Neurotransmitter Release Machinery: Components of the Neuronal SNARE Complex and Their Function

  • Deniz Atasoy
  • Ege T. Kavalali


Synaptic Vesicle Neurotransmitter Release Core Complex Snare Complex Botulinum Neurotoxin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antonin W, Fasshauer D, Becker S, Jahn R and Schneider TR. Crystal structure of the endosomal SNARE complex reveals common structural principles of all SNAREs. Nat Struct Biol 9, 107–11, 2002.PubMedCrossRefGoogle Scholar
  2. 2.
    Ashton AC, Li Y, Doussau F, Weller U, Dougan G, Poulain B and Dolly JO. Tetanus toxin inhibits neuroexocytosis even when its Zn(2+)-dependent protease activity is removed. J Biol Chem 270, 31386–90, 1995.PubMedCrossRefGoogle Scholar
  3. 3.
    Betz A, Okamoto M, Benseler F and Brose N. Direct interaction of the rat unc-13 homologue Munc13-1 with the N terminus of syntaxin. J Biol Chem 272, 2520–6, 1997.PubMedCrossRefGoogle Scholar
  4. 4.
    Bhattacharya S, Stewart BA, Niemeyer B, Burgess RW, McCabe B, Lin P, Boulianne G, O’Kane C and Schwarz TL. Members of the synaptobrevin/vesicle-associated membrane protein (VAMP) family in Drosophila are functionally interchangeable in vivo for neurotransmittter release and cell viability. Proc Natl Acad Sci U S A 99, 13867–72, 2002.PubMedCrossRefGoogle Scholar
  5. 5.
    Binz T, Blasi J, Yamasaki S, Baumeister A, Link E, Sudhof TC, Jahn R and Niemann H. Proteolysis of SNAP-25 by types E and A botulinal neurotoxins. J Biol Chem 269, 1617– 20, 1994.PubMedGoogle Scholar
  6. 6.
    Blasi J, Chapman ER, Link E, Binz T, Yamasaki S, De Camilli P, Sudhof TC, Niemann H and Jahn R. Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature 365, 160–3, 1993.PubMedCrossRefGoogle Scholar
  7. 7.
    Blasi J, Chapman ER, Yamasaki S, Binz T, Niemann H and Jahn R. Botulinum neurotoxin C1 blocks neurotransmitter release by means of cleaving HPC-1/syntaxin. EMBO J 12, 4821–8, 1993.PubMedGoogle Scholar
  8. 8.
    Borisovska M, Zhao Y, Tsytsyura Y, Glyvuk N, Takamori S, Matti U, Rettig J, Sudhof T and Bruns D. v-SNAREs control exocytosis of vesicles from priming to fusion. EMBO J 24, 2114–26, 2005.PubMedCrossRefGoogle Scholar
  9. 9.
    Bronk P, Deak F, Wilson MC, Liu X, Sudhof TC and Kavalali ET. Differential Effects of SNAP-25 Deletion on Ca2+-Dependent and Ca2+-Independent Neurotransmission. J Neurophysiol 98, 794–806, 2007.PubMedCrossRefGoogle Scholar
  10. 10.
    Capogna M, Mckinney RA, O’Connor V, Gahwiler BH and Thompson SM. Ca2+ and Sr2+ partially rescues synaptic transmission in hippocampal cultures treated with botulinum toxin A and C, but not tetanus toxin. J Neurosci 17, 7190–202, 1997.PubMedGoogle Scholar
  11. 11.
    Chen X, Tomchick DR, Kovrigin E, Arac D, Machius M, Sudhof TC and Rizo J. Threedimensional structure of the complexin/SNARE complex. Neuron 33, 397–409, 2002.PubMedCrossRefGoogle Scholar
  12. 12.
    Chen YA, Scales SJ, Jagath JR and Scheller RH. A discontinuous SNAP-25 C-terminal coil supports exocytosis. J Biol Chem 276, 28503–8, 2001.PubMedCrossRefGoogle Scholar
  13. 13.
    David D, Sundarababu S and Gerst JE. Involvement of long chain fatty acid elongation in the trafficking of secretory vesicles in yeast. J Cell Biol 143, 1167–82, 1998.PubMedCrossRefGoogle Scholar
  14. 14.
    Deak F, Schoch S, Liu X, Sudhof TC and Kavalali ET. Synaptobrevin is essential for fast synaptic-vesicle endocytosis. Nat Cell Biol 6, 1102–8, 2004.PubMedCrossRefGoogle Scholar
  15. 15.
    Deak F, Shin OH, Kavalali ET and Sudhof TC. Structural determinants of synaptobrevin 2 function in synaptic vesicle fusion. J Neurosci 26, 6668–76, 2006.PubMedCrossRefGoogle Scholar
  16. 16.
    Deitcher DL, Ueda A, Stewart BA, Burgess RW, Kidokoro Y and Schwarz TL. Distinct requirements for evoked and spontaneous release of neurotransmitter are revealed by mutations in the Drosophila gene neuronal-synaptobrevin. J Neurosci18, 2028–39, 1998.PubMedGoogle Scholar
  17. 17.
    Delgado-Martinez I, Nehring RB and Sorensen JB. Differential abilities of SNAP-25 homologs to support neuronal function. J Neurosci 27, 9380–91, 2007.PubMedCrossRefGoogle Scholar
  18. 18.
    Dilcher M, Kohler B and von Mollard GF. Genetic interactions with the yeast Q-SNARE VTI1 reveal novel functions for the R-SNARE YKT6. J Biol Chem 276, 34537–44, 2001.PubMedCrossRefGoogle Scholar
  19. 19.
    Dulubova I, Sugita S, Hill S, Hosaka M, Fernandez I, Sudhof TC and Rizo J. A conformational switch in syntaxin during exocytosis: role of munc18. EMBO J 18, 4372–82, 1999.PubMedCrossRefGoogle Scholar
  20. 20.
    Dulubova I, Khvotchev M, Liu S, Huryeva I, Sudhof TC and Rizo J. Munc18-1 binds directly to the neuronal SNARE complex. Proc Natl Acad Sci U S A 104, 2697–702, 2007.PubMedCrossRefGoogle Scholar
  21. 21.
    Fasshauer D, Bruns D, Shen B, Jahn R and Brunger AT. A structural change occurs upon binding of syntaxin to SNAP-25. J Biol Chem 272, 4582–90, 1997.PubMedCrossRefGoogle Scholar
  22. 22.
    Fasshauer D, Sutton RB, Brunger AT and Jahn R. Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc Natl Acad Sci U S A 95, 15781–6, 1998.PubMedCrossRefGoogle Scholar
  23. 23.
    Fasshauer D, Antonin W, Margittai M, Pabst S and Jahn R. Mixed and non-cognate SNARE complexes. Characterization of assembly and biophysical properties. J Biol Chem 274, 15440–6, 1999.PubMedCrossRefGoogle Scholar
  24. 24.
    Fernandez-Chacon R, Konigstorfer A, Gerber SH, Garcia J, Matos MF, Stevens CF, Brose N, Rizo J, Rosenmund C and Sudhof TC. Synaptotagmin I functions as a calcium regulator of release probability. Nature 410, 41–9, 2001.PubMedCrossRefGoogle Scholar
  25. 25.
    Fesce R, Grohovaz F, Valtorta F and Meldolesi J. Neurotransmitter release: fusion or ’kiss-and-run’? Trends Cell Biol 4, 1–4, 1994.PubMedCrossRefGoogle Scholar
  26. 26.
    Finley MF, Patel SM, Madison DV and Scheller RH. The core membrane fusion complex governs the probability of synaptic vesicle fusion but not transmitter release kinetics. J Neurosci 22, 1266–72, 2002.PubMedGoogle Scholar
  27. 27.
    Foran P, Lawrence GW, Shone CC, Foster KA and Dolly JO. Botulinum neurotoxin C1 cleaves both syntaxin and SNAP-25 in intact and permeabilized chromaffin cells: correlation with its blockade of catecholamine release. Biochemistry 35, 2630–6, 1996.PubMedCrossRefGoogle Scholar
  28. 28.
    Fujiwara T, Mishima T, Kofuji T, Chiba T, Tanaka K, Yamamoto A and Akagawa K. Analysis of knock-out mice to determine the role of HPC-1/syntaxin 1A in expressing synaptic plasticity. J Neurosci 26, 5767–76, 2006.PubMedCrossRefGoogle Scholar
  29. 29.
    Geppert M, Goda Y, Hammer RE, Li C, Rosahl TW, Stevens CF and Sudhof TC. Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 79, 717–27, 1994.PubMedCrossRefGoogle Scholar
  30. 30.
    Gerachshenko T, Blackmer T, Yoon EJ, Bartleson C, Hamm HE and Alford S. Gbetagamma acts at the C terminus of SNAP-25 to mediate presynaptic inhibition. Nat Neurosci 8, 597–605, 2005.PubMedCrossRefGoogle Scholar
  31. 31.
    Graf CT, Riedel D, Schmitt HD and Jahn R. Identification of functionally interacting SNAREs by using complementary substitutions in the conserved ’0’ layer. Mol Biol Cell 16, 2263–74, 2005.PubMedCrossRefGoogle Scholar
  32. 32.
    Gurunathan S, Chapman-Shimshoni D, Trajkovic S and Gerst JE. Yeast exocytic v- SNAREs confer endocytosis. Mol Biol Cell 11, 3629–43, 2000.PubMedGoogle Scholar
  33. 33.
    Hammarlund M, Palfreyman MT, Watanabe S, Olsen S and Jorgensen EM. Open syntaxin docks synaptic vesicles. PLoS Biol 5, e198, 2007.PubMedCrossRefGoogle Scholar
  34. 34.
    Han X, Wang CT, Bai J, Chapman ER and Jackson MB. Transmembrane segments of syntaxin line the fusion pore of Ca2+-triggered exocytosis. Science 304, 289–92, 2004.PubMedCrossRefGoogle Scholar
  35. 35.
    Hayashi T, McMahon H, Yamasaki S, Binz T, Hata Y, Sudhof TC and Niemann H. Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. EMBO J 13, 5051–61, 1994.PubMedGoogle Scholar
  36. 36.
    He L, Wu XS, Mohan R and Wu LG. Two modes of fusion pore opening revealed by cell-attached recordings at a synapse. Nature 444, 102–5, 2006.PubMedCrossRefGoogle Scholar
  37. 37.
    Hess DT, Slater TM, Wilson MC and Skene JH. The 25 kDa synaptosomal-associated protein SNAP-25 is the major methionine-rich polypeptide in rapid axonal transport and a major substrate for palmitoylation in adult CNS. J Neurosci 12, 4634–41, 1992.PubMedGoogle Scholar
  38. 38.
    Hu C, Ahmed M, Melia TJ, Sollner TH, Mayer T and Rothman JE. Fusion of cells by flipped SNAREs. Science 300, 1745–9, 2003.PubMedCrossRefGoogle Scholar
  39. 39.
    Huang X, Wheeler MB, Kang YH, Sheu L, Lukacs GL, Trimble WS and Gaisano HY. Truncated SNAP-25 (1-197), like botulinum neurotoxin A, can inhibit insulin secretion from HIT-T15 insulinoma cells. Mol Endocrinol 12, 1060–70, 1998.PubMedCrossRefGoogle Scholar
  40. 40.
    Hunt JM, Bommert K, Charlton MP, Kistner A, Habermann E, Augustine GJ and Betz H. A post-docking role for synaptobrevin in synaptic vesicle fusion. Neuron 12, 1269–79, 1994.PubMedCrossRefGoogle Scholar
  41. 41.
    Jackson MB and Chapman ER. Fusion pores and fusion machines in Ca2+-triggered exocytosis. Annu Rev Biophys Biomol Struct 35, 135–60, 2006.PubMedCrossRefGoogle Scholar
  42. 42.
    Jahn R, Lang T and Sudhof TC. Membrane fusion. Cell 112, 519–33, 2003.PubMedCrossRefGoogle Scholar
  43. 43.
    Jahn R and Scheller RH. SNAREs–engines for membrane fusion. Nat Rev Mol Cell Biol 7, 631–43, 2006.PubMedCrossRefGoogle Scholar
  44. 44.
    Katz L and Brennwald P. Testing the 3Q:1R “rule”: mutational analysis of the ionic “zero” layer in the yeast exocytic SNARE complex reveals no requirement for arginine. Mol Biol Cell 11, 3849–58, 2000.PubMedGoogle Scholar
  45. 45.
    Koushika SP, Richmond JE, Hadwiger G, Weimer RM, Jorgensen EM and Nonet ML. A post-docking role for active zone protein Rim. Nat Neurosci 4, 997–1005, 2001.PubMedCrossRefGoogle Scholar
  46. 46.
    Littleton JT, Chapman ER, Kreber R, Garment MB, Carlson SD and Ganetzky B. Temperature-sensitive paralytic mutations demonstrate that synaptic exocytosis requires SNARE complex assembly and disassembly. Neuron 21, 401–13, 1998.PubMedCrossRefGoogle Scholar
  47. 47.
    Martens S, Kozlov MM and McMahon HT. How synaptotagmin promotes membrane fusion. Science 316, 1205–8, 2007.PubMedCrossRefGoogle Scholar
  48. 48.
    Martinez-Arca S, Alberts P, Zahraoui A, Louvard D and Galli T. Role of tetanus neurotoxin insensitive vesicle-associated membrane protein (TI-VAMP) in vesicular transport mediating neurite outgrowth. J Cell Biol 149, 889–900, 2000.PubMedCrossRefGoogle Scholar
  49. 49.
    McNew JA, Weber T, Engelman DM, Sollner TH and Rothman JE. The length of the flexible SNAREpin juxtamembrane region is a critical determinant of SNAREdependent fusion. Mol Cell 4, 415–21, 1999.PubMedCrossRefGoogle Scholar
  50. 50.
    McNew JA, Parlati F, Fukuda R, Johnston RJ, Paz K, Paumet F, Sollner TH and Rothman JE. Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature 407, 153–9, 2000.PubMedCrossRefGoogle Scholar
  51. 51.
    Melia TJ, Weber T, McNew JA, Fisher LE, Johnston RJ, Parlati F, Mahal LK, Sollner TH and Rothman JE. Regulation of membrane fusion by the membrane-proximal coil of the t-SNARE during zippering of SNAREpins. J Cell Biol 158, 929–40, 2002.PubMedCrossRefGoogle Scholar
  52. 52.
    Murthy VN and Stevens CF. Reversal of synaptic vesicle docking at central synapses. Nat Neurosci 2, 503–7, 1999.PubMedCrossRefGoogle Scholar
  53. 53.
    Murthy VN and De Camilli P. Cell biology of the presynaptic terminal. Annu Rev Neurosci 26, 701–28, 2003.PubMedCrossRefGoogle Scholar
  54. 54.
    Niemeyer BA and Schwarz TL. SNAP-24, a Drosophila SNAP-25 homologue on granule membranes, is a putative mediator of secretion and granule-granule fusion in salivary glands. J Cell Sci113 ( Pt 22), 4055–64, 2000.Google Scholar
  55. 55.
    Nonet ML, Saifee O, Zhao H, Rand JB and Wei L. Synaptic transmission deficits in Caenorhabditis elegans synaptobrevin mutants. J Neurosci 18, 70–80, 1998.PubMedGoogle Scholar
  56. 56.
    Nonet ML, Holgado AM, Brewer F, Serpe CJ, Norbeck BA, Holleran J, Wei L, Hartwieg E, Jorgensen EM and Alfonso A. UNC-11, a Caenorhabditis elegans AP180 homologue, regulates the size and protein composition of synaptic vesicles. Mol Biol Cell 10, 2343–60, 1999.PubMedGoogle Scholar
  57. 57.
    Ossig R, Schmitt HD, de Groot B, Riedel D, Keranen S, Ronne H, Grubmuller H and Jahn R. Exocytosis requires asymmetry in the central layer of the SNARE complex. EMBO J 19, 6000–10, 2000.PubMedCrossRefGoogle Scholar
  58. 58.
    Otto H, Hanson PI and Jahn R. Assembly and disassembly of a ternary complex of synaptobrevin, syntaxin, and SNAP-25 in the membrane of synaptic vesicles. Proc Natl Acad Sci U S A 94, 6197–201, 1997.PubMedCrossRefGoogle Scholar
  59. 59.
    Palfrey HC and Artalejo CR. Vesicle recycling revisited: rapid endocytosis may be the first step. Neuroscience 83, 969–89, 1998.PubMedCrossRefGoogle Scholar
  60. 60.
    Photowala H, Blackmer T, Schwartz E, Hamm HE and Alford S. G protein betagammasubunits activated by serotonin mediate presynaptic inhibition by regulating vesicle fusion properties. Proc Natl Acad Sci U S A 103, 4281–6, 2006.PubMedCrossRefGoogle Scholar
  61. 61.
    Reese C, Heise F and Mayer A. Trans-SNARE pairing can precede a hemifusion intermediate in intracellular membrane fusion. Nature 436, 410–4, 2005.PubMedGoogle Scholar
  62. 62.
    Reim K, Mansour M, Varoqueaux F, McMahon HT, Sudhof TC, Brose N and Rosenmund C. Complexins regulate a late step in Ca2+-dependent neurotransmitter release. Cell 104, 71–81, 2001.PubMedCrossRefGoogle Scholar
  63. 63.
    Renger JJ, Egles C and Liu G. A developmental switch in neurotransmitter flux enhances synaptic efficacy by affecting AMPA receptor activation. Neuron 29, 469–84, 2001.PubMedCrossRefGoogle Scholar
  64. 64.
    Richmond JE, Davis WS and Jorgensen EM. UNC-13 is required for synaptic vesicle fusion in C. elegans. Nat Neurosci 2, 959–64, 1999.PubMedCrossRefGoogle Scholar
  65. 65.
    Richmond JE, Weimer RM and Jorgensen EM. An open form of syntaxin bypasses the requirement for UNC-13 in vesicle priming. Nature 412, 338–41, 2001.PubMedCrossRefGoogle Scholar
  66. 66.
    Rizo J and Sudhof TC. Snares and Munc18 in synaptic vesicle fusion. Nat Rev Neurosci 3, 641–53, 2002.PubMedGoogle Scholar
  67. 67.
    Rizo J, Chen X and Arac D. Unraveling the mechanisms of synaptotagmin and SNARE function in neurotransmitter release. Trends Cell Biol 16, 339–50, 2006.PubMedCrossRefGoogle Scholar
  68. 68.
    Rosenmund C and Stevens CF. Definition of the readily releasable pool of vesicles at hippocampal synapses. Neuron 16, 1197–207, 1996.PubMedCrossRefGoogle Scholar
  69. 69.
    Sabatini BL and Regehr WG. Timing of synaptic transmission. Annu Rev Physiol 61, 521–42, 1999.PubMedCrossRefGoogle Scholar
  70. 70.
    Saifee O, Wei L and Nonet ML. The Caenorhabditis elegans unc-64 locus encodes a syntaxin that interacts genetically with synaptobrevin. Mol Biol Cell 9, 1235–52, 1998.PubMedGoogle Scholar
  71. 71.
    Sakaba T, Stein A, Jahn R and Neher E. Distinct Kinetic Changes in Neurotransmitter Release After SNARE Protein Cleavage. Science 309, 491–94, 2005.PubMedCrossRefGoogle Scholar
  72. 72.
    Salem N, Faundez V, Horng JT and Kelly RB. A v-SNARE participates in synaptic vesicle formation mediated by the AP3 adaptor complex. Nat Neurosci 1, 551–6, 1998.PubMedCrossRefGoogle Scholar
  73. 73.
    Scales SJ, Chen YA, Yoo BY, Patel SM, Doung YC and Scheller RH. SNAREs contribute to the specificity of membrane fusion. Neuron 26, 457–64, 2000.PubMedCrossRefGoogle Scholar
  74. 74.
    Schiavo G, Benfenati F, Poulain B, Rossetto O, Polverino de Laureto P, DasGupta BR and Montecucco C. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359, 832–5, 1992.PubMedCrossRefGoogle Scholar
  75. 75.
    Schiavo G, Santucci A, Dasgupta BR, Mehta PP, Jontes J, Benfenati F, Wilson MC and Montecucco C. Botulinum neurotoxins serotypes A and E cleave SNAP-25 at distinct COOH-terminal peptide bonds. FEBS Lett 335, 99–103, 1993.PubMedCrossRefGoogle Scholar
  76. 76.
    Schiavo G, Matteoli M and Montecucco C. Neurotoxins affecting neuroexocytosis. Physiol Rev 80, 717–66, 2000.PubMedGoogle Scholar
  77. 77.
    Schoch S, Deak F, Konigstorfer A, Mozhayeva M, Sara Y, Sudhof TC and Kavalali ET. SNARE function analyzed in Synaptobrevin/VAMP knockout mice. Science294, 1117–22, 2001.Google Scholar
  78. 78.
    Schoch S, Castillo PE, Jo T, Mukherjee K, Geppert M, Wang Y, Schmitz F, Malenka RC and Sudhof TC. RIM1alpha forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature 415, 321–6, 2002.PubMedCrossRefGoogle Scholar
  79. 79.
    Schulze KL, Broadie K, Perin MS and Bellen HJ. Genetic and electrophysiological studies of Drosophila syntaxin-1A demonstrate its role in nonneuronal secretion and neurotransmission. Cell 80, 311–20, 1995.PubMedCrossRefGoogle Scholar
  80. 80.
    Sollner T, Whiteheart SW, Brunner M, Erdjument-Bromage H, Geromanos S, Tempst P and Rothman JE. SNAP receptors implicated in vesicle targeting and fusion. Nature 362, 318–24, 1993.PubMedCrossRefGoogle Scholar
  81. 81.
    Sorensen JB, Nagy G, Varoqueaux F, Nehring RB, Brose N, Wilson MC and Neher E. Differential control of the releasable vesicle pools by SNAP-25 splice variants and SNAP-23. Cell 114, 75–86, 2003.PubMedCrossRefGoogle Scholar
  82. 82.
    Sorensen JB, Wiederhold K, Muller EM, Milosevic I, Nagy G, de Groot BL, Grubmuller H and Fasshauer D. Sequential N- to C-terminal SNARE complex assembly drives priming and fusion of secretory vesicles. EMBO J 25, 955–66, 2006.PubMedCrossRefGoogle Scholar
  83. 83.
    Sudhof TC. The synaptic vesicle cycle. Annu Rev Neurosci 27, 509–47, 2004.PubMedCrossRefGoogle Scholar
  84. 84.
    Sun W, Yan Q, Vida TA and Bean AJ. Hrs regulates early endosome fusion by inhibiting formation of an endosomal SNARE complex. J Cell Biol 162, 125–37, 2003.PubMedCrossRefGoogle Scholar
  85. 85.
    Sutton RB, Fasshauer D, Jahn R and Brunger AT. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395, 347–53, 1998.PubMedCrossRefGoogle Scholar
  86. 86.
    Sweeney ST, Broadie K, Keane J, Niemann H and O’Kane CJ. Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron 14, 341–51, 1995.PubMedCrossRefGoogle Scholar
  87. 87.
    Tafoya LCR, Mameli M, Miyashita T, Guzowski JF, Valenzuela CF and Wilson MC. Expression and Function of SNAP-25 as a Universal SNARE component in GABAergic Neurons. J Neurosci 26, 7826–38, 2006.PubMedCrossRefGoogle Scholar
  88. 88.
    Tang J, Maximov A, Shin OH, Dai H, Rizo J and Sudhof TC. A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis. Cell 126, 1175–87, 2006.PubMedCrossRefGoogle Scholar
  89. 89.
    Ungermann C and Wickner W. Vam7p, a vacuolar SNAP-25 homolog, is required for SNARE complex integrity and vacuole docking and fusion. EMBO J 17, 3269–76, 1998.PubMedCrossRefGoogle Scholar
  90. 90.
    Varoqueaux F, Sigler A, Rhee JS, Brose N, Enk C, Reim K and Rosenmund C. Total arrest of spontaneous and evoked synaptic transmission but normal synaptogenesis in the absence of Munc13-mediated vesicle priming. Proc Natl Acad Sci U S A 99, 9037–42, 2002.PubMedCrossRefGoogle Scholar
  91. 91.
    Verhage M, Maia AS, Plomp JJ, Brussaard AB, Heeroma JH, Vermeer H, Toonen RF, Hammer RE, van den Berg TK, Missler M, Geuze HJ and Sudhof TC. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 287, 864–9, 2000.PubMedCrossRefGoogle Scholar
  92. 92.
    Vilinsky I, Stewart BA, Drummond J, Robinson I and Deitcher DL. A Drosophila SNAP-25 null mutant reveals context-dependent redundancy with SNAP-24 in neurotransmission. Genetics 162, 259–71, 2002.PubMedGoogle Scholar
  93. 93.
    Wang Y, Dulubova I, Rizo J and Sudhof TC. Functional analysis of conserved structural elements in yeast syntaxin Vam3p. J Biol Chem 276, 28598–605, 2001.PubMedCrossRefGoogle Scholar
  94. 94.
    Washbourne P, Thompson PM, Carta M, Costa ET, Mathews JR, Lopez-Bendito G, Molnar Z, Becher MW, Valenzuela CF, Partridge LD and Wilson MC. Genetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosis. Nat Neurosci 5, 19–26, 2002.PubMedGoogle Scholar
  95. 95.
    Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, Sollner TH and Rothman JE. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–72, 1998.PubMedCrossRefGoogle Scholar
  96. 96.
    Xu T, Rammner B, Margittai M, Artalejo AR, Neher E and Jahn R. Inhibition of SNARE complex assembly differentially affects kinetic components of exocytosis. Cell 99, 713–22, 1999.PubMedCrossRefGoogle Scholar
  97. 97.
    Yang B, Gonzalez L, Jr., Prekeris R, Steegmaier M, Advani RJ and Scheller RH. SNARE interactions are not selective. Implications for membrane fusion specificity. J Biol Chem 274, 5649–53, 1999.PubMedCrossRefGoogle Scholar
  98. 98.
    Yoshihara M, Ueda A, Zhang D, Deitcher DL, Schwarz TL and Kidokoro Y. Selective effects of neuronal-synaptobrevin mutations on transmitter release evoked by sustained versus transient Ca2+ increases and by cAMP. J Neurosci 19, 2432–41, 1999.PubMedGoogle Scholar
  99. 99.
    Young SM, Jr. Proteolysis of SNARE proteins alters facilitation and depression in a specific way. Proc Natl Acad Sci U S A 102, 2614–9, 2005.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Deniz Atasoy
    • 1
  • Ege T. Kavalali
    • 1
  1. 1.Department of Neuroscience, U.T. Southwestern Medical Center5323 Harry Hines BoulevardDallasUSA

Personalised recommendations