Structure and Function of Vertebrate and Invertebrate Active Zones

  • Craig C. Garner
  • Kang Shen


Synaptic Vesicle Active Zone Voltage Gated Calcium Channel Ribbon Synapse Releasable Pool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahmari SE, Buchanan J, and Smith SJ. Assembly of presynaptic active zones from cytoplasmic transport packets. Nature Neuroscience 3: 445–451, 2000.PubMedCrossRefGoogle Scholar
  2. 2.
    Altrock WD, tom Dieck S, Sokolov M, Meyer AC, Sigler A, Brakebusch C, Fassler R, Richter K, Boeckers TM, Potschka H, Brandt C, Loscher W, Grimberg D, Dresbach T, Hempelmann A, Hassan H, Balschun D, Frey JU, Brandstatter JH, Garner CC, Rosenmund C, and Gundelfinger ED. Functional inactivation of a fraction of excitatory synapses in mice deficient for the active zone protein bassoon. Neuron 37: 787–800, 2003.PubMedCrossRefGoogle Scholar
  3. 3.
    Bamji SX, Rico B, Kimes N, and Reichardt LF. BDNF mobilizes synaptic vesicles and enhances synapse formation by disrupting cadherin-beta-catenin interactions. The Journal of cell biology 174: 289–299, 2006.CrossRefGoogle Scholar
  4. 4.
    Bamji SX, Shimazu K, Kimes N, Huelsken J, Birchmeier W, Lu B, and Reichardt LF. Role of beta-catenin in synaptic vesicle localization and presynaptic assembly. Neuron 40: 719–731, 2003.PubMedCrossRefGoogle Scholar
  5. 5.
    Becherer U and Rettig J. Vesicle pools, docking, priming, and release. Cell and Tissue Research 326: 393–407, 2006.PubMedCrossRefGoogle Scholar
  6. 6.
    Brodin L, Low P, and Shupliakov O. Sequential steps in clathrin-mediated synaptic vesicle endocytosis. Current Opinion in Neurobiology 10: 312–320, 2000.PubMedCrossRefGoogle Scholar
  7. 7.
    Brodin L and Shupliakov O. Giant reticulospinal synapse in lamprey: molecular links between active and periactive zones. Cell and Tissue Research 326: 301–310, 2006.PubMedCrossRefGoogle Scholar
  8. 8.
    Cao YQ, Piedras-Renteria ES, Smith GB, Chen G, Harata NC, and Tsien RW. Presynaptic Ca2+ channels compete for channel type-preferring slots in altered neurotransmission arising from Ca2+ channelopathy. Neuron 43: 387–400, 2004.PubMedCrossRefGoogle Scholar
  9. 9.
    Catterall WA, Hulme JT, Jiang X, and Few WP. Regulation of sodium and calcium channels by signaling complexes. Journal of Receptor and Signal Transduction Research 26: 577–598, 2006.PubMedCrossRefGoogle Scholar
  10. 10.
    Chi P, Greengard P, and Ryan TA. Synaptic vesicle mobilization is regulated by distinct synapsin I phosphorylation pathways at different frequencies. Neuron 38: 69–78, 2003.PubMedCrossRefGoogle Scholar
  11. 11.
    Collins CA, Wairkar YP, Johnson SL, and DiAntonio A. Highwire restrains synaptic growth by attenuating a MAP kinase signal. Neuron 51: 57–69, 2006.PubMedCrossRefGoogle Scholar
  12. 12.
    Crump JG, Zhen M, Jin Y, and Bargmann CI. The SAD-1 kinase regulates presynaptic vesicle clustering and axon termination. Neuron 29: 115–129, 2001.PubMedCrossRefGoogle Scholar
  13. 13.
    Dai Y, Taru H, Deken SL, Grill B, Ackley B, Nonet ML, and Jin Y. SYD-2 Liprin-alpha organizes presynaptic active zone formation through ELKS. Nature Neuroscience 9: 1479–1487, 2006.PubMedCrossRefGoogle Scholar
  14. 14.
    Dan Y and Poo MM. Spike timing-dependent plasticity of neural circuits. Neuron 44: 23–30, 2004.PubMedCrossRefGoogle Scholar
  15. 15.
    De Camilli P. Molecular mechanisms in membrane traffic at the neuronal synapse: role of protein-lipid interactions. Harvey Lectures 100: 1–28, 2004.PubMedGoogle Scholar
  16. 16.
    Deken SL, Vincent R, Hadwiger G, Liu Q, Wang ZW, and Nonet ML. Redundant localization mechanisms of RIM and ELKS in Caenorhabditis elegans. The Journal of Neuroscience 25: 5975–5983, 2005.PubMedCrossRefGoogle Scholar
  17. 17.
    DiAntonio A, Haghighi AP, Portman SL, Lee JD, Amaranto AM, and Goodman CS. Ubiquitination-dependent mechanisms regulate synaptic growth and function. Nature 412: 449–452, 2001.PubMedCrossRefGoogle Scholar
  18. 18.
    Dick O, Hack I, Altrock WD, Garner CC, Gundelfinger ED, and Brandstatter JH. Localization of the presynaptic cytomatrix protein Piccolo at ribbon and conventional synapses in the rat retina: comparison with Bassoon. The Journal of Comparative Neurology 439: 224–234, 2001.PubMedCrossRefGoogle Scholar
  19. 19.
    Dick O, tom Dieck S, Altrock WD, Ammermuller J, Weiler R, Garner CC, Gundelfinger ED, and Brandstatter JH. The presynaptic active zone protein bassoon is essential for photoreceptor ribbon synapse formation in the retina. Neuron 37: 775–786, 2003.PubMedCrossRefGoogle Scholar
  20. 20.
    Fejtova A and Gundelfinger ED. Molecular organization and assembly of the presynaptic active zone of neurotransmitter release. Results and Probllems in Cell Differentiation 43: 49–68, 2006.CrossRefGoogle Scholar
  21. 21.
    Friedman HV, Bresler T, Garner CC, and Ziv NE. Assembly of new individual excitatory synapses: time course and temporal order of synaptic molecule recruitment. Neuron 27: 57–69, 2000.PubMedCrossRefGoogle Scholar
  22. 22.
    Garner CC, Kindler S, and Gundelfinger ED. Molecular determinants of presynaptic active zones. Current Opinion in Neurobiology 10: 321–327, 2000.PubMedCrossRefGoogle Scholar
  23. 23.
    Gray EG. Electron microscopy of presynaptic organelles of the spinal cord. Journal of Anatomy 97: 101–106, 1963.PubMedGoogle Scholar
  24. 24.
    Greengard P, Valtorta F, Czernik AJ, and Benfenati F. Synaptic vesicle phosphoproteins and regulation of synaptic function. Science (New York, NY 259: 780–785, 1993.Google Scholar
  25. 25.
    Hallam SJ, Goncharov A, McEwen J, Baran R, and Jin Y. SYD-1, a presynaptic protein with PDZ, C2 and rhoGAP-like domains, specifies axon identity in C. elegans. Nature Neuroscience 5: 1137–1146, 2002.PubMedCrossRefGoogle Scholar
  26. 26.
    Harlow ML, Ress D, Stoschek A, Marshall RM, and McMahan UJ. The architecture of active zone material at the frog’s neuromuscular junction. Nature 409: 479–484, 2001.PubMedCrossRefGoogle Scholar
  27. 27.
    Heidemann SR, Landers JM, and Hamborg MA. Polarity orientation of axonal microtubules. The Journal of Cell Biology 91: 661–665, 1981.PubMedCrossRefGoogle Scholar
  28. 28.
    Heuser J, Katz B, and Miledi R. Structural and functional changes of frog neuromuscular junctions in high calcium solutions. Proceedings of the Royal Society of London Series B, Containing papers of a Biological character 178: 407–415, 1971.CrossRefGoogle Scholar
  29. 29.
    Heuser JE and Reese TS. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. The Journal of Cell Biology 57: 315–344, 1973.PubMedCrossRefGoogle Scholar
  30. 30.
    Heuser JE and Reese TS. Structural changes after transmitter release at the frog neuromuscular junction. The Journal of Cell Biology 88: 564–580, 1981.PubMedCrossRefGoogle Scholar
  31. 31.
    Heuser JE, Reese TS, and Landis DM. Functional changes in frog neuromuscular junctions studied with freeze-fracture. Journal of Neurocytology 3: 109–131, 1974.PubMedCrossRefGoogle Scholar
  32. 32.
    Hirokawa N, Sobue K, Kanda K, Harada A, and Yorifuji H. The cytoskeletal architecture of the presynaptic terminal and molecular structure of synapsin 1. The Journal of Cell Biology 108: 111–126, 1989.PubMedCrossRefGoogle Scholar
  33. 33.
    Jahn R. Neuroscience. A neuronal receptor for botulinum toxin. Science (New York, NY) 312: 540–541, 2006.Google Scholar
  34. 34.
    Katz B and Miledi R. The Effect of Calcium on Acetylcholine Release from Motor Nerve Terminals. Proceedings of the Royal Society of London Series B, Containing Papers of a Biological Character 161: 496–503, 1965.Google Scholar
  35. 35.
    Kaufmann N, DeProto J, Ranjan R, Wan H, and Van Vactor D. Drosophila liprin-alpha and the receptor phosphatase Dlar control synapse morphogenesis. Neuron 34: 27–38, 2002.PubMedCrossRefGoogle Scholar
  36. 36.
    Kishi M, Pan YA, Crump JG, and Sanes JR. Mammalian SAD kinases are required for neuronal polarization. Science (New York, NY) 307: 929–932, 2005.Google Scholar
  37. 37.
    Kittel RJ, Wichmann C, Rasse TM, Fouquet W, Schmidt M, Schmid A, Wagh DA, Pawlu C, Kellner RR, Willig KI, Hell SW, Buchner E, Heckmann M, and Sigrist SJ. Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science (New York, NY) 312: 1051–1054, 2006.Google Scholar
  38. 38.
    Klassen MP and Shen K. Wnt Signaling Positions Neuromuscular Connectivity by Inhibiting Synapse Formation in C. elegans. Cell 130: 704–716, 2007.PubMedCrossRefGoogle Scholar
  39. 39.
    Ko J, Na M, Kim S, Lee JR, and Kim E. Interaction of the ERC family of RIM-binding proteins with the liprin-alpha family of multidomain proteins. The Journal of Biological Chemistry 278: 42377–42385, 2003.PubMedCrossRefGoogle Scholar
  40. 40.
    Koh TW, Verstreken P, and Bellen HJ. Dap160/intersectin acts as a stabilizing scaffold required for synaptic development and vesicle endocytosis. Neuron 43: 193–205, 2004.PubMedCrossRefGoogle Scholar
  41. 41.
    Kummer TT, Misgeld T, and Sanes JR. Assembly of the postsynaptic membrane at the neuromuscular junction: paradigm lost. Current Opinion in Neurobiology 16: 74–82, 2006.PubMedCrossRefGoogle Scholar
  42. 42.
    Liao EH, Hung W, Abrams B, and Zhen M. An SCF-like ubiquitin ligase complex that controls presynaptic differentiation. Nature 430: 345–350, 2004.PubMedCrossRefGoogle Scholar
  43. 43.
    Lichtman JW and Colman H. Synapse elimination and indelible memory. Neuron 25: 269–278, 2000.PubMedCrossRefGoogle Scholar
  44. 44.
    Marie B, Sweeney ST, Poskanzer KE, Roos J, Kelly RB, and Davis GW. Dap160/intersectin scaffolds the periactive zone to achieve high-fidelity endocytosis and normal synaptic growth. Neuron 43: 207–219, 2004.PubMedCrossRefGoogle Scholar
  45. 45.
    Miller KE, DeProto J, Kaufmann N, Patel BN, Duckworth A, and Van Vactor D. Direct observation demonstrates that Liprin-alpha is required for trafficking of synaptic vesicles. Current Biology 15: 684–689, 2005.PubMedCrossRefGoogle Scholar
  46. 46.
    Missler M, Zhang W, Rohlmann A, Kattenstroth G, Hammer RE, Gottmann K, and Sudhof TC. Alpha-neurexins couple Ca2+ channels to synaptic vesicle exocytosis. Nature 424: 939–948, 2003.CrossRefGoogle Scholar
  47. 47.
    Montgomery JM, Zamorano PL, and Garner CC. MAGUKs in synapse assembly and function: an emerging view. Cellular and Molecular Life Science 61: 911–929, 2004.CrossRefGoogle Scholar
  48. 48.
    Morales M, Colicos MA, and Goda Y. Actin-dependent regulation of neurotransmitter release at central synapses. Neuron 27: 539–550, 2000.PubMedCrossRefGoogle Scholar
  49. 49.
    Nakata K, Abrams B, Grill B, Goncharov A, Huang X, Chisholm AD, and Jin Y. Regulation of a DLK-1 and p38 MAP kinase pathway by the ubiquitin ligase RPM-1 is required for presynaptic development. Cell 120: 407–420, 2005.PubMedCrossRefGoogle Scholar
  50. 50.
    Nishimune H, Sanes JR, and Carlson SS. A synaptic laminin-calcium channel interaction organizes active zones in motor nerve terminals. Nature 432: 580–587, 2004.PubMedCrossRefGoogle Scholar
  51. 51.
    Nonet ML, Staunton JE, Kilgard MP, Fergestad T, Hartwieg E, Horvitz HR, Jorgensen EM, and Meyer BJ. Caenorhabditis elegans rab-3 mutant synapses exhibit impaired function and are partially depleted of vesicles. Journal of Neuroscience 17: 8061–8073, 1997.PubMedGoogle Scholar
  52. 52.
    Patel MR, Lehrman EK, Poon VY, Crump JG, Zhen M, Bargmann CI, and Shen K. Hierarchical assembly of presynaptic components in defined C. elegans synapses. Nature Neuroscience 9: 1488–1498, 2006.PubMedCrossRefGoogle Scholar
  53. 53.
    Pieribone VA, Shupliakov O, Brodin L, Hilfiker-Rothenfluh S, Czernik AJ, and Greengard P. Distinct pools of synaptic vesicles in neurotransmitter release. Nature 375: 493–497, 1995.PubMedCrossRefGoogle Scholar
  54. 54.
    Richmond JE and Broadie KS. The synaptic vesicle cycle: exocytosis and endocytosis in Drosophila and C. elegans. Current Opinion in Neurobiology 12: 499–507, 2002.PubMedCrossRefGoogle Scholar
  55. 55.
    Rieckhof GE, Yoshihara M, Guan Z, and Littleton JT. Presynaptic N-type calcium channels regulate synaptic growth. The Journal of Biological Chemistry 278: 41099–41108, 2003.PubMedCrossRefGoogle Scholar
  56. 56.
    Rostaing P, Real E, Siksou L, Lechaire JP, Boudier T, Boeckers TM, Gertler F, Gundelfinger ED, Triller A, and Marty S. Analysis of synaptic ultrastructure without fixative using high-pressure freezing and tomography. European Journal of Neuroscience 24: 3463–3474, 2006.PubMedCrossRefGoogle Scholar
  57. 57.
    McAllister AK. Dynamic Aspects of CNS Synapse Formation. Annual Review of Neuroscience 30: 425–450, 2007.PubMedCrossRefGoogle Scholar
  58. 58.
    Ryan TA, Reuter H, Wendland B, Schweizer FE, Tsien RW, and Smith SJ. The kinetics of synaptic vesicle recycling measured at single presynaptic boutons. Neuron 11: 713–724, 1993.PubMedCrossRefGoogle Scholar
  59. 59.
    Sanes JR and Lichtman JW. Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nature Reviews. Neuroscience 2: 791–805, 2001.PubMedCrossRefGoogle Scholar
  60. 60.
    Sankaranarayanan S, Atluri PP, and Ryan TA. Actin has a molecular scaffolding, not propulsive, role in presynaptic function. Nature Neuroscience 6: 127–135, 2003.PubMedCrossRefGoogle Scholar
  61. 61.
    Schaefer AM, Hadwiger GD, and Nonet ML. rpm-1, a conserved neuronal gene that regulates targeting and synaptogenesis in C. elegans. Neuron 26: 345–356, 2000.PubMedCrossRefGoogle Scholar
  62. 62.
    Schluter OM, Schmitz F, Jahn R, Rosenmund C, and Sudhof TC. A complete genetic analysis of neuronal Rab3 function. Journal of Neuroscience 24: 6629–6637, 2004.PubMedCrossRefGoogle Scholar
  63. 63.
    Schoch S, Castillo PE, Jo T, Mukherjee K, Geppert M, Wang Y, Schmitz F, Malenka RC, and Sudhof TC. RIM1alpha forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature 415: 321–326, 2002.PubMedCrossRefGoogle Scholar
  64. 64.
    Schoch S and Gundelfinger ED. Molecular organization of the presynaptic active zone. Cell and Tissue Research 326: 379–391, 2006.PubMedCrossRefGoogle Scholar
  65. 65.
    Schweizer FE and Ryan TA. The synaptic vesicle: cycle of exocytosis and endocytosis. Current Opinion in Neurobiology 16: 298–304, 2006.PubMedCrossRefGoogle Scholar
  66. 66.
    Shapira M, Zhai RG, Dresbach T, Bresler T, Torres VI, Gundelfinger ED, Ziv NE, and Garner CC. Unitary assembly of presynaptic active zones from Piccolo-Bassoon transport vesicles. Neuron 38: 237–252, 2003.PubMedCrossRefGoogle Scholar
  67. 67.
    Shen K and Bargmann CI. The immunoglobulin superfamily protein SYG-1 determines the location of specific synapses in C. elegans. Cell 112: 619–630, 2003.PubMedCrossRefGoogle Scholar
  68. 68.
    Shen K, Fetter RD, and Bargmann CI. Synaptic specificity is generated by the synaptic guidepost protein SYG-2 and its receptor, SYG-1. Cell 116: 869–881, 2004.PubMedCrossRefGoogle Scholar
  69. 69.
    Shin H, Wyszynski M, Huh KH, Valtschanoff JG, Lee JR, Ko J, Streuli M, Weinberg RJ, Sheng M, and Kim E. Association of the kinesin motor KIF1A with the multimodular protein liprin-alpha. The Journal of Biological chemistry 278: 11393–11401, 2003.PubMedCrossRefGoogle Scholar
  70. 70.
    Siksou L, Rostaing P, Lechaire JP, Boudier T, Ohtsuka T, Fejtova A, Kao HT, Greengard P, Gundelfinger ED, Triller A, and Marty S. Three-dimensional architecture of presynaptic terminal cytomatrix. Journal of Neuroscience 27: 6868–6877, 2007.PubMedCrossRefGoogle Scholar
  71. 71.
    Sterling P and Matthews G. Structure and function of ribbon synapses. Trends in Neurosciences 28: 20–29, 2005.PubMedCrossRefGoogle Scholar
  72. 72.
    Sudhof TC. The synaptic vesicle cycle. Annual Review of Neuroscience 27: 509–547, 2004.PubMedCrossRefGoogle Scholar
  73. 73.
    tom Dieck S, Altrock WD, Kessels MM, Qualmann B, Regus H, Brauner D, Fejtova A, Bracko O, Gundelfinger ED, and Brandstatter JH. Molecular dissection of the photoreceptor ribbon synapse: physical interaction of Bassoon and RIBEYE is essential for the assembly of the ribbon complex. The Journal of Cell Biology 168: 825–836, 2005.PubMedCrossRefGoogle Scholar
  74. 74.
    Vale RD. The molecular motor toolbox for intracellular transport. Cell 112: 467–480, 2003.PubMedCrossRefGoogle Scholar
  75. 75.
    von Gersdorff H and Matthews G. Electrophysiology of synaptic vesicle cycling. Annual Review of Physiology 61: 725–752, 1999.CrossRefGoogle Scholar
  76. 76.
    Wagh DA, Rasse TM, Asan E, Hofbauer A, Schwenkert I, Durrbeck H, Buchner S, Dabauvalle MC, Schmidt M, Qin G, Wichmann C, Kittel R, Sigrist SJ, and Buchner E. Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in Drosophila. Neuron 49: 833–844, 2006.PubMedCrossRefGoogle Scholar
  77. 77.
    Waites CL, Craig AM, and Garner CC. Mechanisms of vertebrate synaptogenesis. Annual Review of Neuroscience 28: 251–274, 2005.PubMedCrossRefGoogle Scholar
  78. 78.
    Sheng M and Hoogenraad CC. The Postsynaptic architecture of excitatory synapses: a more quantitative view. Annual Review of Biochemistry 76: 823–847, 2006.CrossRefGoogle Scholar
  79. 79.
    Wan HI, DiAntonio A, Fetter RD, Bergstrom K, Strauss R, and Goodman CS. Highwire regulates synaptic growth in Drosophila. Neuron 26: 313–329, 2000.PubMedCrossRefGoogle Scholar
  80. 80.
    Wang X, Hu B, Zimmermann B, and Kilimann MW. Rim1 and rabphilin-3 bind Rab3- GTP by composite determinants partially related through N-terminal alpha -helix motifs. The Journal of Biological Chemistry 276: 32480–32488, 2001.PubMedCrossRefGoogle Scholar
  81. 81.
    Wang Y, Liu X, Biederer T, and Sudhof TC. A family of RIM-binding proteins regulated by alternative splicing: Implications for the genesis of synaptic active zones. Proceedings of the National Academy of Sciences of the United States of America 99: 14464– 14469, 2002.PubMedCrossRefGoogle Scholar
  82. 82.
    Wang Y, Okamoto M, Schmitz F, Hofmann K, and Sudhof TC. Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion. Nature 388: 593–598, 1997.PubMedCrossRefGoogle Scholar
  83. 83.
    Weimer RM, Gracheva EO, Meyrignac O, Miller KG, Richmond JE, and Bessereau JL. UNC-13 and UNC-10/rim localize synaptic vesicles to specific membrane domains. Journal of Neuroscience 26: 8040–8047, 2006.PubMedCrossRefGoogle Scholar
  84. 84.
    Wyszynski M, Kim E, Dunah AW, Passafaro M, Valtschanoff JG, Serra-Pages C, Streuli M, Weinberg RJ, and Sheng M. Interaction between GRIP and liprin-alpha/SYD2 is required for AMPA receptor targeting. Neuron 34: 39–52, 2002.PubMedCrossRefGoogle Scholar
  85. 85.
    Yeh E, Kawano T, Weimer RM, Bessereau JL, and Zhen M. Identification of genes involved in synaptogenesis using a fluorescent active zone marker in Caenorhabditis elegans. Journal of Neuroscience 25: 3833–3841, 2005.PubMedCrossRefGoogle Scholar
  86. 86.
    Yonekawa Y, Harada A, Okada Y, Funakoshi T, Kanai Y, Takei Y, Terada S, Noda T, and Hirokawa N. Defect in synaptic vesicle precursor transport and neuronal cell death in KIF1A motor protein-deficient mice. The Journal of Cell Biology 141: 431–441, 1998.PubMedCrossRefGoogle Scholar
  87. 87.
    Zhai R, Olias G, Chung WJ, Lester RA, tom Dieck S, Langnaese K, Kreutz MR, Kindler S, Gundelfinger ED, and Garner CC. Temporal appearance of the presynaptic cytomatrix protein bassoon during synaptogenesis. Molecular and Cellular Neurosciences 15: 417–428, 2000.PubMedCrossRefGoogle Scholar
  88. 88.
    Zhai RG and Bellen HJ. The architecture of the active zone in the presynaptic nerve terminal. Physiology (Bethesda) 19: 262–270, 2004.Google Scholar
  89. 89.
    Zhai RG, Vardinon-Friedman H, Cases-Langhoff C, Becker B, Gundelfinger ED, Ziv NE, and Garner CC. Assembling the presynaptic active zone: a characterization of an active one precursor vesicle. Neuron 29: 131–143, 2001.PubMedCrossRefGoogle Scholar
  90. 90.
    Zhao C, Takita J, Tanaka Y, Setou M, Nakagawa T, Takeda S, Yang HW, Terada S, Nakata T, Takei Y, Saito M, Tsuji S, Hayashi Y, and Hirokawa N. Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. Cell 105: 587–597, 2001.PubMedCrossRefGoogle Scholar
  91. 91.
    Zhen M, Huang X, Bamber B, and Jin Y. Regulation of presynaptic terminal organization by C. elegans RPM-1, a putative guanine nucleotide exchanger with a RING-H2 finger domain. Neuron 26: 331–343, 2000.PubMedCrossRefGoogle Scholar
  92. 92.
    Zhen M and Jin Y. The liprin protein SYD-2 regulates the differentiation of presynaptic termini in C. elegans. Nature 401: 371–375, 1999.PubMedGoogle Scholar
  93. 93.
    Ziv NE and Garner CC. Cellular and molecular mechanisms of presynaptic assembly. Nature Reviews. Neuroscience 5: 385–399, 2004.PubMedCrossRefGoogle Scholar
  94. 94.
    Ziv NE and Garner CC. Principles of glutamatergic synapse formation: seeing the forest for the trees. Current Opinion in Neurobiology 11: 536–543, 2001.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Craig C. Garner
    • 1
  • Kang Shen
    • 2
  1. 1.Department of Psychiatry and Behavioral Science Nancy Pritzker LaboratoryStanford UniversityPalo AltoUSA
  2. 2.Department of BiologyStanford UniversityPalo AltoUSA

Personalised recommendations