Skip to main content

Acid-Sensing Ion Channels (ASICs) and pH in Synapse Physiology

  • Chapter
Structural And Functional Organization Of The Synapse

Abstract

Although brain pH is tightly controlled, it can be more dynamic than commonly appreciated. Physiological fluctuations in extracellular pH provide ample opportunity for protons to influence synaptic signaling. A number of synaptic proteins are modified by extracellular pH. Of these, the acid sensing ion channels (ASICs) are gated by extracellular protons and thus they may be particularly well suited to respond to synaptic pH. Here we review extracellular pH changes that accompany neural activity, the synaptic localization of ASICs, and their known effects on synapse function. Results from manipulating ASICs in mice suggest important roles for synaptic ASICs in behavior and neurological disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kaila, K. and B.R. Ransom, Concept of pH and its importance in neurobiology, in pH and Brain Function, K. Kaila and B.R. Ransom, Editors. 1998, Wiley-Liss, Inc. p. 1–10.

    Google Scholar 

  2. Morel, N., Neurotransmitter release: the dark side of the vacuolar-H⩲ATPase. Biol. Cell., 2003. 95(7): p. 453–457.

    Google Scholar 

  3. Fuldner, H.H. and H. Stadler, 31P-NMR analysis of synaptic vesicles. Status of ATP and internal pH. Eur. J. Biochem., 1982. 121(3): p. 519–524.

    Article  PubMed  CAS  Google Scholar 

  4. Michaelson, D.M. and I. Angel, Determination of delta pH in cholinergic synaptic vesicles: its effect on storage and release of acetylcholine. Life Sci., 1980. 27(1): p. 39–44.

    Article  PubMed  CAS  Google Scholar 

  5. Miesenbock, G., D.A. De Angelis, and J.E. Rothman, Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature, 1998. 394: p. 192–195.

    Article  PubMed  CAS  Google Scholar 

  6. DeVries, S.H., Exocytosed protons feedback to suppress the Ca(2⩲) current in mammalian cone photoreceptors. Neuron, 2001. 32(6): p. 1107–1117.

    Article  PubMed  CAS  Google Scholar 

  7. Vessey, J.P., et al., Proton-mediated feedback inhibition of presynaptic calcium channels at the cone photoreceptor synapse. J. Neurosci., 2005. 25(16): p. 4108–4117.

    Article  PubMed  CAS  Google Scholar 

  8. Palmer, M.J., et al., Synaptic cleft acidification and modulation of short-term depression by exocytosed protons in retinal bipolar cells. J. Neurosci., 2003. 23(36): p. 11332–11341.

    PubMed  CAS  Google Scholar 

  9. Traynelis, S.F., pH modulation of ligand-gated ion channels, in pH and Brain Function, K. Kaila and B.R. Ransom, Editors. 1998, Wiley-Liss, Inc.

    Google Scholar 

  10. Traynelis, S.F. and S.G. Cull-Candy, Proton inhibition of N-methyl-D-aspartate receptors in cerebellar neurons. Nature, 1990. 345(6273): p. 347–350.

    Article  PubMed  CAS  Google Scholar 

  11. Vyklicky, L.J., V. Vlachova, and J. Krusek, The effect of external pH changes on responses to excitatory amino acids in mouse hippocampal neurones. J. Physiol. (Lond), 1990. 430: p. 497–517.

    CAS  Google Scholar 

  12. Tang, C.M., M. Dichter, and M. Morad, Modulation of the N-methyl-D-aspartate channel by extracellular H⩲. Proc. Natl. Acad. Sci. U. S. A., 1990. 87(16): p. 6445–6449.

    Article  PubMed  CAS  Google Scholar 

  13. Ihle, E.C. and D.K. Patneau, Modulation of ∂ -amino-3-hydroxy-5-methyl-4- isoxazolepropionic acid receptor desensitization by extracellular protons. Mol. Pharmacol., 2000. 58(6): p. 1204–1212.

    PubMed  CAS  Google Scholar 

  14. Pasternack, M., S. Smirnov, and K. Kaila, Proton modulation of functionally distinct GABAA receptors in acutely isolated pyramidal neurons of rat hippocampus. Neuropharmacology, 1996. 35(9–10): p. 1279–1288.

    Article  PubMed  CAS  Google Scholar 

  15. Huang, R.Q., Z. Chen, and G.H. Dillon, Molecular basis for modulation of recombinant alpha1beta2gamma2 GABAA receptors by protons. J. Neurophysiol., 2004. 92(2): p. 883–894.

    Article  PubMed  CAS  Google Scholar 

  16. Chesler, M., Regulation and modulation of pH in the brain. Physiol. Rev., 2003. 83(4): p. 1183–1221.

    PubMed  CAS  Google Scholar 

  17. Kaila, K. and M. Chesler, Activity-evoked changes in extracellular pH, in pH and Brain Function, K. Kaila and B.R. Ransom, Editors. 1998, Wiley-Liss, Inc. p. 309.

    Google Scholar 

  18. Fedirko, N., et al., Regulation of postsynaptic Ca2⩲ influx in hippocampal CA1 pyramidal neurons via extracellular carbonic anhydrase. J. Neurosci., 2007. 27(5): p. 1167–1175.

    Article  PubMed  CAS  Google Scholar 

  19. Makani, S. and M. Chesler, Endogenous alkaline transients boost postsynaptic NMDA receptor responses in hippocampal CA1 pyramidal neurons. J. Neurosci., 2007. 27(28): p. 7438–7446.

    Article  PubMed  CAS  Google Scholar 

  20. Kaila, K. and J. Voipio, Postsynaptic fall in intracellular pH induced by GABA-activated bicarbonate conductance. Nature, 1987. 330(6144): p. 163–16

    Article  PubMed  CAS  Google Scholar 

  21. Kaila, K., J. Saarikoski, and J. Voipio, Mechanism of action of GABA on intracellular pH and on surface pH in crayfish muscle fibres. J. Physiol., 1990. 427: p. 241–260.

    PubMed  CAS  Google Scholar 

  22. Schwiening, C.J., H.J. Kennedy, and R.C. Thomas, Calcium-hydrogen exchange by the plasma membrane Ca-ATPase of voltage-clamped snail neurons. Proc. R. Soc. Lond. Biol. Sci., 1993. 253(1338): p. 285–289.

    Article  CAS  Google Scholar 

  23. Schwiening, C.J. and R.C. Thomas, pH consequences of calcium regulation, in pH and Brain Function, K. Kaila and B. Ransom, Editors. 1998, Wiley-Liss, Inc. p. 277.

    Google Scholar 

  24. Thomas, R.C., Proton channels in snail neurones. Does calcium entry mimic the effects of proton influx? Ann. N. Y. Acad. Sci., 1989. 574: p. 287–293.

    Article  PubMed  CAS  Google Scholar 

  25. Chen, J.C. and M. Chesler, pH transients evoked by excitatory synaptic transmission are increased by inhibition of extracellular carbonic anhydrase. Proc. Natl. Acad. Sci. U. S. A., 1992. 89(16): p. 7786–7790.

    Article  PubMed  CAS  Google Scholar 

  26. Somjen, G.G. and G.C. Tombaugh, pH modulation of neuronal excitability and central nervous system functions, in pH and Brain Function, K. Kaila and B.R. Ransom, Editors. 1998, Wiley-Leiss Inc: New York. p. 373–393.

    Google Scholar 

  27. Taira, T., et al., Relative contributions of excitatory and inhibitory neuronal activity to alkaline transients evoked by stimulation of Schaffer collaterals in the rat hippocampal slice. J. Neurophysiol., 1995. 74(2): p. 643–649.

    PubMed  CAS  Google Scholar 

  28. Chesler, M. and R.p. Kraig, Intracellular pH of astrocytes increases rapidly with cortical stimulation. Am. J. Physiol., 1987. 253(4 Pt 2): p. R666–R6670.

    PubMed  CAS  Google Scholar 

  29. Chesler, M. and R.p. Kraig, Intracellular pH transients of mammalian astrocytes. J. Neurosci., 1989. 9(6): p. 2011–2019.

    PubMed  CAS  Google Scholar 

  30. Pellerin, L., et al., Activity-dependent regulation of energy metabolism by astrocytes: An update. Glia, 2007. 55(12): p. 1251–1262.

    Article  PubMed  Google Scholar 

  31. Voipio, J. and K. Kaila, Interstitial PCO2 and pH in rat hippocampal slices measured by means of a novel fast CO2/H(⩲)-sensitive microelectrode based on a PVC-gelled membrane. Pflugers Arch., 1993. 423(3–4): p. 193–201.

    Article  PubMed  CAS  Google Scholar 

  32. Somjen, G.G., Acidification of interstitial fluid in hippocampal formation caused by seizures and by spreading depression. Brain Res., 1984. 311(1): p. 186–188.

    Article  PubMed  CAS  Google Scholar 

  33. Siesjo, B.K., et al., Extra- and intracellular pH in the brain during seizures and in the recovery period following the arrest of seizure activity. J. Cereb. Blood Flow Metab., 1985. 5(1): p. 47–57.

    PubMed  CAS  Google Scholar 

  34. Siesjo, B.K., Acidosis and ischemic brain damage. Neurochem. Pathol., 1988. 9: p. 31–88.

    PubMed  CAS  Google Scholar 

  35. Wang, R.I.H. and S. R.R., PH of cerebral cortex during induced convulsions. J Neurophysiol., 1955. 18(2): p. 130–137.

    Google Scholar 

  36. Waxman, S.G., Axonal conduction and injury in multiple sclerosis: the role of sodium channels. Nat. Rev. Neurosci., 2006. 7(12): p. 932–941.

    Article  PubMed  CAS  Google Scholar 

  37. Browne, S.E. and M.F. Beal, The energetics of Huntington’s disease. Neurochem. Res., 2004. 29(3): p. 531–546.

    Article  PubMed  CAS  Google Scholar 

  38. Immke, D.C. and E.W. McCleskey, Lactate enhances the acid-sensing Na⩲ channel on ischemia-sensing neurons. Nat. Neurosci., 2001. 4(9): p. 869–870.

    Article  PubMed  CAS  Google Scholar 

  39. Immke, D.C. and E.W. McCleskey, Protons open acid-sensing ion channels by catalyzing relief of Ca2⩲ blockade. Neuron, 2003. 37(1): p. 75–84.

    Article  PubMed  CAS  Google Scholar 

  40. Parsons, A.A. and P.J. Strijbos, The neuronal versus vascular hypothesis of migraine and cortical spreading depression. Curr. Opin. Pharmacol., 2003. 3(1): p. 73–77.

    Article  PubMed  CAS  Google Scholar 

  41. Sanchez-Del-Rio, M., U. Reuter, and M.A. Moskowitz, New insights into migraine pathophysiology. Curr. Opin. Neurol., 2006. 19(3): p. 294–298.

    Article  PubMed  CAS  Google Scholar 

  42. Csiba, L., W. Paschen, and G. Mies, Regional changes in tissue pH and glucose content during cortical spreading depression in rat brain. Brain Res., 1985. 336(1): p. 167–170.

    Article  PubMed  CAS  Google Scholar 

  43. Tombaugh, G.C. and G.G. Somjen, Effects of extracellular pH on voltage-gated Na⩲, K⩲ and Ca2⩲ currents in isolated rat CA1 neurons. J. Physiol., 1996. 493(Pt 3): p. 719–732.

    PubMed  CAS  Google Scholar 

  44. Tombaugh, G.C. and G.G. Somjen, pH modulation of voltage-gated ion channels, in pH and Brain Function, K. Kaila and B.R. Ransom, Editors. 1998, Wiley-Liss, Inc. p. 395.

    Google Scholar 

  45. Lingueglia, E., et al., A modulatory subunit of acid sensing ion channels in brain and dorsal root ganglion cells. J. Biol. Chem., 1997. 272(47): p. 29778–29783.

    Article  PubMed  CAS  Google Scholar 

  46. Benson, C.J., et al., Heteromultimerics of DEG/ENaC subunits form H⩲-gated channels in mouse sensory neurons. Proc. Natl. Acad. Sci. U. S. A., 2002. 99(4): p. 2338–2343.

    Article  PubMed  CAS  Google Scholar 

  47. Hesselager, M., D.B. Timmermann, and P.K. Ahring, pH-dependency and desensitization kinetics of heterologously expressed combinations of ASIC subunits. J. Biol. Chem., 2004. 279(12): p. 11006–11015.

    Google Scholar 

  48. Akopian, A.N., et al., A new member of the acid-sensing ion channel family. Neuroreport, 2000. 11(10): p. 2217–2222.

    Article  PubMed  CAS  Google Scholar 

  49. Sakai, H., et al., Cloning and functional expression of a novel degenerin-like Na⩲ channel gene in mammals. J. Physiol. (Lond), 1999. 519(2): p. 323–333.

    Article  CAS  Google Scholar 

  50. Paukert, M., et al., A family of acid-sensing ion channels from the zebrafish: widespread expression in the central nervous system suggests a conserved role in neuronal communication. J. Biol. Chem., 2004. 279(18): p. 18783–18791.

    Article  PubMed  CAS  Google Scholar 

  51. Gao, Y., et al., Fluorescence resonance energy transfer analysis of subunit assembly of the ASIC channel. Biochem. Biophys. Res. Commun., 2007. 359(1): p. 143–150.

    Article  PubMed  CAS  Google Scholar 

  52. Snyder, P.M., et al., Electrophysiological and biochemical evicence that DEG/ENaC cation channels are composed of nine subunits. J. Biol. Chem., 1998. 273(2): p. 681–684.

    Article  PubMed  CAS  Google Scholar 

  53. Firsov, D., et al., The heterotetrameric architecture of the epithelial sodium channel (ENaC). EMBO J., 1998. 17(2): p. 344–352.

    Article  PubMed  CAS  Google Scholar 

  54. Eskandari, S., et al., Number of subunits comprising the epithelial sodium channel. J. Biol. Chem., 1999. 274(38): p. 27281–27286.

    Article  PubMed  CAS  Google Scholar 

  55. Jasti, J., et al., Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. Nature, 2007. 449(7160): p. 316–323.

    Article  PubMed  CAS  Google Scholar 

  56. Waldmann, R., et al., A proton-gated cation channel involved in acid-sensing. Nature, 1997. 386: p. 173–177.

    Article  PubMed  CAS  Google Scholar 

  57. Yermolaieva, O., et al., Extracellular acidosis increases neuronal cell calcium by activating acid-sensing ion channel 1a. Proc. Natl. Acad. Sci. U. S. A., 2004. 101(17): p. 6752–6757.

    Article  PubMed  CAS  Google Scholar 

  58. Waldmann, R., Proton-gated cation channels–neuronal acid sensors in the central and peripheral nervous system. Adv. Exp. Med. Biol., 2001. 502: p. 293–304.

    PubMed  CAS  Google Scholar 

  59. García-Añoveros, J., et al., BNaC1 and BNaC2 constitute a new family of human neuronal sodium channels related to degenerins and epithelial sodium channels. Proc. Natl. Acad. Sci. U. S. A., 1997. 94: p. 1459–1464.

    Article  PubMed  Google Scholar 

  60. Baron, A., R. Waldmann, and M. Lazdunski, ASIC-like, proton-activated currents in rat hippocampal neurons. J. Physiol., 2002. 539(Pt 2): p. 485–494.

    Article  PubMed  CAS  Google Scholar 

  61. Askwith, C.C., et al., ASIC2 modulates ASIC1 H⩲-activated currents in hippocampal neurons. J. Biol. Chem., 2003. 279(18): p. 18296–18305.

    Article  Google Scholar 

  62. Wemmie, J.A., M.p. Price, and M.J. Welsh, Acid-sensing ion channels: advances, questions and therapeutic opportunities. Trends Neurosci., 2006. 29(10): p. 578–586.

    Article  PubMed  CAS  Google Scholar 

  63. Krishtal, O., The ASICs: signaling molecules? Modulators? Trends Neurosci., 2003. 26(9): p. 477–483.

    Article  PubMed  CAS  Google Scholar 

  64. Lingueglia, E., E. Deval, and M. Lazdunski, FMRFamide-gated sodium channel and ASIC channels: a new class of ionotropic receptors for FMRFamide and related peptides. Peptides, 2006. 27(5): p. 1138–1152.

    Article  PubMed  CAS  Google Scholar 

  65. Wemmie, J.A., et al., The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. Neuron, 2002. 34: p. 463–477.

    Article  PubMed  CAS  Google Scholar 

  66. Wemmie, J.A., et al., Acid-sensing ion channel 1 is localized in brain regions with high synaptic density and contributes to fear conditioning. J. Neurosci., 2003. 23(13): p. 5496–5502.

    PubMed  CAS  Google Scholar 

  67. Xiong, Z.G., et al., Neuroprotection in ischemia: blocking calcium-permeable acidsensing ion channels. Cell, 2004. 118(6): p. 687–698.

    Article  PubMed  CAS  Google Scholar 

  68. Coryell, M.W., Ziemann, A.E., Westmoreland, P.J., Haenfler, J.M., Kurjakovic, Z., Zha, X.M., Price, M., Schinzler, M.K., Wemmie, J.A. Targeting ASIC1a reduces innate fear and alters neuronal acitivity in the fear circuit. Biol. Psychiatry., 2007. 62 (10): p. 1140–1148.

    Article  PubMed  CAS  Google Scholar 

  69. Yagi, J., et al., Sustained currents through ASIC3 ion channels at the modest pH changes that occur during myocardial ischemia. Circ. Res., 2006. 99(5): p. 501–509.

    Article  PubMed  CAS  Google Scholar 

  70. Askwith, C.C., et al., Neuropeptide FF and FMRFamide potentiate acid-evoked currents from sensory neurons and proton-gated DEG/ENaC channels. Neuron, 2000. 26: p. 133–141.

    Article  PubMed  CAS  Google Scholar 

  71. Zha, X.-M., J.A. Wemmie, and M.J. Welsh, ASIC1a is a postsynaptic proton receptor that influences the density of dendritic spines. Proc. Natl. Acad. Sci. U. S. A., 2006. 103(44): p. 16556–16561.

    Article  PubMed  CAS  Google Scholar 

  72. Benson, C.J., S.p. Eckert, and E.W. McCleskey, Acid-evoked currents in cardiac sensory neurons: a possible mediator of myocardial ischemic sensation. Circ. Res., 1999. 84(8): p. 921–928.

    PubMed  CAS  Google Scholar 

  73. Chu, X.P., et al., Subunit-dependent high-affinity zinc inhibition of acid-sensing ion channels. J. Neurosci., 2004. 24(40): p. 8678–8689.

    Article  PubMed  CAS  Google Scholar 

  74. Baron, A., et al., Zn2⩲ and H⩲, coactivators of acid sensing ion channels (ASIC). J. Biol. Chem., 2001. 276: p. 35361–35367.

    Article  PubMed  CAS  Google Scholar 

  75. Allen, N.J. and D. Attwell, Modulation of ASIC channels in rat cerebellar Purkinje neurons by ischaemia-related signals. J. Physiol., 2002. 543(2): p. 521–529.

    Google Scholar 

  76. Wemmie, J., Coryell M, Askwith C, Lamani E, Leonard S, Sigmund C, Welsh M, Overexpression of acid-sensing ion channel 1a in transgenic mice increases fear-related behavior. Proc. Natl. Acad. Sci. U. S. A., 2004. 101(10): p. 3621–3626.

    Article  PubMed  CAS  Google Scholar 

  77. Alvarez de la Rosa, D., et al., Distribution, subcellular localization and ontogeny of ASIC1 in the mammalian central nervous system. J. Physiol., 2003. 546(Pt 1): p. 77–87.

    Google Scholar 

  78. Jovov, B., et al., Immunolocalization of the acid-sensing ion channel 2a in the rat cerebellum. Histochem. Cell Biol., 2003. 119(6): p. 437.

    Article  PubMed  CAS  Google Scholar 

  79. Ettaiche, M., et al., Acid-sensing ion channel 2 is important for retinal function and protects against light-induced retinal degeneration. J. Neurosci., 2004. 24(5): p. 1005–1012.

    Article  PubMed  CAS  Google Scholar 

  80. Hruska-Hageman, A.M., et al., Interaction of the synaptic protein PICK1 (protein interacting with C kinase 1) with the non-voltage gated sodium channels BNC1 (brain Na⩲ channel 1) and ASIC (acid-sensing ion channel). Biochem. J., 2002. 361(Pt 3): p. 443–450.

    Article  PubMed  CAS  Google Scholar 

  81. Duggan, A., J. Garcia-Anoveros, and D.p. Corey, The PDZ domain protein PICK1 and the sodium channel BNaC1 interact and localize at mechanosensory terminals of dorsal root ganglion neurons and dendrites of central neurons. J. Biol. Chem., 2002. 277(7): p. 5203–5208.

    Article  PubMed  CAS  Google Scholar 

  82. Chai, S., et al., A Kinase-anchoring Protein 150 and Calcineurin Are Involved in Regulation of Acid-sensing Ion Channels ASIC1a and ASIC2a. J. Biol. Chem., 2007. 282(31): p. 22668–22677.

    Article  PubMed  CAS  Google Scholar 

  83. Hruska-Hageman, A.M., et al., PSD-95 and Lin-7b interact with acid-sensing ion channel-3 and have opposite effects on H⩲- gated current. J. Biol. Chem., 2004. 279(45): p. 46962–46968. J.A. Wemmie et al.

    Article  PubMed  CAS  Google Scholar 

  84. Gao, J., et al., Coupling between NMDA receptor and acid-sensing ion channel contributes to ischemic neuronal death. Neuron, 2005. 48(4): p. 635–646.

    Article  PubMed  CAS  Google Scholar 

  85. Leonard, A.S., et al., cAMP-dependent protein kinase phosphorylation of the acidsensing ion channel-1 regulates its binding to the protein interacting with C-kinase-1. Proc. Natl. Acad. Sci. U. S. A., 2003. 100(4): p. 2029–2034.

    Article  PubMed  CAS  Google Scholar 

  86. Ettaiche, M., et al., Silencing acid-sensing ion channel 1a alters cone-mediated retinal function. J. Neurosci., 2006. 26(21): p. 5800–5809.

    Article  PubMed  CAS  Google Scholar 

  87. Lalo, U., et al., Spontaneous autocrine release of protons activates ASIC-mediated currents in HEK293 cells. J. Cell. Physiol., 2007. 212(2): p. 473–480.

    Article  PubMed  CAS  Google Scholar 

  88. Coryell, M.W., et al., Targeting ASIC1a Reduces Innate Fear and Alters Neuronal Activity in the Fear Circuit. Biol. Psychiatry, 2007: p. Epub ahead of Print.

    Google Scholar 

  89. Olson, T.H., et al., An acid sensing ion channel (ASIC) localizes to small primary afferent neurons in rats. Neuron, 1998. 9: p. 1109–1113.

    CAS  Google Scholar 

  90. Pignataro, G., R.p. Simon, and Z.G. Xiong, Prolonged activation of ASIC1a and the time window for neuroprotection in cerebral ischaemia. Brain, 2007. 130(Pt 1): p. 151–158.

    PubMed  Google Scholar 

  91. Mazzuca, M., et al., A tarantula peptide against pain via ASIC1a channels and opioid mechanisms. Nat. Neurosci., 2007. 10(8): p. 943–945.

    Article  PubMed  CAS  Google Scholar 

  92. Roumy, M. and J.M. Zajac, Neuropeptide FF, pain and analgesia. Eur. J. Pharmacol., 1998. 345: p. 1–11.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wemmie, J.A., Zha, Xm., Welsh, M.J. (2008). Acid-Sensing Ion Channels (ASICs) and pH in Synapse Physiology. In: Hell, J.W., Ehlers, M.D. (eds) Structural And Functional Organization Of The Synapse. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-77232-5_22

Download citation

Publish with us

Policies and ethics