Structure and Mechanism of Action of AMPA and Kainate Receptors

  • Mark L. Mayer


AMPA Receptor Domoic Acid Dime Interface Kainate Receptor Domain Closure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abele R, Keinanen K, and Madden DR. Agonist-induced isomerization in a glutamate receptor ligand-binding domain. A kinetic and mutagenetic analysis. J Biol Chem 275: 21355–21363, 2000.PubMedCrossRefGoogle Scholar
  2. 2.
    Armstrong N and Gouaux E. Mechanisms for activation and antagonism of an AMPAsensitive glutamate receptor: Crystal structures of the GluR2 ligand binding core. Neuron 28: 165–181, 2000.PubMedCrossRefGoogle Scholar
  3. 3.
    Armstrong N, Jasti J, Beich-Frandsen M, and Gouaux E. Measurement of conformational changes accompanying desensitization in an ionotropic glutamate receptor. Cell 127: 85–97, 2006.PubMedCrossRefGoogle Scholar
  4. 4.
    Armstrong N, Mayer M, and Gouaux E. Tuning activation of the AMPA-sensitive GluR2 ion channel by genetic adjustment of agonist-induced conformational changes. Proc Natl Acad Sci USA 100: 5736–5741, 2003.PubMedCrossRefGoogle Scholar
  5. 5.
    Armstrong N, Sun Y, Chen GQ, and Gouaux E. Structure of a glutamate-receptor ligandbinding core in complex with kainate. Nature 395: 913–917, 1998.PubMedCrossRefGoogle Scholar
  6. 6.
    Bowie D. External anions and cations distinguish between AMPA and kainate receptor gating mechanisms. J Physiol 539: 725–733, 2002.PubMedCrossRefGoogle Scholar
  7. 7.
    Chen GQ, Cui C, Mayer ML, and Gouaux E. Functional characterization of a potassiumselective prokaryotic glutamate receptor. Nature 402: 817–821, 1999.PubMedCrossRefGoogle Scholar
  8. 8.
    Chen L, Chetkovich DM, Petralia RS, Sweeney NT, Kawasaki Y, Wenthold RJ, Bredt DS, and Nicoll RA. Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature 408: 936–943, 2000.PubMedCrossRefGoogle Scholar
  9. 9.
    Cheng Q, Du M, Ramanoudjame G, and Jayaraman V. Evolution of glutamate interactions during binding to a glutamate receptor. Nat Chem Biol 1: 329–332, 2005.PubMedCrossRefGoogle Scholar
  10. 10.
    Doyle DA, Cabral JM, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, and MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280: 69–77, 1998.PubMedCrossRefGoogle Scholar
  11. 11.
    Greger IH and Esteban JA. AMPA receptor biogenesis and rafficking. Curr Opin Neurobiol, 2007.Google Scholar
  12. 12.
    Hogner A, Kastrup J, Jin R, Liljefors T, Mayer M, Egebjerg J, Larsen I, and Gouaux E. Structural Basis for AMPA Receptor Activation and Ligand Selectivity: Crystal Structures of Five Agonist Complexes with the GluR2 Ligand-binding Core. J Mol Biol 322: 93, 2002.PubMedCrossRefGoogle Scholar
  13. 13.
    Hollmann M, Maron C, and Heinemann S. N-Glycosylation site tagging suggests a three transmembrane domain topology for the glutamate receptor GluR1. Neuron 13: 1331–1343, 1994.PubMedCrossRefGoogle Scholar
  14. 14.
    Hollmann M, O’Shea-Greenfield A, Rogers SW, and Heinemann S. Cloning by functional expression of a member of the glutamate receptor family. Nature 342: 643–648, 1989.PubMedCrossRefGoogle Scholar
  15. 15.
    Horning MS and Mayer ML. Regulation of AMPA receptor gating by ligand binding core dimers. Neuron 41: 379–388, 2004.PubMedCrossRefGoogle Scholar
  16. 16.
    Jiang Y, Lee A, Chen J, Cadene M, Chait BT, and MacKinnon R. Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417: 515–522, 2002.PubMedCrossRefGoogle Scholar
  17. 17.
    Jiang Y, Lee A, Chen J, Cadene M, Chait BT, and MacKinnon R. The open pore conformation of potassium channels. Nature 417: 523–526, 2002.PubMedCrossRefGoogle Scholar
  18. 18.
    Jin R, Banke TG, Mayer ML, Traynelis SF, and Gouaux E. Structural basis for partial agonist action at ionotropic glutamate receptors. Nature Neurosci 6: 803–810, 2003.PubMedCrossRefGoogle Scholar
  19. 19.
    Jin R, Clark S, Weeks AM, Dudman JT, Gouaux E, and Partin KM. Mechanism of positive allosteric modulators acting on AMPA receptors. J Neurosci 25: 9027–9036, 2005.PubMedCrossRefGoogle Scholar
  20. 20.
    Kuner T, Seeburg PH, and Guy HR. A common architecture for K+ channels and ionotropic glutamate receptors? Trends Neurosci 26: 27–32, 2003.PubMedCrossRefGoogle Scholar
  21. 21.
    MacKinnon R. Pore loops: an emerging theme in ion channel structure. Neuron 14: 889–892, 1995.PubMedCrossRefGoogle Scholar
  22. 22.
    Mankiewicz KA, Rambhadran A, Du M, Ramanoudjame G, and Jayaraman V. Role of the chemical interactions of the agonist in controlling alpha-amino-3-hydroxy-5-methyl- 4-isoxazolepropionic acid receptor activation. Biochemistry 46: 1343–1349, 2007.PubMedCrossRefGoogle Scholar
  23. Mayer ML. Crystal structures of the GluR5 and GluR6 ligand binding cores: molecular mechanisms underlying kainate receptor selectivity. Neuron 45: 539–552, 2005.PubMedCrossRefGoogle Scholar
  24. 24.
    Mayer ML, Ghosal A, Dolman NP, and Jane DE. Crystal structures of the kainate receptor GluR5 ligand binding core dimer with novel GluR5-selective antagonists. J Neurosci 26: 2852–2861, 2006.PubMedCrossRefGoogle Scholar
  25. 25.
    Nakagawa T, Cheng Y, Ramm E, Sheng M, and Walz T. Structure and different conformational states of native AMPA receptor complexes. Nature 433: 545–549, 2005.PubMedCrossRefGoogle Scholar
  26. 26.
    Nakanishi N, Shneider NA, and Axel R. A family of glutamate receptor genes: evidence for the formation of heteromultimeric receptors with distinct channel properties. Neuron 5: 569–581, 1990.PubMedCrossRefGoogle Scholar
  27. 27.
    Nanao MH, Green T, Stern-Bach Y, Heinemann SF, and Choe S. Structure of the kainate receptor subunit GluR6 agonist-binding domain complexed with domoic acid. Proc Natl Acad Sci USA 103: 1708–1713, 2005.CrossRefGoogle Scholar
  28. 28.
    Paoletti P, Perin-Dureau F, Fayyazuddin A, Le Goff A, Callebaut I, and Neyton J. Molecular organization of a zinc binding n-terminal modulatory domain in a NMDA receptor subunit. Neuron 28: 911–925, 2000.PubMedCrossRefGoogle Scholar
  29. 29.
    Partin KM, Bowie D, and Mayer ML. Structural determinants of allosteric regulation in alternatively spliced AMPA receptors. Neuron 14: 833–843, 1995.PubMedCrossRefGoogle Scholar
  30. 30.
    Partin KM, Fleck MW, and Mayer ML. AMPA receptor flip/flop mutants affecting deactivation, desensitization, and modulation by cyclothiazide, aniracetam, and thiocyanate. J Neurosci 16: 6634–6647, 1996.PubMedGoogle Scholar
  31. 31.
    Pasternack A, Coleman SK, Jouppila A, Mottershead DG, Lindfors M, Pasternack M, and Keinanen K. Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor channels lacking the N-terminal domain. J Biol Chem 277: 49662–49667, 2002.PubMedCrossRefGoogle Scholar
  32. 32.
    Paternain AV, Cohen A, Stern-Bach Y, and Lerma J. A role for extracellular Na+ in the channel gating of native and recombinant kainate receptors. J Neurosci 23: 8641–8648, 2003.PubMedGoogle Scholar
  33. 33.
    Plested AJ and Mayer ML. Structure and mechanism of kainate receptor modulation by anions. Neuron 53: 829–841, 2007.PubMedCrossRefGoogle Scholar
  34. 34.
    Quiocho FA and Ledvina PS. Atomic structure and specificity of bacterial periplasmic receptors for active transport and chemotaxis: variation of common themes. Mol Microbiol 20: 17–25, 1996.PubMedCrossRefGoogle Scholar
  35. 35.
    Robert A, Armstrong N, Gouaux JE, and Howe JR. AMPA receptor binding cleft mutations that alter affinity, efficacy, and recovery from desensitization. J Neurosci 25: 3752–3762, 2005.PubMedCrossRefGoogle Scholar
  36. 36.
    Rosenmund C, Stern-Bach Y, and Stevens CF. The tetrameric structure of a glutamate receptor channel. Science 280: 1596–1599, 1998.PubMedCrossRefGoogle Scholar
  37. 37.
    Sine SM and Engel AG. Recent advances in Cys-loop receptor structure and function. Nature 440: 448–455, 2006.PubMedCrossRefGoogle Scholar
  38. 38.
    Smith TC and Howe JR. Concentration-dependent substate behavior of native AMPA receptors. Nat Neurosci 3: 992–997, 2000.PubMedCrossRefGoogle Scholar
  39. 39.
    Sobolevsky AI, Yelshansky MV, and Wollmuth LP. The outer pore of the glutamate receptor channel has 2-fold rotational symmetry. Neuron 41: 367–378, 2004.PubMedCrossRefGoogle Scholar
  40. 40.
    Stern-Bach Y, Bettler B, Hartley M, Sheppard PO, O’Hara PJ, and Heinemann SF. Agonist-selectivity of glutamate receptors is specified by two domains structurally related to bacterial amino acid binding proteins. Neuron 13: 1345–1357, 1994.CrossRefGoogle Scholar
  41. 41.
    Stern-Bach Y, Russo S, Neuman M, and Rosenmund C. A point mutation in the glutamate binding site blocks desensitization of AMPA receptors. Neuron 21: 907–918, 1998.PubMedCrossRefGoogle Scholar
  42. 42.
    Sun Y, Olson R, Horning M, Armstrong N, Mayer M, and Gouaux E. Mechanism of glutamate receptor desensitization. Nature 417: 245–253, 2002.PubMedCrossRefGoogle Scholar
  43. 43.
    Tomita S, Adesnik H, Sekiguchi M, Zhang W, Wada K, Howe JR, Nicoll RA, and Bredt DS. Stargazin modulates AMPA receptor gating and trafficking by distinct domains. Nature 435: 1052–1058, 2005.PubMedCrossRefGoogle Scholar
  44. 44.
    Tomita S, Chen L, Kawasaki Y, Petralia RS, Wenthold RJ, Nicoll RA, and Bredt DS. Functional studies and distribution define a family of transmembrane AMPA receptor regulatory proteins. J Cell Biol 161: 805–816, 2003.PubMedCrossRefGoogle Scholar
  45. 45.
    Weston MC, Gertler C, Mayer ML, and Rosenmund C. Interdomain interactions in AMPA and kainate receptors regulate affinity for glutamate. J Neurosci 26: 7650–7658, 2006.PubMedCrossRefGoogle Scholar
  46. 46.
    Weston MC, Schuck P, Ghosal A, Rosenmund C, and Mayer ML. Conformational restriction blocks glutamate receptor desensitization. Nat Struct Mol Biol 13: 1120–1127, 2006.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Mark L. Mayer
    • 1
  1. 1.Porter Neuroscience Research CenterLaboratory of Cellular & Molecular Neurophysiology NICHD, NIH BethesdaMD

Personalised recommendations