The Molecular Machinery for Synaptic Vesicle Endocytosis

  • Peter S. McPherson
  • Brigitte Ritter
  • George J. Augustine


Synaptic Vesicle Eps15 Homology Synaptic Vesicle Recycling Clathrin Coat Endocytic Machinery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahle, S. and Ungewickell. E. Purification and properties of a new clathrin assembly protein. EMBO J. 5, 3143–3149, 1986.PubMedGoogle Scholar
  2. 2.
    Allaire, P.D., Ritter, B., Thomas, S., Burman, J.L., Denisov, A.Y., Legendre-Guillemin, V., Harper, S.Q., Davidson, B.L., Gehring, K. and McPherson, P.S. Connecdenn, a novel DENN domain-containing protein of neuronal clathrin-coated vesicles functioning in synaptic vesicle endocytosis. J. Neurosci. 26, 13202–13212, 2006.PubMedGoogle Scholar
  3. 3.
    Anggono, V., Smillie, K.J., Graham, M.E., Valova, V.A., Cousin, M.A. and Robinson, P.J. Syndapin I is the phosphorylation-regulated dynamin I partner in synaptic vesicle endocytosis. Nat Neurosci. 9, 752–760, 2006.PubMedGoogle Scholar
  4. 4.
    Augustine, G.J., Morgan, J.R., Villalba-Galea, C.A., Jin, S., Prasad, K. and Lafer, E.M. Clathrin and synaptic vesicle endocytosis: studies at the squid giant synapse. Biochem. Soc. Trans. 34, 68–72, 2006.PubMedGoogle Scholar
  5. 5.
    Benmerah, A., Gagnon, J., Begue, B., Megarbane, B., Dautry-Varsat, A. and Cerf-Bensussan, N. The tyrosine kinase substrate eps15 is constitutively associated with the plasma membrane adaptor AP-2. J. Cell Biol. 131, 1831–1838, 1995.PubMedGoogle Scholar
  6. 6.
    Benmerah, A., Begue, B., Dautry-Varsat, A. and Cerf-Bensussan, N. The ear of alphaadaptin interacts with the COOH-terminal domain of the Eps 15 protein. J. Biol. Chem. 271, 12111–12116, 1996.PubMedGoogle Scholar
  7. 7.
    Bennett, E.M., Chen, C.Y., Engqvist-Goldstein, A.E., Drubin, D.G. and Brodsky, F.M. Clathrin hub expression dissociates the actin-binding protein Hip1R from coated pits and disrupts their alignment with the actin cytoskeleton. Traffic 2, 851–858, 2001.PubMedGoogle Scholar
  8. 8.
    Blondeau, F., Ritter, B., Allaire, P.D., Wasiak, S., Girard, M., Hussain, N.K., Angers, A., Legendre-Guillemin, V., Roy, L., Boismenu, D., Kearney, R.E., Bell, A.W., Bergeron, J.J. and McPherson PS. Tandem MS analysis of brain clathrin-coated vesicles reveals their critical involvement in synaptic vesicle recycling. Proc. Natl. Acad. Sci. USA 101, 3833– 3838, 2004.PubMedGoogle Scholar
  9. 9.
    Braell, W.A., Schlossman, D.M., Schmid, S.L. and Rothman, J.E. Dissociation of clathrin coats coupled to the hydrolysis of ATP: role of an uncoating ATPase. J. Cell Biol. 99, 734–741, 1984.PubMedGoogle Scholar
  10. 10.
    Brett, T.J., Traub, L.M. and Fremont, D.H. Accessory protein recruitment motifs in clathrin-mediated endocytosis. Structure 10, 797–809, 2002.PubMedGoogle Scholar
  11. 11.
    Brett, T.J., Legendre-Guillemin, V., McPherson, P.S. and Fremont, D.H. Structural definition of the F-actin-binding THATCH domain from HIP1R. Nat. Struct. Mol. Biol. 13, 121–130, 2006.PubMedGoogle Scholar
  12. 12.
    Brodsky, F.M., Chen, C.Y., Knuehl, C., Towler, M.C. and Wakeham, D.E. Biological basket weaving: formation and function of clathrin-coated vesicles. Annu. Rev. Cell Dev. Biol. 17, 517–568, 2001.PubMedGoogle Scholar
  13. 13.
    Burman, J.L., Wasiak, S., Ritter, B., de Heuvel, E. and McPherson, P.S. Aftiphilin is a component of the clathrin machinery in neurons. FEBS Lett. 579, 2177–2184, 2005.PubMedGoogle Scholar
  14. 14.
    Butler, M.H., David, C., Ochoa, G.C., Freyberg, Z., Daniell, L., Grabs, D., Cremona, O. and De Camilli, P. Amphiphysin II (SH3P9; BIN1), a member of the amphiphysin/Rvs family, is concentrated in the cortical cytomatrix of axon initial segments and nodes of ranvier in brain and around T tubules in skeletal muscle. J. Cell Biol. 137, 1355–1367, 1997.PubMedGoogle Scholar
  15. 15.
    Cao, H., Garcia, F. and McNiven, M.A. Differential distribution of dynamin isoforms in mammalian cells. Mol. Biol. Cell 9, 2595–609, 1998.PubMedGoogle Scholar
  16. 16.
    Chen, H., Fre, S., Slepnev, V.I., Capua, M.R., Takei, K., Butler, M.H., Di Fiore, P.P. and De Camilli, P. Epsin is an EH-domain-binding protein implicated in clathrin-mediated endocytosis. Nature 394, 793–797, 1998.PubMedGoogle Scholar
  17. 17.
    Chen, C.Y. and Brodsky, F.M. Huntingtin-interacting protein 1 (Hip1) and Hip1-related protein (Hip1R) bind the conserved sequence of clathrin light chains and thereby influence clathrin assembly in vitro and actin distribution in vivo. J. Biol. Chem. 280, 6109– 6117, 2005.PubMedGoogle Scholar
  18. 18.
    Chopra, V.S., Metzler, M., Rasper, D.M., Engqvist-Goldstein, A.E., Singaraja, R., Gan, L., Fichter, K.M., McCutcheon, K., Drubin, D., Nicholson, D.W. and Hayden, M.R. HIP12 is a non-proapoptotic member of a gene family including HIP1, an interacting protein with huntingtin. Mamm. Genome 11, 1006–1015, 2000.PubMedGoogle Scholar
  19. 19.
    Conner, S.D. and Schmid, S.L. Identification of an adaptor-associated kinase, AAK1, as a regulator of clathrin-mediated endocytosis. J. Cell Biol. 156, 921–929, 2002.PubMedGoogle Scholar
  20. 20.
    Conner, S.D. and Schmid, S.L. CVAK104 is a novel poly-L-lysine-stimulated kinase that targets the beta2-subunit of AP2. J. Biol. Chem. 280, 21539–21544, 2005.PubMedGoogle Scholar
  21. 21.
    Cousin, M.A. and Robinson, P.J. The dephosphins: dephosphorylation by calcineurin triggers synaptic vesicle endocytosis. Trends Neurosci. 24, 659–665, 2001.PubMedGoogle Scholar
  22. 22.
    Cremona, O., Di Paolo, G., Wenk, M.R., Luthi, A., Kim, W.T., Takei, K., Daniell, L., Nemoto, Y., Shears, S.B., Flavell, R.A., McCormick, D.A. and De Camilli, P. Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell 99, 179–188, 1999.Google Scholar
  23. 23.
    David, C., McPherson, P.S., Mundigl, O. and De Camilli, P. A role of amphiphysin in synaptic vesicle endocytosis suggested by its binding to dynamin in nerve terminals. Proc. Natl. Acad. Sci. USA 93, 331–355, 1996.PubMedGoogle Scholar
  24. 24.
    De Camilli, P., Thomas, A., Cofiell, R., Folli, F., Lichte, B., Piccolo, G., Meinck, H.M., Austoni, M., Fassetta, G., Bottazzo, G., Bates, D., Cartlidge, N., Solimena, M. and Kilimann, M.W. The synaptic vesicle-associated protein amphiphysin is the 128-kD autoantigen of Stiff-Man syndrome with breast cancer. J. Exp. Med. 178, 2219–2223, 1993.Google Scholar
  25. 25.
    de Heuvel, E., Bell, A.W., Ramjaun, A.R., Wong, K., Sossin, W.S. and McPherson, P.S. Identification of the major synaptojanin-binding proteins in brain. J. Biol. Chem. 272, 8710–8716, 1997.Google Scholar
  26. 26.
    Dickman, D.K., Lu, Z., Meinertzhagen, I.A. and Schwarz, T.L. Altered synaptic development and active zone spacing in endocytosis mutants. Curr. Biol. 16, 591–598, 2006.PubMedGoogle Scholar
  27. 27.
    Di Paolo, G., Sankaranarayanan, S., Wenk, M.R., Daniell, L., Perucco, E., Caldarone, B.J., Flavell, R., Picciotto, M.R., Ryan, T.A., Cremona, O. and De Camilli, P. Decreased synaptic vesicle recycling efficiency and cognitive deficits in amphiphysin 1 knockout mice. Neuron 33, 789–804, 2002.PubMedGoogle Scholar
  28. 28.
    Di Paolo, G., Moskowitz, H.S., Gipson, K., Wenk, M.R., Voronov, S., Obayashi, M., Flavell, R., Fitzsimonds, R.M., Ryan, T.A. and De Camilli, P. Impaired PtdIns(4,5)P2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking. Nature 431, 415–422, 2004.Google Scholar
  29. 29.
    Diril, M.K., Wienisch, M., Jung, N., Klingauf, J. and Haucke, V.. Stonin 2 is an AP-2- dependent endocytic sorting adaptor for synaptotagmin internalization and recycling. Dev. Cell 10, 233–244, 2006.PubMedGoogle Scholar
  30. 30.
    Edeling, M.A., Mishra, S.K., Keyel, P.A., Steinhauser, A.L., Collins, B.M., Roth, R., Heuser, J.E., Owen, D.J. and Traub, L.M. Molecular switches involving the AP-2 beta2 appendage regulate endocytic cargo selection and clathrin coat assembly. Dev. Cell 10, 329–342, 2006.PubMedGoogle Scholar
  31. 31.
    Ehrlich, M., Boll, W., Van Oijen, A., Hariharan, R., Chandran, K., Nibert, M.L. and Kirchhausen, T. Endocytosis by random initiation and stabilization of clathrin-coated pits. Cell 118, 591–605, 2004.PubMedGoogle Scholar
  32. 32.
    Engqvist-Goldstein, A.E., Kessels, M.M., Chopra, V.S., Hayden, M.R. and Drubin, D.G. An actin-binding protein of the Sla2/Huntingtin interacting protein 1 family is a novel component of clathrin-coated pits and vesicles. J. Cell Biol. 147, 1503–1518, 1999.PubMedGoogle Scholar
  33. 33.
    Engqvist-Goldstein, A.E., Warren, R.A., Kessels, M.M., Keen, J.H., Heuser, J. and Drubin, D.G. The actin-binding protein Hip1R associates with clathrin during early stages of endocytosis and promotes clathrin assembly in vitro. J. Cell Biol. 154, 1209–1223, 2001.PubMedGoogle Scholar
  34. 34.
    Engqvist-Goldstein, A.E., Zhang, C.X., Carreno, S., Barroso, C., Heuser, J.E. and Drubin, D.G. RNAi-mediated Hip1R silencing results in stable association between the endocytic machinery and the actin assembly machinery. Mol. Biol. Cell 15, 1666–1679, 2004.PubMedGoogle Scholar
  35. 35.
    Farsad, K., Ringstad, N., Takei, K., Floyd, S.R., Rose, K. and De Camilli, P. Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J. Cell Biol. 155, 193–200, 2001.PubMedGoogle Scholar
  36. 36.
    Fazioli, F., Minichiello, L., Matoskova, B., Wong, W.T. and Di Fiore, P.P. eps15, a novel tyrosine kinase substrate, exhibits transforming activity. Mol. Cell Biol. 13, 5814–5828, 1993.PubMedGoogle Scholar
  37. 37.
    Fergestad, T., Davis, W.S. and Broadie, K. The stoned proteins regulate synaptic vesicle recycling in the presynaptic terminal. J. Neurosci. 19, 5847–5860, 1999.PubMedGoogle Scholar
  38. 38.
    Ferguson, S.M., Brasnjo, G., Hayashi, M., Wolfel, M., Collesi, C., Giovedi, S., Raimondi, A., Gong, L.W., Ariel, P., Paradise, S., O’toole, E., Flavell, R., Cremona, O., Miesenbock, G., Ryan, T.A. and De Camilli, P. A selective activity-dependent requirement for dynamin 1 in synaptic vesicle endocytosis. Science 316, 570–574, 2007.PubMedGoogle Scholar
  39. 39.
    Fernandez-Alfonso, T., Kwan, R. and Ryan, T.A. Synaptic vesicles interchange their membrane proteins with a large surface reservoir during recycling. Neuron 20, 179–186, 2006.Google Scholar
  40. 40.
    Ford, M.G., Pearse, B.M., Higgins, M.K., Vallis, Y., Owen, D.J., Gibson, A., Hopkins, C.R., Evans, P.R. and McMahon, H.T. Simultaneous binding of PtdIns(4,5)P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes Science 291, 1051–1055, 2001.PubMedGoogle Scholar
  41. 41.
    Ford, M.G., Mills, I.G., Peter, B.J., Vallis, Y., Praefcke, G.J., Evans, P.R. and McMahon, H.T. Curvature of clathrin-coated pits driven by epsin Nature 419, 361–366, 2002.PubMedGoogle Scholar
  42. 42.
    Fotin, A., Cheng, Y., Sliz, P., Grigorieff, N., Harrison, S.C., Kirchhausen, T. and Walz, T. Molecular model for a complete clathrin lattice from electron cryomicroscopy. Nature 432, 573–579, 2004.PubMedGoogle Scholar
  43. 43.
    Frick, M., Schmidt, K. and Nichols, B.J. Modulation of lateral diffusion in the plasma membrane by protein density. Curr. Biol. 6, 462–467, 2007.Google Scholar
  44. 44.
    Fukuda, M., Moreira, J.E., Lewis, F.M., Sugimori, M., Niinobe, M., Mikoshiba, K. and Llinas, R. Role of the C2B domain of synaptotagmin in vesicular release and recycling as determined by specific antibody injection into the squid giant synapse preterminal. Proc. Natl. Acad. Sci. USA 92, 10708–10712, 1995.PubMedGoogle Scholar
  45. 45.
    Gad, H., Ringstad, N., Low, P., Kjaerulff, O., Gustafsson, J., Wenk, M., Di Paolo, G., Nemoto, Y., Crun, J., Ellisman, M.H., De Camilli, P., Shupliakov, O. and Brodin, L. Fission and uncoating of synaptic clathrin-coated vesicles are perturbed by disruption of interactions with the SH3 domain of endophilin. Neuron 27, 301–312, 2000.PubMedGoogle Scholar
  46. 46.
    Gallop, J.L., Jao, C.C., Kent, H.M., Butler, P.J., Evans, P.R., Langen, R. and McMahon, H.T. Mechanism of endophilin N-BAR domain-mediated membrane curvature. EMBO J. 25, 2898–2910, 2006.PubMedGoogle Scholar
  47. 47.
    Gonzalez-Gaitan, M. and Jackle, H. Role of Drosophila {{}alpha{}}-adaptin in presynaptic vesicle recycling. Cell 88, 767–776, 1997.PubMedGoogle Scholar
  48. 48.
    Gout, I., Dhand, R., Hiles, I.D., Fry, M.J., Panayotou, G., Das, P., Truong, O., Totty, N.F., Hsuan, J., Booker, G.W., Campbell, I.D. and Waterfield, M.D. The GTPase dynamin binds to and is activated by a subset of SH3 domains. Cell 75, 25–36, 1993.PubMedGoogle Scholar
  49. 49.
    Granseth, B., Odermatt, B., Royle, S.J. and Lagnado, L. Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses. Neuron 51, 773– 786, 2006.PubMedGoogle Scholar
  50. 50.
    Guo, S., Stolz, L.E., Lemrow, S.M. and York, J.D. SAC1-like domains of yeast SAC1, INP52, and INP53 and of human synaptojanin encode polyphosphoinositide phosphatases. J. Biol. Chem. 274, 12990–12995, 1999.PubMedGoogle Scholar
  51. 51.
    Hao, W., Luo, Z., Zheng, L., Prasad, K. and Lafer, E.M. AP180 and AP-2 interact directly in a complex that cooperatively assembles clathrin. J. Biol. Chem. 274, 22785–22794, 1999.PubMedGoogle Scholar
  52. 52.
    Harata, N.C., Aravanis, A.M. and Tsien, R.W. Kiss-and-run and full-collapse fusion as modes of exo-endocytosis in neurosecretion. J. Neurochem. 97, 1546–1570, 2006.PubMedGoogle Scholar
  53. 53.
    Harris, T.W., Hartwieg, E., Horvitz, H.R. and Jorgensen, E.M. Mutations in synaptojanin disrupt synaptic vesicle recycling. J. Cell Biol. 150, 589–600, 2000.PubMedGoogle Scholar
  54. 54.
    Haucke, V., Wenk, M.R., Chapman, E.R., Farsad, K. and De Camilli, P. Dual interaction of synaptotagmin with mu2- and alpha-adaptin facilitates clathrin-coated pit nucleation. EMBO J. 19, 6011–6019, 2000.PubMedGoogle Scholar
  55. 55.
    Henne, W.M., Kent, H.M., Ford, M.G., Hegde, B.G., Daumke, O., Butler, P.J., Mittal, R., Langen, R., Evans, P.R. and McMahon, H.T. Structure and Analysis of FCHo2 FBAR Domain: A Dimerizing and Membrane Recruitment Module that Effects Membrane Curvature. Structure 15, 839–852.Google Scholar
  56. 56.
    Henry, K.R., D’Hondt, K., Chang, J., Newpher, T., Huang, K., Hudson, R.T., Riezman, H. and Lemmon, S.K. Scd5p and clathrin function are important for cortical actin organization, endocytosis, and localization of sla2p in yeast. Mol. Biol. Cell 13, 2607–2625, 2002.PubMedGoogle Scholar
  57. 57.
    Hess, S.D., Doroshenko, P.A. and Augustine, G.J. A functional role for GTP-binding proteins in synaptic vesicle cycling. Science 259, 1169–1172, 1993.PubMedGoogle Scholar
  58. 58.
    Heuser, J.E. and Reese, T.S. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J. Cell Biol. 57, 315–344, 1973.PubMedGoogle Scholar
  59. 59.
    Heuser, J.E., Reese, T.S., Dennis, M.J., Jan, Y., Jan, L. and Evans, L. Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J. Cell Biol. 81, 275–300, 1979.PubMedGoogle Scholar
  60. 60.
    Hinrichsen, L., Meyerholz, A., Groos, S. and Ungewickell, E.J. Bending a membrane: how clathrin affects budding. Proc. Natl. Acad. Sci. USA 103, 8715–8720, 2006.PubMedGoogle Scholar
  61. 61.
    Hinshaw, J.E. and Schmid, S.L. Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding. Nature 374, 190–192, 1995.PubMedGoogle Scholar
  62. 62.
    Honing, S., Ricotta, D., Krauss, M., Spate, K., Spolaore, B., Motley, A., Robinson, M., Robinson, C., Haucke, V. and Owen, D.J. Phosphatidylinositol-(4,5)-bisphosphate regulates sorting signal recognition by the clathrin-associated adaptor complex AP2. Mol. Cell 27, 519–531, 2005.Google Scholar
  63. 63.
    Hussain, N.K., Yamabhai, M., Ramjaun, A.R., Guy, A.M., Baranes, D., O’Bryan, J.P., Der, C.J., Kay, B.K. and McPherson, P.S. Splice variants of intersectin are components of the endocytic machinery in neurons and nonneuronal cells. J. Biol. Chem. 274, 15671–15677, 1999.Google Scholar
  64. 64.
    Hussain, N.K., Jenna, S., Glogauer, M., Quinn, C.C., Wasiak, S., Guipponi, M., Antonarakis, S.E., Kay, B.K., Stossel, T.P., Lamarche-Vane, N. and McPherson, P.S. Endocytic protein intersectin-l regulates actin assembly via Cdc42 and N-WASP. Nat. Cell Biol. 3, 927–932, 2001.Google Scholar
  65. 65.
    Hyman, J., Chen, H., Di Fiore, P.P., De Camilli, P. and Brunger, A.T. Epsin 1 undergoes nucleocytosolic shuttling and its eps15 interactor NH(2)-terminal homology (ENTH) domain, structurally similar to Armadillo and HEAT repeats, interacts with the transcription factor promyelocytic leukemia Zn(2)+ finger protein (PLZF) J. Cell Biol. 149, 537– 546, 2000.PubMedGoogle Scholar
  66. 66.
    Hyun, T.S., Rao, D.S., Saint-Dic, D., Michael, L.E., Kumar, P.D., Bradley, S.V., Mizukami, I.F., Oravecz-Wilson, K.I. and Ross, T.S. HIP1 and HIP1r stabilize receptor tyrosine kinases and bind 3-phosphoinositides via epsin N-terminal homology domains. $J.$ Biol. Chem. 279, 14294–14306, 2004.Google Scholar
  67. 67.
    Itoh, T., Koshiba, S., Kigawa, T., Kikuchi, A., Yokoyama, S. and Takenawa, T. Role of the ENTH domain in phosphatidylinositol-4,5-bisphosphate binding and endocytosis$.$ Science 291, 1047–1051, 2001.Google Scholar
  68. 68.
    Itoh, T., Erdmann, K.S., Roux, A., Habermann, B., Werner, H. and De Camilli, P. Dynamin and the actin cytoskeleton cooperatively regulate plasma membrane invagination by BAR and F-BAR proteins. Dev. Cell 9, 791–804, 2005.PubMedGoogle Scholar
  69. 69.
    Jarousse, N. and Kelly, R.B. The AP2 binding site of synaptotagmin 1 is not an internalization signal but a regulator of endocytosis. J. Cell Biol. 154, 857–866, 2001.PubMedGoogle Scholar
  70. 70.
    Jha, A., Agostinelli, N.R., Mishra, S.K., Keyel, P.A., Hawryluk, M.J. and Traub, L.M. A novel AP-2 adaptor interaction motif initially identified in the long-splice isoform of synaptojanin 1, SJ170. J. Biol. Chem. 279, 2281–2290, 2004.PubMedGoogle Scholar
  71. 71.
    Jia, J.Y., Lamer, S., Schumann, M., Schmidt, M.R., Krause, E. and Haucke, V. Quantitative proteomics analysis of detergent-resistant membranes from chemical synapses: evidence for cholesterol as spatial organizer of synaptic vesicle cycling. Mol. Cell Proteomics 5, 2060–2071, 2006.PubMedGoogle Scholar
  72. 72.
    Jorgensen, E.M., Hartwieg, E., Schuske, K., Nonet, M.L., Jin, Y. and Horvitz, H.R. Defective recycling of synaptic vesicles in synaptotagmin mutants of Caenorhabditis elegans. Nature 378, 196–199, 1995.PubMedGoogle Scholar
  73. 73.
    Kalchman, M.A., Koide, H.B., McCutcheon, K., Graham, R.K., Nichol, K., Nishiyama, K., Kazemi-Esfarjani, P., Lynn, F.C., Wellington, C., Metzler, M., Goldberg, Y.P., Kanazawa, I., Gietz, R.D. and Hayden, M.R. HIP1, a human homologue of S. cerevisiae Sla2p, interacts with membrane-associated huntingtin in the brain. Nat. Genet. 16, 44– 53, 1997.PubMedGoogle Scholar
  74. 74.
    Kalthoff, C., Alves, J., Urbanke, C., Knorr, R. and Ungewickell, E.J. Unusual structural organization of the endocytic proteins AP180 and epsin 1. J. Biol. Chem. 8, 8209–8216, 2002.Google Scholar
  75. 75.
    Karnoub, A.E., Worthylake, D.K., Rossman, K.L., Pruitt, W.M., Campbell, S.L., Sondek, J. and Der, C.J. Molecular basis for Rac1 recognition by guanine nucleotide exchange factors. Nat. Struct. Biol. 8, 1037–1041, 2001.Google Scholar
  76. 76.
    Kay, B.K., Yamabhai, M., Wendland, B. and Emr, S.D. Identification of a novel domain shared by putative components of the endocytic and cytoskeletal machinery. Protein Sci. 8, 435–438, 1999.Google Scholar
  77. 77.
    Khanna, R., Li, Q. and Stanley, E.F. Fractional recovery’ analysis of a presynaptic synaptotagmin 1-anchored endocytic protein complex. PLoS ONE 1, e67, 2006.PubMedGoogle Scholar
  78. 78.
    Kim, W.T., Chang, S., Daniell, L., Cremona, O., Di Paolo, G. and De Camilli, P. Delayed reentry of recycling vesicles into the fusion-competent synaptic vesicle pool in synaptojanin 1 knockout mice. Proc. Natl. Acad. Sci. USA 99, 17143–17148, 2002.PubMedGoogle Scholar
  79. 79.
    Kirchhausen, T. Clathrin. Annu. Rev. Biochem. 69, 699–727, 2000.Google Scholar
  80. 80.
    Koenig, J.H., Saito, K. and Ikeda, K. Reversible control of synaptic transmission in a single gene mutant of Drosophila melanogaster. J. Cell Biol. 96, 1517–1522, 1983.PubMedGoogle Scholar
  81. 81.
    Koh, T.W., Verstreken, P. and Bellen, H.J. Dap160/intersectin acts as a stabilizing scaffold required for synaptic development and vesicle endocytosis. Neuron 43, 193–205, 2004.Google Scholar
  82. 82.
    Kosaka, T. and Ikeda, K. Possible temperature-dependent blockage of synaptic vesicle recycling induced by a single gene mutation in Drosophila. J. Neurobiol. 14, 207–225, 1983.Google Scholar
  83. 83.
    Krauss, M., Kinuta, M., Wenk, M.R., De Camilli, P., Takei, K. and Haucke, V. ARF6 stimulates clathrin/AP-2 recruitment to synaptic membranes by activating phosphatidylinositol phosphate kinase type Igamma. J. Cell Biol. 162, 113–124, 2003.PubMedGoogle Scholar
  84. 84.
    Krauss, M., Kukhtina, V., Pechstein, A. and Haucke, V. Stimulation of phosphatidylinositol kinase type I-mediated phosphatidylinositol (4,5)-bisphosphate synthesis by AP-2mu-cargo complexes. Proc Natl Acad Sci USA 103, 11934–11939, 2006.PubMedGoogle Scholar
  85. 85.
    Le Clainche, C., Pauly, B.S., Zhang, C.X., Engqvist-Goldstein, A.E., Cunningham, K. and Drubin, D.G. A Hip1R-cortactin complex negatively regulates actin assembly associated with endocytosis. EMBO J. 26, 1199–1210, 2007.Google Scholar
  86. 86.
    Lee, D.W., Wu, X., Eisenberg, E. and Greene, L.E. Recruitment dynamics of GAK and auxilin to clathrin-coated pits during endocytosis. J. Cell Sci. 119, 3502–3512, 2006.PubMedGoogle Scholar
  87. 87.
    Legendre-Guillemin, V., Metzler, M., Charbonneau, M., Gan, L., Chopra, V., Philie, J., Hayden, M.R. and McPherson, P.S. HIP1 and HIP12 display differential binding to F-actin, AP2, and clathrin. Identification of a novel interaction with clathrin light chain. J. Biol. Chem. 277, 19897–19904, 2002.PubMedGoogle Scholar
  88. 88.
    Legendre-Guillemin, V., Metzler, M., Lemaire, J.F., Philie, J., Gan, L., Hayden, M.R. and McPherson, P.S. Huntingtin interacting protein 1 (HIP1) regulates clathrin assembly through direct binding to the regulatory region of the clathrin light chain. J. Biol. Chem. 280, 6101–6108, 2005.PubMedGoogle Scholar
  89. 89.
    Leshchyns’ka, I., Sytnyk, V., Richter, M., Andreyeva, A., Puchkov, D. and Schachner, M. The adhesion molecule CHL1 regulates uncoating of clathrin-coated synaptic vesicles. Neuron 52, 1011–1025, 2006.PubMedGoogle Scholar
  90. 90.
    Levivier, E., Goud, B., Souchet, M., Calmels, T.P., Mornon, J.P. and Callebaut, I. uDENN, DENN, and dDENN: indissociable domains in Rab and MAP kinases signaling pathways. Biochem. Biophys. Res. Commun. 287, 688–695, 2001.PubMedGoogle Scholar
  91. 91.
    Macia, E., Ehrlich, M., Massol, R., Boucrot, E., Brunner, C. and Kirchhausen, T. Dynasore, a cell-permeable inhibitor of dynamin. Dev. Cell 10, 839–850, 2006.PubMedGoogle Scholar
  92. 92.
    Majumdar, A., Ramagiri, S. and Rikhy, R. Drosophila homologue of Eps15 is essential for synaptic vesicle recycling. Exp. Cell Res. 312, 2288–2298, 2006.PubMedGoogle Scholar
  93. 93.
    Marchler-Bauer, A. and Bryant, S.H. CD-Search: protein domain annotations on the fly. Nucleic Acids Res. 32, W327–W 331, 2004.Google Scholar
  94. 94.
    Marie, B., Sweeney, S.T., Poskanzer, K.E., Roos, J., Kelly, R.B. and Davis, G.W. Dap160/intersectin scaffolds the periactive zone to achieve high-fidelity endocytosis and normal synaptic growth. Neuron 43, 207–219, 2004.PubMedGoogle Scholar
  95. 95.
    Massol, R.H., Boll, W., Griffin, A.M. and Kirchhausen, T. A burst of auxilin recruitment determines the onset of clathrin-coated vesicle uncoating. Proc. Natl. Acad. Sci. USA 103, 10265–10270, 2006.Google Scholar
  96. 96.
    Masuda, M., Takeda, S., Sone, M., Ohki, T., Mori, H., Kamioka, Y. and Mochizuki, N. Endophilin BAR domain drives membrane curvature by two newly identified structurebased mechanisms. EMBO J. 25, 2889–2897, 2006.PubMedGoogle Scholar
  97. 97.
    McMahon, H.T., Wigge, P. and Smith, C. Clathrin interacts specifically with amphiphysin and is displaced by dynamin. FEBS Lett. 413, 319–322, 1997.PubMedGoogle Scholar
  98. 98.
    McMahon, H.T. and Gallop, J.L. Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438, 590–596, 2005.PubMedGoogle Scholar
  99. 99.
    McPherson, P.S., Takei, K., Schmid, S.L. and De Camilli, P. p145, a major Grb2-binding protein in brain, is co-localized with dynamin in nerve terminals where it undergoes activity- dependent dephosphorylation. J. Biol. Chem. 269, 30132–30139, 1994.PubMedGoogle Scholar
  100. 100.
    McPherson, P.S., Czernik, A.J., Chilcote, T.J., Onofri, F., Benfenati, F., Greengard, P., Schlessinger, J. and De Camilli, P. Interaction of Grb2 via its Src homology 3 domains with synaptic proteins including synapsin I. Proc. Natl. Acad. Sci. USA 91, 6486–6490, 1994.PubMedGoogle Scholar
  101. 101.
    McPherson, P.S., Garcia, E.P., Slepnev, V.I., David, C., Zhang, X., Grabs, D., Sossin, W.S., Bauerfeind, R., Nemoto, Y. and De Camilli, P. A presynaptic inositol-5- phosphatase. Nature 379, 353–357, 1996.PubMedGoogle Scholar
  102. 102.
    Metzler, M., Legendre-Guillemin, V., Gan, L., Chopra, V., Kwok, A., McPherson, P.S. and Hayden, M.R. HIP1 functions in clathrin-mediated endocytosis through binding to clathrin and adaptor protein 2. J. Biol. Chem. 276, 39271–63927, 2001.PubMedGoogle Scholar
  103. 103.
    Michaelson, D.M., Barkai, G. and Barenholz, Y. Asymmetry of lipid organization in cholinergic synaptic vesicle membranes. Biochem. J. 211, 155–162, 1983.PubMedGoogle Scholar
  104. 104.
    Micheva, K.D., Kay, B.K. and McPherson, P.S. Synaptojanin forms two separate complexes in the nerve terminal. Interactions with endophilin and amphiphysin. J. Biol. Chem. 272, 27239–27245, 1997.PubMedGoogle Scholar
  105. 105.
    Mishra, S.K., Agostinelli, N.R., Brett, T.J., Mizukami, I., Ross, T.S. and Traub, L.M. Clathrin- and AP-2-binding sites in HIP1 uncover a general assembly role for endocytic accessory proteins. J. Biol. Chem. 276, 46230–26236, 2001.PubMedGoogle Scholar
  106. 106.
    Mitsunari, T., Nakatsu, F., Shioda, N., Love, P.E., Grinberg, A., Bonifacino, J.S. and Ohno, H.. Clathrin adaptor AP-2 is essential for early embryonal development. Mol. Cell Biol. 25: 9318–9323, 2005.Google Scholar
  107. 107.
    Miyoshi, J. and Takai, Y. Dual role of DENN/MADD (Rab3GEP) in neurotransmission and neuroprotection. Trends Mol. Med. 10, 476–480, 2004.PubMedGoogle Scholar
  108. 108.
    Modregger, J., Ritter, B., Witter, B., Paulsson, M. and Plomann, M. All three PACSIN isoforms bind to endocytic proteins and inhibit endocytosis. J. Cell Sci. 113, 4511–4521, 2000.PubMedGoogle Scholar
  109. 109.
    Montesinos, M.L., Castellano-Munoz, M., Garcia-Junco-Clemente, P. and Fernandez-Chacon, R. Recycling and EH domain proteins at the synapse. Brain Res. Brain Res. Rev. 49, 416–428, 2005.PubMedGoogle Scholar
  110. 110.
    Morgan, J.R., Prasad, K., Hao, W., Augustine, G.J. and Lafer, E.M. A conserved clathrin assembly motif essential for synaptic vesicle endocytosis. J. Neurosci. 20, 8667–8676, 2000.PubMedGoogle Scholar
  111. 111.
    Morgan, J.R., Prasad, K., Jin, S., Augustine, G.J. and Lafer, E.M. Uncoating of clathrincoated vesicles in presynaptic terminals: roles for Hsc70 and auxilin. Neuron 32, 289–300, 2001.PubMedGoogle Scholar
  112. 112.
    Morgan, J.R., Prasad, K., Jin, S., Augustine, G.J. and Lafer, E.M. Eps15 homology domain-NPF motif interactions regulate clathrin coat assembly during synaptic vesicle recycling. J. Biol. Chem. 278, 33583–33592, 2003.PubMedGoogle Scholar
  113. 113.
    Murshid, A., Srivastava, A., Kumar, R. and Presley, J.F. Characterization of the localization and function of NECAP 1 in neurons. J. Neurochem. 98, 1746–1762, 2006.PubMedGoogle Scholar
  114. 114.
    Murthy, V.N. and Stevens, C.F. Synaptic vesicles retain their identity through the endocytic cycle. Nature 392, 497–501, 1998.PubMedGoogle Scholar
  115. 115.
    Murthy, V.N. and De Camilli, P. Cell biology of the presynaptic terminal. Annu. Rev. Neurosci. 26, 701–728, 2003.PubMedGoogle Scholar
  116. 116.
    Nemoto, Y., Wenk, M.R., Watanabe, M., Daniell, L., Murakami, T., Ringstad, N., Yamada, H., Takei, K. and De Camilli, P. Identification and characterization of a synaptojanin 2 splice isoform predominantly expressed in nerve terminals. J. Biol. Chem. 276, 41133–41142, 2001.PubMedGoogle Scholar
  117. 117.
    Newmyer, S.L. and Schmid, S.L. Dominant-interfering Hsc70 mutants disrupt multiple stages of the clathrin-coated vesicle cycle in vivo. J. Cell Biol. 152, 607–620, 2001.PubMedGoogle Scholar
  118. 118.
    Nicholson-Tomishima, K. and Ryan, T.A. Kinetic efficiency of endocytosis at mammalian CNS synapses requires synaptotagmin I. Proc. Natl. Acad. Sci. USA 101, 16648– 16652, 2004.PubMedGoogle Scholar
  119. 119.
    Nonet, M.L., Holgado, A.M., Brewer, F., Serpe, C.J., Norbeck, B.A., Holleran, J., Wei, L., Hartwieg, E., Jorgensen, E.M., and Alfonso, A. UNC-11, a Caenorhabditis elegans AP180 homologue, regulates the size and protein composition of synaptic vesicles. Mol. Biol. Cell. 10, 2343–2360, 1999.PubMedGoogle Scholar
  120. 120.
    Owen, D.J., Vallis, Y., Noble, M.E., Hunter, J.B., Dafforn, T.R., Evans, P.R. and McMahon, H.T. A structural explanation for the binding of multiple ligands by the alpha- adaptin appendage domain. Cell 97, 805–815, 1999.PubMedGoogle Scholar
  121. 121.
    Owen, D.J., Vallis, Y., Pearse, B.M., McMahon, H.T. and Evans, P.R. The structure and function of the beta 2-adaptin appendage domain. EMBO J. 19, 4216–4227, 2000.PubMedGoogle Scholar
  122. 122.
    Owen, D.J., Collins, B.M. and Evans, P.R. Adaptors for clathrin coats: structure and function. Annu. Rev. Cell Dev. Biol. 20, 153–191, 2004.PubMedGoogle Scholar
  123. 123.
    Perera, R.M., Zoncu, R., Lucast, L., De Camilli, P. and Toomre, D. Two synaptojanin 1 isoforms are recruited to clathrin-coated pits at different stages. Proc. Natl. Acad. Sci. USA 103,19332–19337, 2006.PubMedGoogle Scholar
  124. 124.
    Peter, B.J., Kent, H.M., Mills, I.G., Vallis, Y., Butler, P.J., Evans, P.R. and McMahon, H.T. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303, 495–499, 2004.PubMedGoogle Scholar
  125. 125.
    Phillips, A.M., Smith, M., Ramaswami, M. and Kelly, L.E. The products of the Drosophila stoned locus interact with synaptic vesicles via synaptotagmin. J. Neurosci. 20, 8254–8261, 2000.PubMedGoogle Scholar
  126. 126.
    Poskanzer, K.E., Marek, K.W., Sweeney, S.T. and Davis, G.W. Synaptotagmin I is necessary for compensatory synaptic vesicle endocytosis in vivo. Nature 426, 559–563, 2003.PubMedGoogle Scholar
  127. 127.
    Qualmann, B., Roos, J., DiGregorio, P.J. and Kelly, R.B. Syndapin I, a synaptic dynamin- binding protein that associates with the neural Wiskott-Aldrich syndrome protein. Mol. Biol. Cell 10, 501–513, 1999.PubMedGoogle Scholar
  128. 128.
    Ramjaun, A.R. and McPherson, P.S. Tissue-specific alternative splicing generates two synaptojanin isoforms with differential membrane binding properties. J. Biol. Chem. 271, 24856–24861, 1996.PubMedGoogle Scholar
  129. 129.
    Ramjaun, A.R., Micheva, K.D., Bouchelet, I. and McPherson, P.S. Identification and characterization of a nerve terminal-enriched amphiphysin isoform. J. Biol. Chem. 272, 16700–16706, 1997.PubMedGoogle Scholar
  130. 130.
    Ramjaun, A.R. and McPherson, P.S. Multiple amphiphysin II splice variants display differential clathrin binding: identification of two distinct clathrin-binding sites. J. Neurochem. 70, 2369–2376, 1998.PubMedCrossRefGoogle Scholar
  131. 131.
    Ramjaun, A.R., Philie, J., de Heuvel, E. and McPherson, P.S. The N terminus of amphiphysin II mediates dimerization and plasma membrane targeting. J. Biol. Chem. 274, 19785–19791, 1999.PubMedGoogle Scholar
  132. 132.
    Ridley, S.H., Ktistakis, N., Davidson, K., Anderson, K.E., Manifava, M., Ellson, C.D., Lipp, P., Bootman, M., Coadwell, J., Nazarian, A., Erdjument-Bromage, H., Tempst, P., Cooper, M.A., Thuring, J.W., Lim, Z.Y., Holmes, A.B., Stephens, L.R. and Hawkins, P.T. FENS-1 and DFCP1 are FYVE domain-containing proteins with distinct functions in the endosomal and Golgi compartments. J. Cell Sci. 114, 3991–4000, 2001.PubMedGoogle Scholar
  133. 133.
    Ringstad, N., Nemoto, Y. and De Camilli, P. The SH3p4/Sh3p8/SH3p13 protein family: binding partners for synaptojanin and dynamin via a Grb2-like Src homology 3 domain. Proc. Natl. Acad. Sci. USA 94, 8569–8574, 1997.PubMedGoogle Scholar
  134. 134.
    Ritter, B., Philie, J., Girard, M., Tung, E.C., Blondeau, F. and McPherson, P.S. Identification of a family of endocytic proteins that define a new alpha-adaptin ear-binding motif. EMBO Rep. 4, 1089–1095, 2003.PubMedGoogle Scholar
  135. 135.
    Ritter, B., Denisov, A.Y., Philie, J., Deprez, C., Tung, E.C., Gehring, K. and McPherson, P.S. Two WXXF-based motifs in NECAPs define the specificity of accessory protein binding to AP-1 and AP-2. EMBO J. 23, 3701–3710, 2004.PubMedGoogle Scholar
  136. 136.
    Ritter, B. and McPherson, P.S. Molecular mechanisms in clathrin-mediated membrane budding. In Topics in Current Genetics, Vol 10, pp 9–37. Sirkka Kerönen and Jussi Jantti (Eds): Regulatory Mechanisms of Intracellular Membrane Transport. Springer-Verlag Berlin Heidelberg, 2004.Google Scholar
  137. 137.
    Ritter, B., Denisov, A. Yu., Philie, J., Allaire, P.D., Legendre-Guillemin, V., Zybergold, P., Gehring, K. and McPherson, P.S. The NECAP PHear domain increases clathrin accessory protein binding potential. EMBO J. 26, 4066–4077, 2007.PubMedGoogle Scholar
  138. 138.
    Robinson, F.L. and Dixon, J.E. Myotubularin phosphatases: policing 3- phosphoinositides. Trends Cell Biol. 16, 403–412, 2006.PubMedGoogle Scholar
  139. 139.
    Roos, J. and Kelly, R.B. Dap160, a neural-specific Eps15 homology and multiple SH3 domain-containing protein that interacts with Drosophila dynamin. J. Biol. Chem. 273, 19108–19119, 1998.PubMedGoogle Scholar
  140. 140.
    Rosenthal, J.A., Chen, H., Slepnev, V.I., Pellegrini, L., Salcini, A.E., Di Fiore, P.P. and De Camilli, P. The epsins define a family of proteins that interact with components of the clathrin coat and contain a new protein module. J. Biol. Chem. 274, 33959–33965, 1999.Google Scholar
  141. 141.
    Roux, A., Uyhazi, K., Frost, A. and De Camilli, P. GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission. Nature 441, 528–531, 2006.PubMedGoogle Scholar
  142. 142.
    Salcini, A.E., Hilliard, M.A., Croce, A., Arbucci, S., Luzzi, P., Tacchetti, C., Daniell, L., De Camilli, P., Pelicci, P.G., Di Fiore, P.P. and Bazzicalupo, P. The Eps15 C. elegans homologue EHS-1 is implicated in synaptic vesicle recycling. Nat. Cell Biol. 3, 755–760, 2001.PubMedGoogle Scholar
  143. 143.
    Schmid, E.M., Ford, M.G., Burtey, A., Praefcke, G.J., Peak-Chew, S.Y., Mills, I.G., Benmerah, A. and McMahon, H.T. Role of the AP2 beta-appendage hub in recruiting partners for clathrin-coated vesicle assembly. PLoS Biol. 4, e262, 2006.Google Scholar
  144. 144.
    Schuske, K.R., Richmond, J.E., Matthies, D.S., Davis, W.S., Runz, S., Rube, D.A., van der Bliek, A.M. and Jorgensen, E.M. Endophilin is required for synaptic vesicle endocytosis by localizing synaptojanin. Neuron 40, 749–762, 2003.PubMedGoogle Scholar
  145. 145.
    Sever, S., Muhlberg, A.B. and Schmid, S.L. Impairment of dynamin’s GAP domain stimulates receptor-mediated endocytosis. Nature 398, 481–486, 1999.PubMedGoogle Scholar
  146. 146.
    Sheetz, M.P. and Singer, S.J. Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions . Proc. Natl. Acad. Sci. USA 71, 4457–4461, 1974.PubMedGoogle Scholar
  147. 147.
    Shimada, A., Niwa, H., Tsujita, K., Suetsugu, S., Nitta, K., Hanawa-Suetsugu, K., Akasaka, R., Nishino, Y., Toyama, M., Chen, L., Liu, Z.J., Wang, B.C., Yamamoto, M., Terada, T., Miyazawa, A., Tanaka, A., Sugano, S., Shirouzu, M., Nagayama, K., Takenawa, T. and Yokoyama, S. Curved EFC/F-BAR-domain dimers are joined end to end into a filament for membrane invagination in endocytosis. Cell 129, 761–772, 2007.PubMedGoogle Scholar
  148. 148.
    Shupliakov, O., Low, P., Grabs, D., Gad, H., Chen, H., David, C., Takei, K., De Camilli, P. and Brodin, L. Synaptic vesicle endocytosis impaired by disruption of dynamin-SH3 domain interactions. Science 276, 259–263, 1997.PubMedGoogle Scholar
  149. 149.
    Stahelin, R.V., Long, F., Peter, B.J., Murray, D., De Camilli, P., McMahon, H.T. and Cho, W. Contrasting membrane interaction mechanisms of AP180 N-terminal homology (ANTH) and epsin N-terminal homology (ENTH) domains. J. Biol. Chem. 278, 28993–28999, 2003.Google Scholar
  150. 150.
    Stowell, M.H., Marks, B., Wigge, P. and McMahon, H.T. Nucleotide-dependent conformational changes in dynamin: evidence for a mechanochemical molecular spring. Nat. Cell Biol. 1, 27–32, 1999.PubMedGoogle Scholar
  151. 151.
    Sun, Y., Carroll, S., Kaksonen, M., Toshima, J.Y. and Drubin, D.G. PtdIns(4,5)P2 turnover is required for multiple stages during clathrin- and actin-dependent endocytic internalization. J. Cell Biol. 177, 355–367, 2007.PubMedGoogle Scholar
  152. 152.
    Tabares, L., Ruiz, R., Linares-Clemente, P., Gaffield, M.A., Alvarez de Toledo, G., Fernandez-Chacon, R. and Betz, W.J. Monitoring synaptic function at the neuromuscular junction of a mouse expressing synaptopHluorin. J. Neurosci. 27, 5422–5430, 2007.PubMedGoogle Scholar
  153. 153.
    Takamori, S., Holt, M., Stenius, K., Lemke, E.A., Gronborg, M., Riedel, D., Urlaub, H., Schenck, S., Brugger, B., Ringler, P., Muller, S.A., Rammner, B., Grater, F., Hub, J.S., De Groot, B.L., Mieskes, G., Moriyama, Y., Klingauf, J., Grubmuller, H., Heuser, J., Wieland, F. and Jahn, R. Molecular anatomy of a trafficking organelle. Cell 17, 831–846, 2006.Google Scholar
  154. 154.
    Takei, K., McPherson, P.S., Schmid, S.L. and De Camilli, P. Tubular membrane invaginations coated by dynamin rings are induced by GTP-gamma S in nerve terminals. Nature 374, 186–190, 1995.PubMedGoogle Scholar
  155. 155.
    Takei, K., Slepnev, V.I., Haucke, V. and De Camilli, P. Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis. Nat. Cell Biol. 1, 33–39, 1999.PubMedGoogle Scholar
  156. 156.
    Tan, T.C., Valova, V.A., Malladi, C.S., Graham, M.E., Berven, L.A., Jupp, O.J., Hansra, G., McClure, S.J., Sarcevic, B., Boadle, R.A., Larsen, M.R., Cousin, M.A. and Robinson, P.J. Cdk5 is essential for synaptic vesicle endocytosis. Nat. Cell Biol. 5, 701–710, 2003.PubMedGoogle Scholar
  157. 157.
    Tarricone, C., Xiao, B., Justin, N., Walker, P.A., Rittinger, K., Gamblin, S.J. and Smerdon, S.J. The structural basis of Arfaptin-mediated cross-talk between Rac and Arf signalling pathways. Nature 411, 215–219, 2001.PubMedGoogle Scholar
  158. 158.
    Tebar, F., Sorkina, T., Sorkin, A., Ericsson, M. and Kirchhausen, T. Eps15 is a component of clathrin-coated pits and vesicles and is located at the rim of coated pits. J. Biol. Chem. 271, 28727–28730, 1996.PubMedGoogle Scholar
  159. 159.
    ter Haar, E., Harrison, S.C. and Kirchhausen, T. Peptide-in-groove interactions link target proteins to the beta-propeller of clathrin. Proc. Natl. Acad. Sci. USA 97, 1096–1100, 2000.Google Scholar
  160. 160.
    Traub, L.M., Downs, M.A., Westrich, J.L. and Fremont, D.H. Crystal structure of the alpha appendage of AP-2 reveals a recruitment platform for clathrin-coat assembly. Proc. Natl. Acad. Sci. USA 96, 8907–8912, 1999.PubMedGoogle Scholar
  161. 161.
    Traub, L.M. Common principles in clathrin-mediated sorting at the Golgi and the plasma membrane. Biochim. Biophys. Acta. 1744, 415–437, 2005.PubMedGoogle Scholar
  162. 162.
    Tsujita, K., Suetsugu, S., Sasaki, N., Furutani, M., Oikawa, T. and Takenawa, T. Coordination between the actin cytoskeleton and membrane deformation by a novel membrane tubulation domain of PCH proteins is involved in endocytosis. J. Cell Biol. 172, 269– 279, 2006.PubMedGoogle Scholar
  163. 163.
    van der Bliek, A.M. and Meyerowitz, E.M. Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic. Nature 351, 411–414, 1991.Google Scholar
  164. 164.
    Verstreken, P., Koh, T.W., Schulze, K.L., Zhai, R.G., Hiesinger, P.R., Zhou, Y., Mehta, S.Q., Cao, Y., Roos, J. and Bellen, H.J. Synaptojanin is recruited by endophilin to promote synaptic vesicle uncoating. Neuron 40, 733–748, 2003.PubMedGoogle Scholar
  165. 165.
    Voglmaier, S.M., Kam, K., Yang, H., Fortin, D.L., Hua, Z., Nicoll, R.A. and Edwards, R.H. Distinct endocytic pathways control the rate and extent of synaptic vesicle protein recycling. Neuron 51, 71–84, 2006.PubMedGoogle Scholar
  166. 166.
    Waelter, S., Scherzinger, E., Hasenbank, R., Nordhoff, E., Lurz, R., Goehler, H., Gauss, C., Sathasivam, K., Bates, G.P., Lehrach, H. and Wanker, E.E. The huntingtin interacting protein HIP1 is a clathrin and alpha-adaptin-binding protein involved in receptormediated endocytosis. Hum. Mol. Genet. 10, 1807–1817, 2001.PubMedGoogle Scholar
  167. 167.
    Wakeham, D.E., Chen, C.Y., Greene, B., Hwang, P.K. and Brodsky, F.M. Clathrin selfassembly involves coordinated weak interactions favorable for cellular regulation. EMBO J. 22, 4980–4990, 2003.PubMedGoogle Scholar
  168. 168.
    Walch-Solimena, C., Blasi, J., Edelmann, L., Chapman, E.R., von Mollard, G.F. and Jahn, R. The t-SNAREs syntaxin 1 and SNAP-25 are present on organelles that participate in synaptic vesicle recycling. J. Cell Biol. 128, 637–645, 1995.PubMedGoogle Scholar
  169. 169.
    Walther, K., Diril, M.K., Jung, N. and Haucke, V. Functional dissection of the interactions of stonin 2 with the adaptor complex AP-2 and synaptotagmin. Proc. Natl. Acad. Sci. USA 101, 964–969, 2004.PubMedGoogle Scholar
  170. 170.
    Wasiak, S., Legendre-Guillemin, V., Puertollano, R., Blondeau, F., Girard, M., de Heuvel, E., Boismenu, D., Bell, A.W., Bonifacino, J.S. and McPherson, P.S. Enthoprotin: a novel clathrin-associated protein identified through subcellular proteomics. J. Cell Biol. 158, 855–862, 2002.PubMedGoogle Scholar
  171. 171.
    Weissenhorn, W. Crystal structure of the endophilin-A1 BAR domain. J. Mol. Biol. 351, 653–661, 2005.PubMedGoogle Scholar
  172. 172.
    Wienisch, M. and Klingauf, J. Vesicular proteins exocytosed and subsequently retrieved by compensatory endocytosis are nonidentical. Nat. Neurosci. 9, 1019–1027, 2006.PubMedGoogle Scholar
  173. 173.
    Wigge, P., Kohler, K., Vallis, Y., Doyle, C.A., Owen, D., Hunt, S.P. and McMahon, H.T. Amphiphysin heterodimers: potential role in clathrin-mediated endocytosis. Mol. Biol. Cell 8, 2003–2015, 1997.PubMedGoogle Scholar
  174. 174.
    Willig, K.I., Rizzoli, S.O., Westphal, V., Jahn, R. and Hell, S.W. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 13, 935–939, 2006.Google Scholar
  175. 175.
    Wong, W.T., Schumacher, C., Salcini, A.E., Romano, A., Castagnino, P., Pelicci, P.G. and Di Fiore, P.P. A protein-binding domain, EH, identified in the receptor tyrosine kinase substrate Eps15 and conserved in evolution. Proc. Natl. Acad. Sci. USA 92, 9530– 9534, 1995.PubMedGoogle Scholar
  176. 176.
    Yamabhai, M., Hoffman, N.G., Hardison, N.L., McPherson, P.S., Castagnoli, L., Cesareni, G. and Kay, B.K. Intersectin, a novel adaptor protein with two Eps15 homology and five Src homology 3 domains. J. Biol. Chem. 273, 31401–31407, 1998.Google Scholar
  177. 177.
    Yamashita, T., Hige, T. and Takahashi, T. Vesicle endocytosis requires dynamindependent GTP hydrolysis at a fast CNS synapse. Science 307, 124–127, 2005.PubMedGoogle Scholar
  178. 178.
    Yao, P.J., Zhang, P., Mattson, M.P. and Furukawa, K. Heterogeneity of endocytic proteins: distribution of clathrin adaptor proteins in neurons and glia. Neuroscience 121, 25– 37, 2003.PubMedGoogle Scholar
  179. 179.
    Yao, P.J., Petralia, R.S., Bushlin, I., Wang, Y. and Furukawa, K. Synaptic distribution of the endocytic accessory proteins AP180 and CALM. J. Comp. Neurol. 481, 58–69, 2005.PubMedGoogle Scholar
  180. 180.
    Yao, P.J., Bushlin, I. and Petralia, R.S. Partially overlapping distribution of epsin1 and HIP1 at the synapse: analysis by immunoelectron microscopy . J. Comp. Neurol. 494, 368–379, 2006.PubMedGoogle Scholar
  181. 181.
    Zamanian, J.L. and Kelly, R.B. Intersectin 1L guanine nucleotide exchange activity is regulated by adjacent src homology 3 domains that are also involved in endocytosis. Mol. Biol. Cell 14, 1624–1637, 2003.PubMedGoogle Scholar
  182. 182.
    Zhang, B., Koh, Y.H., Beckstead, R.B., Budnik, V., Ganetzky, B. and Bellen, H.J. Synaptic vesicle size and number are regulated by a clathrin adaptor protein required for endocytosis. Neuron 21, 1465–1475, 1998.PubMedGoogle Scholar
  183. 183.
    Zhang, J.Z., Davletov, B.A., Sudhof, T.C. and Anderson, R.G. Synaptotagmin I is a high affinity receptor for clathrin AP-2: implications for membrane recycling. Cell 78, 751–760, 1994.PubMedGoogle Scholar
  184. 184.
    Zhou, S., Sousa, R., Tannery, N.H. and Lafer, E.M. Characterization of a novel synapsespecific protein. II. cDNA cloning and sequence analysis of the F1-20 protein. J. Neurosci. 12, 2144–2155, 1992.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Peter S. McPherson
    • 1
  • Brigitte Ritter
    • 1
  • George J. Augustine
    • 2
  1. 1.Department of Neurology and NeurosurgeryMontreal Neurological Institute QuebecCanadaMcGill UniversityMontreal
  2. 2.Department of NeurobiologyDuke University Medical CenterDurhamUSA

Personalised recommendations