 9(3):285–296PubMedCrossRefGoogle Scholar
  66. 66.
    Meeker AK et al (2004) Telomere shortening occurs in subsets of normal breast epithelium as well as in situ and invasive carcinoma. Am J Pathol 164(3):925–935PubMedGoogle Scholar
  67. 67.
    Plentz RR et al (2003) Telomere shortening of epithelial cells characterises the adenoma-carcinoma transition of human colorectal cancer. Gut 52(9):1304–1307PubMedCrossRefGoogle Scholar
  68. 68.
    Herbert BS et al (2001) Telomerase and breast cancer. Breast Cancer Res 3(3):146–149PubMedCrossRefGoogle Scholar
  69. 69.
    Maser RS, DePinho RA (2002) Connecting chromosomes, crisis, and cancer. Science 297(5581):565–569PubMedCrossRefGoogle Scholar
  70. 70.
    Thomas M, Hornsby PJ (1999) Transplantation of primary bovine adrenocortical cells into scid mice. Mol Cell Endocrinol 153(1-2):125–136PubMedCrossRefGoogle Scholar
  71. 71.
    Hahn WC et al (1999) Creation of human tumour cells with defined genetic elements. Nature 400(6743):464–468PubMedCrossRefGoogle Scholar
  72. 72.
    Zhao JJ, Roberts TM (2004) W.C. Hahn, Functional genetics and experimental models of human cancer. Trends Mol Med 10(7):344–350PubMedCrossRefGoogle Scholar
  73. 73.
    Hahn WC, Weinberg RA (2002) Modelling the molecular circuitry of cancer. Nat Rev Cancer 2(5):331–341PubMedCrossRefGoogle Scholar
  74. 74.
    Sun B et al (2006) The minimal set of genetic alterations required for conversion of primary human fibroblasts to cancer cells in the subrenal capsule assay. Neoplasia 7(6):585–593CrossRefGoogle Scholar
  75. 75.
    Sun B et al (2004) Progressive loss of malignant behavior in telomerase-negative tumorigenic adrenocortical cells and restoration of tumorigenicity by human telomerase reverse transcriptase. Cancer Res 64(17): 6144–6151PubMedCrossRefGoogle Scholar
  76. 76.
    Choi J et al (2008) TERT promotes epithelial proliferation through transcriptional control of a Myc- and Wnt-related developmental program. PLoS Genet 4(1):e10Google Scholar
  77. 77.
    Sarin KY et al (2005) Conditional telomerase induction causes proliferation of hair follicle stem cells. Nature 436(7053):1048–1052PubMedCrossRefGoogle Scholar
  78. 78.
    Venteicher AS et al (2008) Identification of ATPases pontin and reptin as telomerase components essential for holoenzyme assembly. Cell 132(6):945–957PubMedCrossRefGoogle Scholar
  79. 79.
    Park JI et al (2009) Telomerase modulates Wnt signalling by association with target gene chromatin. Nature 460(7251):66–72PubMedCrossRefGoogle Scholar
  80. 80.
    Walne AJ, Dokal I (2009) Advances in the understanding of dyskeratosis congenita. Br J Haematol 145(2):164–172Google Scholar
  81. 81.
    Savage SA, Alter BP (2009) Dyskeratosis congenita. Hematol Oncol Clin North Am 23(2):215–231PubMedCrossRefGoogle Scholar
  82. 82.
    Armanios M et al (2005) Haploinsufficiency of telomerase reverse transcriptase leads to anticipation in autosomal dominant dyskeratosis congenita. Proc Natl Acad Sci U S A 102(44):15960–15964PubMedCrossRefGoogle Scholar
  83. 83.
    Heiss NS et al (1998) X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat Genet 19(1):32–38PubMedCrossRefGoogle Scholar
  84. 84.
    Savage SA et al (2008) TINF2, a component of the shelterin telomere protection complex, is mutated in dyskeratosis congenita. Am J Hum Genet 82(2):501–509PubMedCrossRefGoogle Scholar
  85. 85.
    Vulliamy T et al (2001) The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature 413(6854):432–435PubMedCrossRefGoogle Scholar
  86. 86.
    Armanios MY et al (2007) Telomerase mutations in families with idiopathic pulmonary fibrosis. N Engl J Med 356(13):1317–1326PubMedCrossRefGoogle Scholar
  87. 87.
    Armanios M (2009) Syndromes of telomere shortening. Annu Rev Genomics Hum Genet 10:45–61PubMedCrossRefGoogle Scholar
  88. 88.
    Kirwan M, Dokal I (2009) Dyskeratosis congenita, stem cells and telomeres. Biochim Biophys Acta 1792(4):371–379PubMedGoogle Scholar
  89. 89.
    Alter BP et al (2009) Cancer in dyskeratosis congenita. Blood 113(26):6549–6557PubMedCrossRefGoogle Scholar
  90. 90.
    Li FP et al (1988) A cancer family syndrome in twenty-four kindreds. Cancer Res 48(18):5358–5362PubMedGoogle Scholar
  91. 91.
    Gonzalez KD et al (2009) Beyond Li Fraumeni Syndrome: clinical characteristics of families with p53 germline mutations. J Clin Oncol 27(8):1250–1256PubMedCrossRefGoogle Scholar
  92. 92.
    Tabori U et al (2007) Younger age of cancer initiation is associated with shorter telomere length in Li-Fraumeni syndrome. Cancer Res 67(4):1415–1418PubMedCrossRefGoogle Scholar
  93. 93.
    Costa A et al (2006) Telomere maintenance mechanisms in liposarcomas: association with histologic subtypes and disease progression. Cancer Res 66(17):8918–8924PubMedCrossRefGoogle Scholar
  94. 94.
    Hakin-Smith V et al (2003) Alternative lengthening of telomeres and survival in patients with glioblastoma multiforme. Lancet 361(9360):836–838PubMedCrossRefGoogle Scholar
  95. 95.
    Johnson JE et al (2005) Multiple mechanisms of telomere maintenance exist in liposarcomas. Clin Cancer Res 11(15):5347–5355PubMedCrossRefGoogle Scholar
  96. 96.
    Bamberger CM et al (1999) Telomerase activity in benign and malignant adrenal tumors. Exp Clin Endocrinol Diabetes 107(4):272–275PubMedCrossRefGoogle Scholar
  97. 97.
    Else T et al (2008) Evaluation of telomere length maintenance mechanisms in adrenocortical carcinoma. J Clin Endocrinol Metab 93(4):1442–1449PubMedCrossRefGoogle Scholar
  98. 98.
    Hirano Y et al (1998) Telomerase activity as an indicator of potentially malignant adrenal tumors. Cancer 83(4):772–776PubMedCrossRefGoogle Scholar
  99. 99.
    Kinoshita H et al (1998) Telomerase activity in adrenal cortical tumors and pheochromocytomas with reference to clinicopathologic features. Urol Res 26(1):29–32PubMedCrossRefGoogle Scholar
  100. 100.
    Mannelli M et al (2000) Telomerase activity is significantly enhanced in malignant adrenocortical tumors in comparison to benign adrenocortical adenomas. J Clin Endocrinol Metab 85(1):468–470PubMedCrossRefGoogle Scholar
  101. 101.
    Orlando C, Gelmini S (2001) Telomerase in endocrine and endocrine-dependent tumors. J Steroid Biochem Mol Biol 78(3):201–214PubMedCrossRefGoogle Scholar
  102. 102.
    Teng L et al (1998) Telomerase activity in the differentiation of benign and malignant adrenal tumors. Surgery 124(6):1123–1127PubMedCrossRefGoogle Scholar
  103. 103.
    Chen H et al (2009) Strategies targeting telomerase inhibition. Mol Biotechnol 41(2):194–199PubMedCrossRefGoogle Scholar
  104. 104.
    Zimmermann S, Martens UM (2007) Telomeres and telomerase as targets for cancer therapy. Cell Mol Life Sci 64(7–8):906–921PubMedCrossRefGoogle Scholar
  105. 105.
    Giordano TJ et al (2009) Molecular classification and prognostication of adrenocortical tumors by transcriptome profiling. Clin Cancer Res 15(2):668–676PubMedCrossRefGoogle Scholar
  106. 106.
    Bellon M et al (2006) Increased expression of telomere length regulating factors TRF1, TRF2 and TIN2 in patients with adult T-cell leukemia. Int J Cancer 119(9):2090–2097PubMedCrossRefGoogle Scholar
  107. 107.
    Kondo T et al (2004) Expression of POT1 is associated with tumor stage and telomere length in gastric carcinoma. Cancer Res 64(2):523–529PubMedCrossRefGoogle Scholar
  108. 108.
    Lin X et al (2006) Expression of telomere-associated genes as prognostic markers for overall survival in patients with non-small cell lung cancer. Clin Cancer Res 12(19):5720–5725PubMedCrossRefGoogle Scholar
  109. 109.
    Poncet D et al (2008) Changes in the expression of telomere maintenance genes suggest global telomere dysfunction in B-chronic lymphocytic leukemia. Blood 111(4):2388–2391PubMedCrossRefGoogle Scholar
  110. 110.
    Salhab M et al (2008) The expression of gene transcripts of telomere-associated genes in human breast cancer: correlation with clinico-pathological parameters and clinical outcome. Breast Cancer Res Treat 109(1):35–46PubMedCrossRefGoogle Scholar
  111. 111.
    Kinoshita H et al (1998) Telomerase activity in adrenal cortical tumors and pheochromocytomas with reference to clinicopathologic features. Urol Res 26(1):29–32Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Internal Medicine – Division of Metabolism, Endocrinology & DiabetesUniversity of Michigan Health System, University of MichiganAnn ArborUSA
  2. 2.Department of Physiology and Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science CenterSan AntonioUSA

Personalised recommendations