Ubiquitin and Protein Degradation in Synapse Function

  • Thomas D. Helton
  • Michael D. Ehlers


Ubiquitin Ligase AMPA Receptor Angelman Syndrome Signal Transduction Adaptor Molecule Ataxia Mouse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ageta H, Kato A, Fukazawa Y, Inokuchi K, and Sugiyama H. Effects of proteasome inhibitors on the synaptic localization of Vesl-1S/Homer-1a proteins. Brain Res 97: 186–189, 2001.Google Scholar
  2. 2.
    Ageta H, Kato A, Hatakeyama S, Nakayama K, Isojima Y, and Sugiyama H. Regulation of the level of Vesl-1S/Homer-1a proteins by ubiquitin-proteasome proteolytic systems. J Biol Chem 276: 15893–15897, 2001.PubMedGoogle Scholar
  3. 3.
    Albrecht U, Sutcliffe JS, Cattanach BM, Beechey CV, Armstrong D, Eichele G, and Beaudet AL. Imprinted expression of the murine Angelman syndrome gene, Ube3a, in hippocampal and Purkinje neurons. Nat Genet 17: 75–78, 1997.PubMedGoogle Scholar
  4. 4.
    Anderson C, Crimmins S, Wilson JA, Korbel GA, Ploegh HL, and Wilson SM. Loss of Usp14 results in reduced levels of ubiquitin in ataxia mice. J Neurochem 95: 724–731, 2005.PubMedGoogle Scholar
  5. 5.
    Ang XL and Harper JW. SCF-mediated protein degradation and cell cycle control. Oncogene 24: 2860–2870, 2005.PubMedGoogle Scholar
  6. 6.
    Araki T and Milbrandt J. ZNRF proteins constitute a family of presynaptic E3 ubiquitin ligases. J Neurosci 23: 9385–9394, 2003.PubMedGoogle Scholar
  7. 7.
    Arber S, Barbayannis FA, Hanser H, Schneider C, Stanyon CA, Bernard O, and Caroni P. Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393: 805–809, 1998.PubMedGoogle Scholar
  8. 8.
    Ashraf SI, McLoon AL, Sclarsic SM, and Kunes S. Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. Cell 124: 191–205, 2006.PubMedGoogle Scholar
  9. 9.
    Babst M, Katzmann DJ, Estepa-Sabal EJ, Meerloo T, and Emr SD. Escrt-III: an endosome- associated heterooligomeric protein complex required for mvb sorting. Dev Cell 3: 271–282, 2002.PubMedGoogle Scholar
  10. 10.
    Babst M, Katzmann DJ, Snyder WB, Wendland B, and Emr SD. Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body. Dev cell 3: 283–289, 2002.PubMedGoogle Scholar
  11. 11.
    Bache KG, Raiborg C, Mehlum A, and Stenmark H. STAM and Hrs are subunits of a multivalent ubiquitin-binding complex on early endosomes. J Biol Chem 278: 12513–12521, 2003.PubMedGoogle Scholar
  12. 12.
    Bache KG, Stuffers S, Malerod L, Slagsvold T, Raiborg C, Lechardeur D, Walchli S, Lukacs GL, Brech A, and Stenmark H. The ESCRT-III subunit hVps24 is required for degradation but not silencing of the epidermal growth factor receptor. Mol Biol Cell 17: 2513–2523, 2006.PubMedGoogle Scholar
  13. 13.
    Basu J, Betz A, Brose N, and Rosenmund C. Munc13-1 C1 domain activation lowers the energy barrier for synaptic vesicle fusion. J Neurosci 27: 1200–1210, 2007.PubMedGoogle Scholar
  14. 14.
    Baumeister W, Walz J, Zuhl F, and Seemuller E. The proteasome: paradigm of a selfcompartmentalizing protease. Cell 92: 367–380, 1998.PubMedGoogle Scholar
  15. 15.
    Beattie EC, Carroll RC, Yu X, Morishita W, Yasuda H, von Zastrow M, and Malenka RC. Regulation of AMPA receptor endocytosis by a signaling mechanism shared with LTD. Nat Neurosci 3: 1291–1300, 2000.PubMedGoogle Scholar
  16. 16.
    Bedford FK, Kittler JT, Muller E, Thomas P, Uren JM, Merlo D, Wisden W, Triller A, Smart TG, and Moss SJ. GABA(A) receptor cell surface number and subunit stability are regulated by the ubiquitin-like protein Plic-1. Nat Neurosci 4: 908–916, 2001.PubMedGoogle Scholar
  17. 17.
    Behrens J, von Kries JP, Kuhl M, Bruhn L, Wedlich D, Grosschedl R, and Birchmeier W. Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 382: 638–642, 1996.PubMedGoogle Scholar
  18. 18.
    Bertolaet BL, Clarke DJ, Wolff M, Watson MH, Henze M, Divita G, and Reed SI. UBA domains of DNA damage-inducible proteins interact with ubiquitin. Nat Struct Biol 8: 417–422, 2001.PubMedGoogle Scholar
  19. 19.
    Bilodeau PS, Urbanowski JL, Winistorfer SC, and Piper RC. The Vps27p Hse1p complex binds ubiquitin and mediates endosomal protein sorting. Nat Cell Biol 4: 534–539, 2002.PubMedGoogle Scholar
  20. 20.
    Bingol B and Schuman EM. Activity-dependent dynamics and sequestration of proteasomes in dendritic spines. Nature 441: 1144–1148, 2006.PubMedGoogle Scholar
  21. 21.
    Bingol B and Schuman EM. A proteasome-sensitive connection between PSD-95 and GluR1 endocytosis. Neuropharmacology 47: 755–763, 2004.PubMedGoogle Scholar
  22. 22.
    Bliss TV and Gardner-Medwin AR. Long-lasting potentiation of synaptic transmission in the dentate area of the unanaestetized rabbit following stimulation of the perforant path. J Physiol 232: 357–374, 1973.PubMedGoogle Scholar
  23. 23.
    Bliss TV and Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232: 331–356, 1973.PubMedGoogle Scholar
  24. 24.
    Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E, Dekker MC, Squitieri F, Ibanez P, Joosse M, van Dongen JW, Vanacore N, van Swieten JC, Brice A, Meco G, van Duijn CM, Oostra BA, and Heutink P. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science (New York) 299: 256–259, 2003.Google Scholar
  25. 25.
    Borden KL and Freemont PS. The RING finger domain: a recent example of a sequencestructure family. Curr Opin Struct Biol 6: 395–401, 1996.PubMedGoogle Scholar
  26. 26.
    Borodovsky A, Kessler BM, Casagrande R, Overkleeft HS, Wilkinson KD, and Ploegh HL. A novel active site-directed probe specific for deubiquitylating enzymes reveals proteasome association of USP14. The EMBO Journal 20: 5187–5196, 2001.PubMedGoogle Scholar
  27. 27.
    Bossy-Wetzel E, Schwarzenbacher R, and Lipton SA. Molecular pathways to neurodegeneration. Nat Med 10 Suppl: S2–9, 2004.PubMedGoogle Scholar
  28. 28.
    Boyle MB, Klein M, Smith SJ, and Kandel ER. Serotonin increases intracellular Ca2+ transients in voltage-clamped sensory neurons of Aplysia californica. Proc Nat Acad Sci USA 81: 7642–7646, 1984.PubMedGoogle Scholar
  29. 29.
    Bradke F and Dotti CG. The role of local actin instability in axon formation. Science New York) 283: 1931–1934, 1999.Google Scholar
  30. 30.
    Braun BC, Glickman M, Kraft R, Dahlmann B, Kloetzel PM, Finley D, and Schmidt M. The base of the proteasome regulatory particle exhibits chaperone-like activity. Nat Cell Biol 1: 221–226, 1999.PubMedGoogle Scholar
  31. 31.
    Bredt DS and Nicoll RA. AMPA receptor trafficking at excitatory synapses. Neuron 40: 361–379, 2003.PubMedGoogle Scholar
  32. 32.
    Brose K, Bland KS, Wang KH, Arnott D, Henzel W, Goodman CS, Tessier-Lavigne M, and Kidd T. Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell 96: 795–806, 1999.PubMedGoogle Scholar
  33. 33.
    Brose N, Hofmann K, Hata Y, and Sudhof TC. Mammalian homologues of Caenorhabditis elegans unc-13 gene define novel family of C2-domain proteins. J Biol Chem 270: 25273–25280, 1995.PubMedGoogle Scholar
  34. 34.
    Bryan B, Cai Y, Wrighton K, Wu G, Feng XH, and Liu M. Ubiquitination of RhoA by Smurf1 promotes neurite outgrowth. FEBS Lett 579: 1015–1019, 2005.PubMedGoogle Scholar
  35. 35.
    Burbea M, Dreier L, Dittman JS, Grunwald ME, and Kaplan JM. Ubiquitin and AP180 regulate the abundance of GLR-1 glutamate receptors at postsynaptic elements in C. elegans. Neuron 35: 107–120, 2002.PubMedGoogle Scholar
  36. 36.
    Burgess RW, Peterson KA, Johnson MJ, Roix JJ, Welsh IC, and O’Brien TP. Evidence for a conserved function in synapse formation reveals Phr1 as a candidate gene for respiratory failure in newborn mice. Mol Cell Biol 24: 1096–1105, 2004.PubMedGoogle Scholar
  37. 37.
    Cadavid AL, Ginzel A, and Fischer JA. The function of the Drosophila fat facets deubiquitinating enzyme in limiting photoreceptor cell number is intimately associated with endocytosis. Development 127: 1727–1736, 2000.PubMedGoogle Scholar
  38. 38.
    Cadwell K and Coscoy L. Ubiquitination on nonlysine residues by a viral E3 ubiquitin ligase. Science (New York) 309: 127–130, 2005.Google Scholar
  39. 39.
    Campbell DS and Holt CE. Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation. Neuron 32: 1013–1026, 2001.PubMedGoogle Scholar
  40. 40.
    Carney DS, Davies BA, and Horazdovsky BF. Vps9 domain-containing proteins: activators of Rab5 GTPases from yeast to neurons. Trends Cell Biol 16: 27–35, 2006.PubMedGoogle Scholar
  41. 41.
    Carroll RC, Lissin DV, von Zastrow M, Nicoll RA, and Malenka RC. Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures. Nat Neurosci 2: 454–460, 1999.PubMedGoogle Scholar
  42. 42.
    Chain DG, Casadio A, Schacher S, Hegde AN, Valbrun M, Yamamoto N, Goldberg AL, Bartsch D, Kandel ER, and Schwartz JH. Mechanisms for generating the autonomous cAMP-dependent protein kinase required for long-term facilitation in Aplysia. Neuron 22: 147–156, 1999.PubMedGoogle Scholar
  43. 43.
    Chapman AP, Courtney SC, Smith SJ, Rider CC, and Beesley PW. Ubiquitin immunoreactivity of multiple polypeptides in rat brain synaptic membranes. Biochem Soc Trans 20: 155S, 1992.PubMedGoogle Scholar
  44. 44.
    Chen H, Polo S, Di Fiore PP, and De Camilli PV. Rapid Ca2+-dependent decrease of protein ubiquitination at synapses. Proc Nat Acad Sci USA 100: 14908–14913, 2003.PubMedGoogle Scholar
  45. 45.
    Choi P, Ostrerova-Golts N, Sparkman D, Cochran E, Lee JM, and Wolozin B. Parkin is metabolized by the ubiquitin/proteosome system. Neuroreport 11: 2635–2638, 2000.PubMedCrossRefGoogle Scholar
  46. 46.
    Chung KK, Zhang Y, Lim KL, Tanaka Y, Huang H, Gao J, Ross CA, Dawson VL, and Dawson TM. Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. Nat Med 7: 1144–1150, 2001.PubMedGoogle Scholar
  47. 47.
    Ciechanover A and Ben-Saadon R. N-terminal ubiquitination: more protein substrates join in. Trends Cell Biol 14: 103–106, 2004.PubMedGoogle Scholar
  48. 48.
    Ciechanover A, Elias S, Heller H, Ferber S, and Hershko A. Characterization of the heatstable polypeptide of the ATP-dependent proteolytic system from reticulocytes. J Biol Chem 255: 7525–7528, 1980.PubMedGoogle Scholar
  49. 49.
    Ciehanover A, Hod Y, and Hershko A. A heat-stable polypeptide component of an ATPdependent proteolytic system from reticulocytes. Biochem Biophys Res Comm 81: 1100–1105, 1978.PubMedGoogle Scholar
  50. 50.
    Colbran RJ and Brown AM. Calcium/calmodulin-dependent protein kinase II and synaptic plasticity. Curr Opin Neurobiol 14: 318–327, 2004.PubMedGoogle Scholar
  51. 51.
    Colledge M, Snyder EM, Crozier RA, Soderling JA, Jin Y, Langeberg LK, Lu H, Bear MF, and Scott JD. Ubiquitination regulates PSD-95 degradation and AMPA receptor surface expression. Neuron 40: 595–607, 2003.PubMedGoogle Scholar
  52. 52.
    Collins CA, Wairkar YP, Johnson SL, and DiAntonio A. Highwire restrains synaptic growth by attenuating a MAP kinase signal. Neuron 51: 57–69, 2006.PubMedGoogle Scholar
  53. 53.
    Confalonieri S, Salcini AE, Puri C, Tacchetti C, and Di Fiore PP. Tyrosine phosphorylation of Eps15 is required for ligand-regulated, but not constitutive, endocytosis. J Cell Biol 150: 905–912, 2000.PubMedGoogle Scholar
  54. 54.
    Cook HA, Koppetsch BS, Wu J, and Theurkauf WE. The Drosophila SDE3 homolog armitage is required for oskar mRNA silencing and embryonic axis specification. Cell 116: 817–829, 2004.PubMedGoogle Scholar
  55. 55.
    Cooper EM, Hudson AW, Amos J, Wagstaff J, and Howley PM. Biochemical analysis of Angelman syndrome-associated mutations in the E3 ubiquitin ligase E6-associated protein. J Biol Chem 279: 41208–41217, 2004.PubMedGoogle Scholar
  56. 56.
    Crimmins S, Jin Y, Wheeler C, Huffman AK, Chapman C, Dobrunz LE, Levey A, Roth KA, Wilson JA, and Wilson SM. Transgenic rescue of ataxia mice with neuronalspecific expression of ubiquitin-specific protease 14. J Neurosci 26: 11423–11431, 2006.PubMedGoogle Scholar
  57. 57.
    D’Amato CJ and Hicks SP. Neuropathologic alterations in the ataxia (paralytic) mouse. Arch Pathol 80: 604–612, 1965.PubMedGoogle Scholar
  58. 58.
    Dale N, Schacher S, and Kandel ER. Long-term facilitation in Aplysia involves increase in transmitter release. Science (New York) 239: 282–285, 1988.Google Scholar
  59. 59.
    Dauer W and Przedborski S. Parkinson’s disease: mechanisms and models. Neuron 39: 889–909, 2003.PubMedGoogle Scholar
  60. 60.
    Davy A, Bello P, Thierry-Mieg N, Vaglio P, Hitti J, Doucette-Stamm L, Thierry-Mieg D, Reboul J, Boulton S, Walhout AJ, Coux O, and Vidal M. A protein-protein interaction map of the Caenorhabditis elegans 26S proteasome. EMBO Rep 2: 821–828, 2001.PubMedGoogle Scholar
  61. 61.
    de la Torre JR, Hopker VH, Ming GL, Poo MM, Tessier-Lavigne M, Hemmati- Brivanlou A, and Holt CE. Turning of retinal growth cones in a netrin-1 gradient mediated by the netrin receptor DCC. Neuron 19: 1211–1224, 1997.PubMedGoogle Scholar
  62. 62.
    DeMartino GN, Moomaw CR, Zagnitko OP, Proske RJ, Chu-Ping M, Afendis SJ, Swaffield JC, and Slaughter CA. PA700, an ATP-dependent activator of the 20 S proteasome, is an ATPase containing multiple members of a nucleotide-binding protein family. J Biol Chem 269: 20878–20884, 1994.PubMedGoogle Scholar
  63. 63.
    DiAntonio A, Haghighi AP, Portman SL, Lee JD, Amaranto AM, and Goodman CS. Ubiquitination-dependent mechanisms regulate synaptic growth and function. Nature 412: 449–452, 2001.PubMedGoogle Scholar
  64. 64.
    Dick TP, Nussbaum AK, Deeg M, Heinemeyer W, Groll M, Schirle M, Keilholz W, Stevanovic S, Wolf DH, Huber R, Rammensee HG, and Schild H. Contribution of proteasomal beta-subunits to the cleavage of peptide substrates analyzed with yeast mutants. J Biol Chem 273: 25637–25646, 1998.PubMedGoogle Scholar
  65. 65.
    Ding M, Chao D, Wang G, and Shen K. Spatial regulation of an E3 ubiquitin ligase directs selective synapse elimination. Science (New York) 317: 947–951, 2007.Google Scholar
  66. 66.
    Dreier L, Burbea M, and Kaplan JM. LIN-23-mediated degradation of beta-catenin regulates the abundance of GLR-1 glutamate receptors in the ventral nerve cord of C. elegans. Neuron 46: 51–64, 2005.PubMedGoogle Scholar
  67. 67.
    Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM, Segal RA, Kaplan DR, and Greenberg ME. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science (New York) 275: 661–665, 1997.Google Scholar
  68. 68.
    Ebihara T, Kawabata I, Usui S, Sobue K, and Okabe S. Synchronized formation and remodeling of postsynaptic densities: long-term visualization of hippocampal neurons expressing postsynaptic density proteins tagged with green fluorescent protein. J Neurosci 23: 2170–2181, 2003.PubMedGoogle Scholar
  69. 69.
    Ehlers MD. Activity level controls postsynaptic composition and signaling via the ubiquitin- proteasome system. Nat Neurosci 6: 231–242, 2003a.Google Scholar
  70. 70.
    Ehlers MD. Reinsertion or degradation of AMPA receptors determined by activitydependent endocytic sorting. Neuron 28: 511–525, 2000.PubMedGoogle Scholar
  71. 71.
    Ehrlich I and Malinow R. Postsynaptic density 95 controls AMPA receptor incorporation during long-term potentiation and experience-driven synaptic plasticity. J Neurosci 24: 916–927, 2004.PubMedGoogle Scholar
  72. 72.
    El-Husseini AE, Schnell E, Chetkovich DM, Nicoll RA, and Bredt DS. PSD-95 involvement in maturation of excitatory synapses. Science New York 290: 1364–1368, 2000.Google Scholar
  73. 73.
    El-Husseini Ael D, Schnell E, Dakoji S, Sweeney N, Zhou Q, Prange O, Gauthier- Campbell C, Aguilera-Moreno A, Nicoll RA, and Bredt DS. Synaptic strength regulated by palmitate cycling on PSD-95. Cell 108: 849–863, 2002.Google Scholar
  74. 74.
    Elsasser S, Chandler-Militello D, Muller B, Hanna J, and Finley D. Rad23 and Rpn10 serve as alternative ubiquitin receptors for the proteasome. J Biol Chem 279: 26817–26822, 2004.PubMedGoogle Scholar
  75. 75.
    Elsasser S, Gali RR, Schwickart M, Larsen CN, Leggett DS, Muller B, Feng MT, Tubing F, Dittmar GA, and Finley D. Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nat Cell Biol 4: 725–730, 2002.PubMedGoogle Scholar
  76. 76.
    Emmerich NP, Nussbaum AK, Stevanovic S, Priemer M, Toes RE, Rammensee HG, and Schild H. The human 26 S and 20 S proteasomes generate overlapping but different sets of peptide fragments from a model protein substrate. J Biol Chem 275: 21140–21148, 2000.PubMedGoogle Scholar
  77. 77.
    Eves EM, Xiong W, Bellacosa A, Kennedy SG, Tsichlis PN, Rosner MR, and Hay N. Akt, a target of phosphatidylinositol 3-kinase, inhibits apoptosis in a differentiating neuronal cell line. Mol Cell Biol 18: 2143–2152, 1998.PubMedGoogle Scholar
  78. 78.
    Eytan E, Armon T, Heller H, Beck S, and Hershko A. Ubiquitin C-terminal hydrolase activity associated with the 26 S protease complex. J Biol Chem 268: 4668–4674, 1993.PubMedGoogle Scholar
  79. 79.
    Fallon L, Belanger CM, Corera AT, Kontogiannea M, Regan-Klapisz E, Moreau F, Voortman J, Haber M, Rouleau G, Thorarinsdottir T, Brice A, van Bergen En Henegouwen PM, and Fon EA. A regulated interaction with the UIM protein Eps15 implicates parkin in EGF receptor trafficking and PI(3)K-Akt signalling. Nat Cell Biol 8: 834–842, 2006.PubMedGoogle Scholar
  80. 80.
    Fallon L, Moreau F, Croft BG, Labib N, Gu WJ, and Fon EA. Parkin and CASK/LIN-2 associate via a PDZ-mediated interaction and are co-localized in lipid rafts and postsynaptic densities in brain. J Biol Chem 277: 486–491, 2002.PubMedGoogle Scholar
  81. 81.
    Fang S, Jensen JP, Ludwig RL, Vousden KH, and Weissman AM. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem 275: 8945–8951, 2000.PubMedGoogle Scholar
  82. 82.
    Feldman RM, Correll CC, Kaplan KB, and Deshaies RJ. A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 91: 221–230, 1997.PubMedGoogle Scholar
  83. 83.
    Fonseca R, Vabulas RM, Hartl FU, Bonhoeffer T, and Nagerl UV. A balance of protein synthesis and proteasome-dependent degradation determines the maintenance of LTP. Neuron 52: 239–245, 2006.PubMedGoogle Scholar
  84. 84.
    Freemont PS. RING for destruction? Curr Biol 10: R84–87, 2000.PubMedGoogle Scholar
  85. 85.
    Fu H, Reis N, Lee Y, Glickman MH, and Vierstra RD. Subunit interaction maps for the regulatory particle of the 26S proteasome and the COP9 signalosome. EMBO J 20: 7096–7107, 2001.PubMedGoogle Scholar
  86. 86.
    Fu H, Sadis S, Rubin DM, Glickman M, van Nocker S, Finley D, and Vierstra RD. Multiubiquitin chain binding and protein degradation are mediated by distinct domains within the 26 S proteasome subunit Mcb1. J Biol Chem 273: 1970–1981, 1998.PubMedGoogle Scholar
  87. 87.
    Furrer MP, Kim S, Wolf B, and Chiba A. Robo and Frazzled/DCC mediate dendritic guidance at the CNS midline. Nat Neurosci 6: 223–230, 2003.PubMedGoogle Scholar
  88. 88.
    Ganeshina O, Berry RW, Petralia RS, Nicholson DA, and Geinisman Y. Synapses with a segmented, completely partitioned postsynaptic density express more AMPA receptors than other axospinous synaptic junctions. Neuroscience 125: 615–623, 2004.PubMedGoogle Scholar
  89. 89.
    Georgiou M and Tear G. Commissureless is required both in commissural neurones and midline cells for axon guidance across the midline. Development 129: 2947–2956, 2002.PubMedGoogle Scholar
  90. 90.
    Ghirardi M, Braha O, Hochner B, Montarolo PG, Kandel ER, and Dale N. Roles of PKA and PKC in facilitation of evoked and spontaneous transmitter release at depressed and nondepressed synapses in Aplysia sensory neurons. Neuron 9: 479–489, 1992.PubMedGoogle Scholar
  91. 91.
    Gieffers C, Peters BH, Kramer ER, Dotti CG, and Peters JM. Expression of the CDH1- associated form of the anaphase-promoting complex in postmitotic neurons. Proc Nat Acad Sci USA 96: 11317–11322, 1999.PubMedGoogle Scholar
  92. 92.
    Gill DJ, Teo H, Sun J, Perisic O, Veprintsev DB, Emr SD, and Williams RL. Structural insight into the ESCRT-I/-II link and its role in MVB trafficking. EMBO J 26: 600–612, 2007.PubMedGoogle Scholar
  93. 93.
    Glickman MH and Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82: 373–428, 2002.PubMedGoogle Scholar
  94. 94.
    Glickman MH, Rubin DM, Fried VA, and Finley D. The regulatory particle of the Saccharomyces cerevisiae proteasome. Mol Cell Biol 18: 3149–3162, 1998.PubMedGoogle Scholar
  95. 95.
    Glotzer M, Murray AW, and Kirschner MW. Cyclin is degraded by the ubiquitin pathway. Nature 349: 132–138, 1991.PubMedGoogle Scholar
  96. 96.
    Goldberg MS, Fleming SM, Palacino JJ, Cepeda C, Lam HA, Bhatnagar A, Meloni EG, Wu N, Ackerson LC, Klapstein GJ, Gajendiran M, Roth BL, Chesselet MF, Maidment NT, Levine MS, and Shen J. Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem 278: 43628–43635, 2003.PubMedGoogle Scholar
  97. 97.
    Gray NW, Weimer RM, Bureau I, and Svoboda K. Rapid redistribution of synaptic PSD- 95 in the neocortex in vivo. PLoS Biol 4: e370, 2006.PubMedGoogle Scholar
  98. 98.
    Greene JC, Whitworth AJ, Kuo I, Andrews LA, Feany MB, and Pallanck LJ. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc Nat Acad Sci USA 100: 4078–4083, 2003.PubMedGoogle Scholar
  99. 99.
    Groll M, Bajorek M, Kohler A, Moroder L, Rubin DM, Huber R, Glickman MH, and Finley D. A gated channel into the proteasome core particle. Nat Struct Biol 7: 1062–1067, 2000.PubMedGoogle Scholar
  100. 100.
    Groll M, Ditzel L, Lowe J, Stock D, Bochtler M, Bartunik HD, and Huber R. Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 386: 463–471, 1997.PubMedGoogle Scholar
  101. 101.
    Guo Q, Xie J, Dang CV, Liu ET, and Bishop JM. Identification of a large Myc-binding protein that contains RCC1-like repeats. Proc Nat Acad Sci USA 95: 9172–9177, 1998.PubMedGoogle Scholar
  102. 102.
    Guterman A and Glickman MH. Complementary roles for Rpn11 and Ubp6 in deubiquitination and proteolysis by the proteasome. J Biol C 279: 1729–1738, 2004.Google Scholar
  103. 103.
    Haracska L and Udvardy A. Mapping the ubiquitin-binding domains in the p54 regulatory complex subunit of the Drosophila 26S protease. FEBS Lett 412: 331–336, 1997.PubMedGoogle Scholar
  104. 104.
    Harris KM, Fiala JC, and Ostroff L. Structural changes at dendritic spine synapses during long-term potentiation. Philosophical Trans Royal Soc Lon 358: 745–748, 2003.Google Scholar
  105. 105.
    Hegde AN, Goldberg AL, and Schwartz JH. Regulatory subunits of cAMP-dependent protein kinases are degraded after conjugation to ubiquitin: a molecular mechanism underlying long-term synaptic plasticity. Proc Nat Acad Sci USA 90: 7436–7440, 1993.PubMedGoogle Scholar
  106. 106.
    Hegde AN, Inokuchi K, Pei W, Casadio A, Ghirardi M, Chain DG, Martin KC, Kandel ER, and Schwartz JH. Ubiquitin C-terminal hydrolase is an immediate-early gene essential for long-term facilitation in Aplysia. Cell 89: 115–126, 1997.PubMedGoogle Scholar
  107. 107.
    Helenius A and Aebi M. Intracellular functions of N-linked glycans. Science (New York) 291: 2364–2369, 2001.Google Scholar
  108. 108.
    Hershko A, Leshinsky E, Ganoth D, and Heller H. ATP-dependent degradation of ubiquitin- protein conjugates. Proc Natl Acad Sci USA 81: 1619–1623, 1984.PubMedGoogle Scholar
  109. 109.
    Hicke L and Dunn R. Regulation of membrane protein transport by ubiquitin and ubiquitin- binding proteins. Annu Rev Cell Dev Biol 19: 141–172, 2003.PubMedGoogle Scholar
  110. 110.
    Hicke L, Schubert HL, and Hill CP. Ubiquitin-binding domains. Nat Rev 6: 610–621, 2005.Google Scholar
  111. 111.
    Hirano S, Kawasaki M, Ura H, Kato R, Raiborg C, Stenmark H, and Wakatsuki S. Double- sided ubiquitin binding of Hrs-UIM in endosomal protein sorting. Nat Struc Mol Biol 13: 272–277, 2006.Google Scholar
  112. 112.
    Hiyama H, Yokoi M, Masutani C, Sugasawa K, Maekawa T, Tanaka K, Hoeijmakers JH, and Hanaoka F. Interaction of hHR23 with S5a. The ubiquitin-like domain of hHR23 mediates interaction with S5a subunit of 26 S proteasome. J Biol Chem 274: 28019–28025, 1999.PubMedGoogle Scholar
  113. 113.
    Hoffman L and Rechsteiner M. Activation of the multicatalytic protease. The 11 S regulator and 20 S ATPase complexes contain distinct 30-kilodalton subunits. J Biol Chem 269: 16890–16895, 1994.PubMedGoogle Scholar
  114. 114.
    Hofmann K and Bucher P. The UBA domain: a sequence motif present in multiple enzyme classes of the ubiquitination pathway. Trends Biochem Sci 21: 172–173, 1996.PubMedGoogle Scholar
  115. 115.
    Hoopfer ED, McLaughlin T, Watts RJ, Schuldiner O, O’Leary DD, and Luo L. Wlds protection distinguishes axon degeneration following injury from naturally occurring developmental pruning. Neuron 50: 883–895, 2006.PubMedGoogle Scholar
  116. 116.
    Hough R, Pratt G, and Rechsteiner M. Ubiquitin-lysozyme conjugates. Identification and characterization of an ATP-dependent protease from rabbit reticulocyte lysates. J Biol Chem 261: 2400–2408, 1986.PubMedGoogle Scholar
  117. 117.
    Howard TL, Stauffer DR, Degnin CR, and Hollenberg SM. CHMP1 functions as a member of a newly defined family of vesicle trafficking proteins. J Cell Sci 114: 2395–2404, 2001.PubMedGoogle Scholar
  118. 118.
    Hu G, Zhang S, Vidal M, Baer JL, Xu T, and Fearon ER. Mammalian homologs of seven in absentia regulate DCC via the ubiquitin-proteasome pathway. Genes Dev 11: 2701–2714, 1997.PubMedGoogle Scholar
  119. 119.
    Hu GY, Hvalby O, Walaas SI, Albert KA, Skjeflo P, Andersen P, and Greengard P. Protein kinase C injection into hippocampal pyramidal cells elicits features of long term potentiation. Nature 328: 426–429, 1987.PubMedGoogle Scholar
  120. 120.
    Huang L, Kinnucan E, Wang G, Beaudenon S, Howley PM, Huibregtse JM, and Pavletich NP. Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2- E3 enzyme cascade. Science (New York) 286: 1321–1326, 1999.Google Scholar
  121. 121.
    Huang Y, Baker RT, and Fischer-Vize JA. Control of cell fate by a deubiquitinating enzyme encoded by the fat facets gene. Science (New York) 270: 1828–1831, 1995.Google Scholar
  122. 122.
    Huber O, Korn R, McLaughlin J, Ohsugi M, Herrmann BG, and Kemler R. Nuclear localization of beta-catenin by interaction with transcription factor LEF-1. Mech Dev 59: 3–10, 1996.PubMedGoogle Scholar
  123. 123.
    Huibregtse JM, Scheffner M, Beaudenon S, and Howley PM. A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc Nat Acad Sci USA 92: 2563–2567, 1995.PubMedGoogle Scholar
  124. 124.
    Imai Y, Soda M, Inoue H, Hattori N, Mizuno Y, and Takahashi R. An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell 105: 891–902, 2001.PubMedGoogle Scholar
  125. 125.
    Ing B, Shteiman-Kotler A, Castelli M, Henry P, Pak Y, Stewart B, Boulianne GL, and Rotin D. Regulation of Commissureless by the ubiquitin ligase DNedd4 is required for neuromuscular synaptogenesis in Drosophila melanogaster. Mol Cell Biol 27: 481–496, 2007.PubMedGoogle Scholar
  126. 126.
    Itier JM, Ibanez P, Mena MA, Abbas N, Cohen-Salmon C, Bohme GA, Laville M, Pratt J, Corti O, Pradier L, Ret G, Joubert C, Periquet M, Araujo F, Negroni J, Casarejos MJ, Canals S, Solano R, Serrano A, Gallego E, Sanchez M, Denefle P, Benavides J, Tremp G, Rooney TA, Brice A, and Garcia de Yebenes J. Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse. Hum Mol Genet 12: 2277–2291, 2003.PubMedGoogle Scholar
  127. 127.
    Iwahara T, Fujimoto J, Wen D, Cupples R, Bucay N, Arakawa T, Mori S, Ratzkin B, and Yamamoto T. Molecular characterization of ALK, a receptor tyrosine kinase expressed specifically in the nervous system. Oncogene 14: 439–449, 1997.PubMedGoogle Scholar
  128. 128.
    Iwakura Y, Piao YS, Mizuno M, Takei N, Kakita A, Takahashi H, and Nawa H. Influences of dopaminergic lesion on epidermal growth factor-ErbB signals in Parkinson’s disease and its model: neurotrophic implication in nigrostriatal neurons. J Neurochem 93: 974–983, 2005.PubMedGoogle Scholar
  129. 129.
    Jackson PK, Eldridge AG, Freed E, Furstenthal L, Hsu JY, Kaiser BK, and Reimann JD. The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol 10: 429–439, 2000.PubMedGoogle Scholar
  130. 130.
    Jiang YH, Armstrong D, Albrecht U, Atkins CM, Noebels JL, Eichele G, Sweatt JD, and Beaudet AL. Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron 21: 799–811, 1998.PubMedGoogle Scholar
  131. 131.
    Joazeiro CA and Weissman AM. RING finger proteins: mediators of ubiquitin ligase activity. Cell 102: 549–552, 2000.PubMedGoogle Scholar
  132. 132.
    Joazeiro CA, Wing SS, Huang H, Leverson JD, Hunter T, and Liu YC. The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science (New York) 286: 309–312, 1999.Google Scholar
  133. 133.
    Johnston JA and Madura K. Rings, chains and ladders: ubiquitin goes to work in the neuron. Prog Neurobiol 73: 227–257, 2004.PubMedGoogle Scholar
  134. 134.
    Juo P and Kaplan JM. The anaphase-promoting complex regulates the abundance of GLR-1 glutamate receptors in the ventral nerve cord of C. elegans. Curr Biol 14: 2057–2062, 2004.PubMedGoogle Scholar
  135. 135.
    Kandel ER. The molecular biology of memory storage: a dialogue between genes and synapses. Science (New York) 294: 1030–1038, 2001.Google Scholar
  136. 136.
    Karpova A, Mikhaylova M, Thomas U, Knopfel T, and Behnisch T. Involvement of protein synthesis and degradation in long-term potentiation of Schaffer collateral CA1 synapses. J Neurosci 26: 4949–4955, 2006.PubMedGoogle Scholar
  137. 137.
    Kato A, Rouach N, Nicoll RA, and Bredt DS. Activity-dependent NMDA receptor degradation mediated by retrotranslocation and ubiquitination. Proc Nat Acad Sci USA 102: 5600–5605, 2005.PubMedGoogle Scholar
  138. 138.
    Kauffmann-Zeh A, Rodriguez-Viciana P, Ulrich E, Gilbert C, Coffer P, Downward J, and Evan G. Suppression of c-Myc-induced apoptosis by Ras signalling through PI(3)K and PKB. Nature 385: 544–548, 1997.PubMedGoogle Scholar
  139. 139.
    Kaufmann N, DeProto J, Ranjan R, Wan H, and Van Vactor D. Drosophila liprin-alpha and the receptor phosphatase Dlar control synapse morphogenesis. Neuron 34: 27–38, 2002.PubMedGoogle Scholar
  140. 140.
    Keleman K, Rajagopalan S, Cleppien D, Teis D, Paiha K, Huber LA, Technau GM, and Dickson BJ. Comm sorts robo to control axon guidance at the Drosophila midline. Cell 110: 415–427, 2002.PubMedGoogle Scholar
  141. 141.
    Keleman K, Ribeiro C, and Dickson BJ. Comm function in commissural axon guidance: cell-autonomous sorting of Robo in vivo. Nat Nneurosci 8: 156–163, 2005.Google Scholar
  142. 142.
    Kelleher RJ, 3rd, Govindarajan A, Jung HY, Kang H, and Tonegawa S. Translational control by MAPK signaling in long-term synaptic plasticity and memory. Cell 116: 467–479, 2004.PubMedGoogle Scholar
  143. 143.
    Kelleher RJ, 3rd, Govindarajan A, and Tonegawa S. Translational regulatory mechanisms in persistent forms of synaptic plasticity. Neuron 44: 59–73, 2004.PubMedGoogle Scholar
  144. 144.
    King RW, Glotzer M, and Kirschner MW. Mutagenic analysis of the destruction signal of mitotic cyclins and structural characterization of ubiquitinated intermediates. Mol Biol Cell 7: 1343–1357, 1996.PubMedGoogle Scholar
  145. 145.
    Kipreos ET, Gohel SP, and Hedgecock EM. The C. elegans F-box/WD-repeat protein LIN-23 functions to limit cell division during development. Development 127: 5071–5082, 2000.PubMedGoogle Scholar
  146. 146.
    Kirkin V and Dikic I. Role of ubiquitin- and Ubl-binding proteins in cell signaling. Curr Opin Cell Biol 19: 199–205, 2007.PubMedGoogle Scholar
  147. 147.
    Kishino T, Lalande M, and Wagstaff J. UBE3A/E6-AP mutations cause Angelman syndrome. Nat Genet 15: 70–73, 1997.PubMedGoogle Scholar
  148. 148.
    Kisselev AF, Akopian TN, and Goldberg AL. Range of sizes of peptide products generated during degradation of different proteins by archaeal proteasomes. J Biol Chem 273: 1982–1989, 1998.PubMedGoogle Scholar
  149. 149.
    Kisselev AF, Akopian TN, Woo KM, and Goldberg AL. The sizes of peptides generated from protein by mammalian 26 and 20 S proteasomes. Implications for understanding the degradative mechanism and antigen presentation. J Biol Chem 274: 3363–3371, 1999.PubMedGoogle Scholar
  150. 150.
    Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, and Shimizu N. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392: 605–608, 1998.PubMedGoogle Scholar
  151. 151.
    Klapisz E, Sorokina I, Lemeer S, Pijnenburg M, Verkleij AJ, and van Bergen en Henegouwen PM. A ubiquitin-interacting motif (UIM) is essential for Eps15 and Eps15R ubiquitination. J Biol Chem 277: 30746–30753, 2002.PubMedGoogle Scholar
  152. 152.
    Knoll JH, Nicholls RD, Magenis RE, Graham JM, Jr., Lalande M, and Latt SA. Angelman and Prader-Willi syndromes share a common chromosome 15 deletion but differ in parental origin of the deletion. Am J Med Genet 32: 285–290, 1989.PubMedGoogle Scholar
  153. 153.
    Ko HS, von Coelln R, Sriram SR, Kim SW, Chung KK, Pletnikova O, Troncoso J, Johnson B, Saffary R, Goh EL, Song H, Park BJ, Kim MJ, Kim S, Dawson VL, and Dawson TM. Accumulation of the authentic parkin substrate aminoacyl-tRNA synthetase cofactor, p38/JTV-1, leads to catecholaminergic cell death. J Neurosci 25: 7968–7978, 2005.PubMedGoogle Scholar
  154. 154.
    Koegl M, Hoppe T, Schlenker S, Ulrich HD, Mayer TU, and Jentsch S. A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 96: 635–644, 1999.PubMedGoogle Scholar
  155. 155.
    Kohler A, Cascio P, Leggett DS, Woo KM, Goldberg AL, and Finley D. The axial channel of the proteasome core particle is gated by the Rpt2 ATPase and controls both substrate entry and product release. Mol Cell 7: 1143–1152, 2001.PubMedGoogle Scholar
  156. 156.
    Konishi Y, Stegmuller J, Matsuda T, Bonni S, and Bonni A. Cdh1-APC controls axonal growth and patterning in the mammalian brain. Science (New York) 303: 1026–1030, 2004.Google Scholar
  157. 157.
    Kulik G and Weber MJ. Akt-dependent and -independent survival signaling pathways utilized by insulin-like growth factor I. Mol Cell Biol 18: 6711–6718, 1998.PubMedGoogle Scholar
  158. 158.
    Kuo CT, Jan LY, and Jan YN. Dendrite-specific remodeling of Drosophila sensory neurons requires matrix metalloproteases, ubiquitin-proteasome, and ecdysone signaling. Proc Nat Acad Sci USA 102: 15230–15235, 2005.PubMedGoogle Scholar
  159. 159.
    Kuo CT, Zhu S, Younger S, Jan LY, and Jan YN. Identification of E2/E3 ubiquitinating enzymes and caspase activity regulating Drosophila sensory neuron dendrite pruning. Neuron 51: 283–290, 2006.PubMedGoogle Scholar
  160. 160.
    Lam YA, DeMartino GN, Pickart CM, and Cohen RE. Specificity of the ubiquitin isopeptidase in the PA700 regulatory complex of 26 S proteasomes. J Biol Chem 272: 28438–28446, 1997.PubMedGoogle Scholar
  161. 161.
    Lam YA, Lawson TG, Velayutham M, Zweier JL, and Pickart CM. A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal. Nature 416: 763–767, 2002.PubMedGoogle Scholar
  162. 162.
    Lam YA, Xu W, DeMartino GN, and Cohen RE. Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome. Nature 385: 737–740, 1997.PubMedGoogle Scholar
  163. 163.
    Langelier C, von Schwedler UK, Fisher RD, De Domenico I, White PL, Hill CP, Kaplan J, Ward D, and Sundquist WI. Human ESCRT-II complex and its role in human immunodeficiency virus type 1 release. J Virol 80: 9465–9480, 2006.PubMedGoogle Scholar
  164. 164.
    Lasorella A, Stegmuller J, Guardavaccaro D, Liu G, Carro MS, Rothschild G, de la Torre-Ubieta L, Pagano M, Bonni A, and Iavarone A. Degradation of Id2 by the anaphase- promoting complex couples cell cycle exit and axonal growth. Nature 442: 471–474, 2006.PubMedGoogle Scholar
  165. 165.
    Latres E, Chiaur DS, and Pagano M. The human F box protein beta-Trcp associates with the Cul1/Skp1 complex and regulates the stability of beta-catenin. Oncogene 18: 849–854, 1999.PubMedGoogle Scholar
  166. 166.
    LaVoie MJ, Ostaszewski BL, Weihofen A, Schlossmacher MG, and Selkoe DJ. Dopamine covalently modifies and functionally inactivates parkin. Nat Med 11: 1214–1221, 2005.PubMedGoogle Scholar
  167. 167.
    Layfield R, Franklin K, Landon M, Walker G, Wang P, Ramage R, Brown A, Love S, Urquhart K, Muir T, Baker R, and Mayer RJ. Chemically synthesized ubiquitin extension proteins detect distinct catalytic capacities of deubiquitinating enzymes. Anal Biochem 274: 40–49, 1999.PubMedGoogle Scholar
  168. 168.
    Lee DH and Goldberg AL. Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol 8: 397–403, 1998.PubMedGoogle Scholar
  169. 169.
    Lee SH, Simonetta A, and Sheng M. Subunit rules governing the sorting of internalized AMPA receptors in hippocampal neurons. Neuron 43: 221–236, 2004.PubMedGoogle Scholar
  170. 170.
    Leggett DS, Hanna J, Borodovsky A, Crosas B, Schmidt M, Baker RT, Walz T, Ploegh H, and Finley D. Multiple associated proteins regulate proteasome structure and function. Mol Cell 10: 495–507, 2002.PubMedGoogle Scholar
  171. 171.
    Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E, Harta G, Brownstein MJ, Jonnalagada S, Chernova T, Dehejia A, Lavedan C, Gasser T, Steinbach PJ, Wilkinson KD, and Polymeropoulos MH. The ubiquitin pathway in Parkinson’s disease. Nature 395: 451–452, 1998.PubMedGoogle Scholar
  172. 172.
    Leverson JD, Joazeiro CA, Page AM, Huang H, Hieter P, and Hunter T. The APC11 RING-H2 finger mediates E2-dependent ubiquitination. Mol Biol Cell 11: 2315–2325, 2000.PubMedGoogle Scholar
  173. 173.
    Levkowitz G, Waterman H, Ettenberg SA, Katz M, Tsygankov AY, Alroy I, Lavi S, Iwai K, Reiss Y, Ciechanover A, Lipkowitz S, and Yarden Y. Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c- Cbl/Sli-1. Mol Cell 4: 1029–1040, 1999.PubMedGoogle Scholar
  174. 174.
    Liao EH, Hung W, Abrams B, and Zhen M. An SCF-like ubiquitin ligase complex that controls presynaptic differentiation. Nature 430: 345–350, 2004.PubMedGoogle Scholar
  175. 175.
    Lin JW, Ju W, Foster K, Lee SH, Ahmadian G, Wyszynski M, Wang YT, and Sheng M. Distinct molecular mechanisms and divergent endocytotic pathways of AMPA receptor internalization. Nat Neurosci 3: 1282–1290, 2000.PubMedGoogle Scholar
  176. 176.
    Lin Y, Kimpler LA, Naismith TV, Lauer JM, and Hanson PI. Interaction of the mammalian endosomal sorting complex required for transport (ESCRT) III protein hSnf7-1 with itself, membranes, and the AAA+ ATPase SKD1. J Biol Chem 280: 12799–12809, 2005.PubMedGoogle Scholar
  177. 177.
    Lisman JE, Raghavachari S, and Tsien RW. The sequence of events that underlie quantal transmission at central glutamatergic synapses. Nat Rev Neurosci 8: 597–609, 2007.PubMedGoogle Scholar
  178. 178.
    Lorick KL, Jensen JP, Fang S, Ong AM, Hatakeyama S, and Weissman AM. RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Nat Acad Sci USA 96: 11364–11369, 1999.PubMedGoogle Scholar
  179. 179.
    Lowe J, Blanchard A, Morrell K, Lennox G, Reynolds L, Billett M, Landon M, and Mayer RJ. Ubiquitin is a common factor in intermediate filament inclusion bodies of diverse type in man, including those of Parkinson’s disease, Pick’s disease, and Alzheimer’s disease, as well as Rosenthal fibres in cerebellar astrocytomas, cytoplasmic bodies in muscle, and mallory bodies in alcoholic liver disease. J Pathol 155: 9–15, 1988.PubMedGoogle Scholar
  180. 180.
    Lowe J, McDermott H, Landon M, Mayer RJ, and Wilkinson KD. Ubiquitin carboxylterminal hydrolase (PGP 9.5) is selectively present in ubiquitinated inclusion bodies characteristic of human neurodegenerative diseases. J Pathol 161: 153–160, 1990.PubMedGoogle Scholar
  181. 181.
    Lu Z, Je HS, Young P, Gross J, Lu B, and Feng G. Regulation of synaptic growth and maturation by a synapse-associated E3 ubiquitin ligase at the neuromuscular junction. J Cell Biol 177: 1077–1089, 2007.PubMedGoogle Scholar
  182. 182.
    Lupas A, Baumeister W, and Hofmann K. A repetitive sequence in subunits of the 26S proteasome and 20S cyclosome (anaphase-promoting complex). Trends Biochem Sci 22: 195–196, 1997.PubMedGoogle Scholar
  183. 183.
    Luscher C, Xia H, Beattie EC, Carroll RC, von Zastrow M, Malenka RC, and Nicoll RA. Role of AMPA receptor cycling in synaptic transmission and plasticity. Neuron 24: 649–658, 1999.PubMedGoogle Scholar
  184. 184.
    Lynch MA. Long-term potentiation and memory. Physiol Rev 84: 87–136, 2004.PubMedGoogle Scholar
  185. 185.
    Malenka RC and Bear MF. LTP and LTD: an embarrassment of riches. Neuron 44: 5–21, 2004.PubMedGoogle Scholar
  186. 186.
    Malenka RC, Madison DV, and Nicoll RA. Potentiation of synaptic transmission in the hippocampus by phorbol esters. Nature 321: 175–177, 1986.PubMedGoogle Scholar
  187. 187.
    Marmor MD and Yarden Y. Role of protein ubiquitylation in regulating endocytosis of receptor tyrosine kinases. Oncogene 23: 2057–2070, 2004.PubMedGoogle Scholar
  188. 188.
    Marrs GS, Green SH, and Dailey ME. Rapid formation and remodeling of postsynaptic densities in developing dendrites. Nat Neurosci 4: 1006–1013, 2001.PubMedGoogle Scholar
  189. 189.
    Martin S, Nishimune A, Mellor JR, and Henley JM. SUMOylation regulates kainatereceptor- mediated synaptic transmission. Nature 447: 321–325, 2007.PubMedGoogle Scholar
  190. 190.
    Matsuda N, Kitami T, Suzuki T, Mizuno Y, Hattori N, and Tanaka K. Diverse effects of pathogenic mutations of Parkin that catalyze multiple monoubiquitylation in vitro. J Biol Chem 281: 3204–3209, 2006.PubMedGoogle Scholar
  191. 191.
    Matsuura T, Sutcliffe JS, Fang P, Galjaard RJ, Jiang YH, Benton CS, Rommens JM, and Beaudet AL. De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome. Nat Genet 15: 74–77, 1997.PubMedGoogle Scholar
  192. 192.
    McCullough J, Clague MJ, and Urbe S. AMSH is an endosome-associated ubiquitin isopeptidase. J Cell Biol 166: 487–492, 2004.PubMedGoogle Scholar
  193. 193.
    Mehta N, Loria PM, and Hobert O. A genetic screen for neurite outgrowth mutants in Caenorhabditis elegans reveals a new function for the F-box ubiquitin ligase component LIN-23. Genetics 166: 1253–1267, 2004.PubMedGoogle Scholar
  194. 194.
    Montarolo PG, Goelet P, Castellucci VF, Morgan J, Kandel ER, and Schacher S. A critical period for macromolecular synthesis in long-term heterosynaptic facilitation in Aplysia. Science (New York) 234: 1249–1254, 1986.Google Scholar
  195. 195.
    Mori S, Claesson-Welsh L, Okuyama Y, and Saito Y. Ligand-induced polyubiquitination of receptor tyrosine kinases. Biochem Biophys Res Comm 213: 32–39, 1995.PubMedGoogle Scholar
  196. 196.
    Morton ME, Street VA, and Nathanson NM. Selective regulation of Gi alpha 1 expression and function in PC12 cells by cAMP. J Neurosci 12: 1839–1846, 1992.PubMedGoogle Scholar
  197. 197.
    Mouatt-Prigent A, Muriel MP, Gu WJ, El Hachimi KH, Lucking CB, Brice A, and Hirsch EC. Ultrastructural localization of parkin in the rat brainstem, thalamus and basal ganglia. J Neural Transm 111: 1209–1218, 2004.PubMedGoogle Scholar
  198. 198.
    Mukhopadhyay D and Riezman H. Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science (New York) 315: 201–205, 2007.Google Scholar
  199. 199.
    Mulkey RM, Endo S, Shenolikar S, and Malenka RC. Involvement of a calcineurin/ inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature 369: 486–488, 1994.PubMedGoogle Scholar
  200. 200.
    Mulkey RM, Herron CE, and Malenka RC. An essential role for protein phosphatases in hippocampal long-term depression. Science (New York) 261: 1051–1055, 1993.Google Scholar
  201. 201.
    Muro I, Hay BA, and Clem RJ. The Drosophila DIAP1 protein is required to prevent accumulation of a continuously generated, processed form of the apical caspase DRONC. J Biol Chem 277: 49644–49650, 2002.PubMedGoogle Scholar
  202. 202.
    Murthy VN, Schikorski T, Stevens CF, and Zhu Y. Inactivity produces increases in neurotransmitter release and synapse size. Neuron 32: 673–682, 2001.PubMedGoogle Scholar
  203. 203.
    Myat A, Henry P, McCabe V, Flintoft L, Rotin D, and Tear G. Drosophila Nedd4, a ubiquitin ligase, is recruited by Commissureless to control cell surface levels of the roundabout receptor. Neuron 35: 447–459, 2002.PubMedGoogle Scholar
  204. 204.
    Nakata K, Abrams B, Grill B, Goncharov A, Huang X, Chisholm AD, and Jin Y. Regulation of a DLK-1 and p38 MAP kinase pathway by the ubiquitin ligase RPM-1 is required for presynaptic development. Cell 120: 407–420, 2005.PubMedGoogle Scholar
  205. 205.
    Naumann M, Bech-Otschir D, Huang X, Ferrell K, and Dubiel W. COP9 signalosomedirected c-Jun activation/stabilization is independent of JNK. J Biol Chem 274: 35297–35300, 1999.PubMedGoogle Scholar
  206. 206.
    Navon A and Goldberg AL. Proteins are unfolded on the surface of the ATPase ring before transport into the proteasome. Mol Cell 8: 1339–1349, 2001.PubMedGoogle Scholar
  207. 207.
    Nicholson DA, Yoshida R, Berry RW, Gallagher M, and Geinisman Y. Reduction in size of perforated postsynaptic densities in hippocampal axospinous synapses and age-related spatial learning impairments. J Neurosci 24: 7648–7653, 2004.PubMedGoogle Scholar
  208. 208.
    Nickell S, Mihalache O, Beck F, Hegerl R, Korinek A, and Baumeister W. Structural analysis of the 26S proteasome by cryoelectron tomography. Biochem Biophys Res Comm 353: 115–120, 2007.PubMedGoogle Scholar
  209. 209.
    Nickerson DP, West M, and Odorizzi G. Did2 coordinates Vps4-mediated dissociation of ESCRT-III from endosomes. J Cell Biol 175: 715–720, 2006.PubMedGoogle Scholar
  210. 210.
    Nussbaum AK, Dick TP, Keilholz W, Schirle M, Stevanovic S, Dietz K, Heinemeyer W, Groll M, Wolf DH, Huber R, Rammensee HG, and Schild H. Cleavage motifs of the yeast 20S proteasome beta subunits deduced from digests of enolase 1. Proc Nat Acad Sci USA 95: 12504–12509, 1998.PubMedGoogle Scholar
  211. 211.
    Okabe S, Kim HD, Miwa A, Kuriu T, and Okado H. Continual remodeling of postsynaptic density and its regulation by synaptic activity. Nat Neurosci 2: 804–811, 1999.PubMedGoogle Scholar
  212. 212.
    Osaka H, Wang YL, Takada K, Takizawa S, Setsuie R, Li H, Sato Y, Nishikawa K, Sun YJ, Sakurai M, Harada T, Hara Y, Kimura I, Chiba S, Namikawa K, Kiyama H, Noda M, Aoki S, and Wada K. Ubiquitin carboxy-terminal hydrolase L1 binds to and stabilizes monoubiquitin in neuron. Hum Mol Genet 12: 1945–1958, 2003.PubMedGoogle Scholar
  213. 213.
    Osterlund MT, Hardtke CS, Wei N, and Deng XW. Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405: 462–466, 2000.PubMedGoogle Scholar
  214. 214.
    Ozdamar B, Bose R, Barrios-Rodiles M, Wang HR, Zhang Y, and Wrana JL. Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science (New York) 307: 1603–1609, 2005.Google Scholar
  215. 215.
    Paisan-Ruiz C, Jain S, Evans EW, Gilks WP, Simon J, van der Brug M, de Munain AL, Aparicio S, Gil AM, Khan N, Johnson J, Martinez JR, Nicholl D, Carrera IM, Pena AS, de Silva R, Lees A, Marti-Masso JF, Perez-Tur J, Wood NW, and Singleton AB. Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron 44: 595–600, 2004.PubMedGoogle Scholar
  216. 216.
    Pak DT and Sheng M. Targeted protein degradation and synapse remodeling by an inducible protein kinase. Science (New York) 302: 1368–1373, 2003.Google Scholar
  217. 217.
    Pak DT, Yang S, Rudolph-Correia S, Kim E, and Sheng M. Regulation of dendritic spine morphology by SPAR, a PSD-95-associated RapGAP. Neuron 31: 289–303, 2001.PubMedGoogle Scholar
  218. 218.
    Papa FR, Amerik AY, and Hochstrasser M. Interaction of the Doa4 deubiquitinating enzyme with the yeast 26S proteasome. Mol Biol Cell 10: 741–756, 1999.PubMedGoogle Scholar
  219. 219.
    Patrick GN, Bingol B, Weld HA, and Schuman EM. Ubiquitin-mediated proteasome activity is required for agonist-induced endocytosis of GluRs. Curr Biol 13: 2073–2081, 2003.PubMedGoogle Scholar
  220. 220.
    Peifer M, Pai LM, and Casey M. Phosphorylation of the Drosophila adherens junction protein Armadillo: roles for wingless signal and zeste-white 3 kinase. Dev Biol 166: 543–556, 1994.PubMedGoogle Scholar
  221. 221.
    Pesah Y, Pham T, Burgess H, Middlebrooks B, Verstreken P, Zhou Y, Harding M, Bellen H, and Mardon G. Drosophila parkin mutants have decreased mass and cell size and increased sensitivity to oxygen radical stress. Development 131: 2183–2194, 2004.PubMedGoogle Scholar
  222. 222.
    Peters JM. The anaphase-promoting complex: proteolysis in mitosis and beyond. Mol Cell 9: 931–943, 2002.PubMedGoogle Scholar
  223. 223.
    Peters JM. The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat Rev 7: 644–656, 2006.Google Scholar
  224. 224.
    Petroski MD and Deshaies RJ. Function and regulation of cullin-RING ubiquitin ligases. Nat Rev 6: 9–20, 2005.Google Scholar
  225. 225.
    Petrucelli L, O’Farrell C, Lockhart PJ, Baptista M, Kehoe K, Vink L, Choi P, Wolozin B, Farrer M, Hardy J, and Cookson MR. Parkin protects against the toxicity associated with mutant alpha-synuclein: proteasome dysfunction selectively affects catecholaminergic neurons. Neuron 36: 1007–1019, 2002.PubMedGoogle Scholar
  226. 226.
    Philpott KL, McCarthy MJ, Klippel A, and Rubin LL. Activated phosphatidylinositol 3- kinase and Akt kinase promote survival of superior cervical neurons. J Cell Biol 139: 809–815, 1997.PubMedGoogle Scholar
  227. 227.
    Pickart CM. Mechanisms underlying ubiquitination. Annu Rev Biochem 70: 503–533, 2001.PubMedGoogle Scholar
  228. 228.
    Pickart CM and Cohen RE. Proteasomes and their kin: proteases in the machine age. Nat Rev 5: 177–187, 2004.Google Scholar
  229. 229.
    Polo S, Sigismund S, Faretta M, Guidi M, Capua MR, Bossi G, Chen H, De Camilli P, and Di Fiore PP. A single motif responsible for ubiquitin recognition and monoubiquitination in endocytic proteins. Nature 416: 451–455, 2002.PubMedGoogle Scholar
  230. 230.
    Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, and Nussbaum RL. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science (New York) 276: 2045–2047, 1997.Google Scholar
  231. 231.
    Qi M, Zhuo M, Skalhegg BS, Brandon EP, Kandel ER, McKnight GS, and Idzerda RL. Impaired hippocampal plasticity in mice lacking the Cbeta1 catalytic subunit of cAMPdependent protein kinase. Proc Nat Acad Sci USA 93: 1571–1576, 1996.PubMedGoogle Scholar
  232. 232.
    Raasi S and Pickart CM. Rad23 ubiquitin-associated domains (UBA) inhibit 26 S proteasome- catalyzed proteolysis by sequestering lysine 48-linked polyubiquitin chains. J Biol Chem 278: 8951–8959, 2003.PubMedGoogle Scholar
  233. 233.
    Raiborg C, Bache KG, Gillooly DJ, Madshus IH, Stang E, and Stenmark H. Hrs sorts ubiquitinated proteins into clathrin-coated microdomains of early endosomes. Nat Cell Biol 4: 394–398, 2002.PubMedGoogle Scholar
  234. 234.
    Reimann JD, Freed E, Hsu JY, Kramer ER, Peters JM, and Jackson PK. Emi1 is a mitotic regulator that interacts with Cdc20 and inhibits the anaphase promoting complex. Cell 105: 645–655, 2001.PubMedGoogle Scholar
  235. 235.
    Reimann JD, Gardner BE, Margottin-Goguet F, and Jackson PK. Emi1 regulates the anaphase-promoting complex by a different mechanism than Mad2 proteins. Genes Dev 15: 3278–3285, 2001.PubMedGoogle Scholar
  236. 236.
    Rougeulle C, Glatt H, and Lalande M. The Angelman syndrome candidate gene, UBE3A/E6-AP, is imprinted in brain. Nat Genet 17: 14–15, 1997.PubMedGoogle Scholar
  237. 237.
    Rubin DM, Glickman MH, Larsen CN, Dhruvakumar S, and Finley D. Active site mutants in the six regulatory particle ATPases reveal multiple roles for ATP in the proteasome. EMBO J 17: 4909–4919, 1998.PubMedGoogle Scholar
  238. 238.
    Rubinsztein DC. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443: 780–786, 2006.PubMedGoogle Scholar
  239. 239.
    Sachse M, Strous GJ, and Klumperman J. ATPase-deficient hVPS4 impairs formation of internal endosomal vesicles and stabilizes bilayered clathrin coats on endosomal vacuoles. J Cell Sci 117: 1699–1708, 2004.PubMedGoogle Scholar
  240. 240.
    Sahai E, Garcia-Medina R, Pouyssegur J, and Vial E. Smurf1 regulates tumor cell plasticity and motility through degradation of RhoA leading to localized inhibition of contractility. J Cell Biol 176: 35–42, 2007.PubMedGoogle Scholar
  241. 241.
    Sakata E, Yamaguchi Y, Kurimoto E, Kikuchi J, Yokoyama S, Yamada S, Kawahara H, Yokosawa H, Hattori N, Mizuno Y, Tanaka K, and Kato K. Parkin binds the Rpn10 subunit of 26S proteasomes through its ubiquitin-like domain. EMBO Reports 4: 301–306, 2003.PubMedGoogle Scholar
  242. 242.
    Salinas GD, Blair LA, Needleman LA, Gonzales JD, Chen Y, Li M, Singer JD, and Marshall J. Actinfilin is a Cul3 substrate adaptor, linking GluR6 kainate receptor subunits to the ubiquitin-proteasome pathway. J Biol Chem 281: 40164–40173, 2006.PubMedGoogle Scholar
  243. 243.
    Sang TK, Chang HY, Lawless GM, Ratnaparkhi A, Mee L, Ackerson LC, Maidment NT, Krantz DE, and Jackson GR. A Drosophila model of mutant human parkin-induced toxicity demonstrates selective loss of dopaminergic neurons and dependence on cellular dopamine. J Neurosci 27: 981–992, 2007.PubMedGoogle Scholar
  244. 244.
    Schaefer AM, Hadwiger GD, and Nonet ML. rpm-1, a conserved neuronal gene that regulates targeting and synaptogenesis in C. elegans. Neuron 26: 345–356, 2000.PubMedGoogle Scholar
  245. 245.
    Schauber C, Chen L, Tongaonkar P, Vega I, Lambertson D, Potts W, and Madura K. Rad23 links DNA repair to the ubiquitin/proteasome pathway. Nature 391: 715–718, 1998.PubMedGoogle Scholar
  246. 246.
    Scheffner M, Huibregtse JM, and Howley PM. Identification of a human ubiquitinconjugating enzyme that mediates the E6-AP-dependent ubiquitination of p53. Proc Nat Acad Sci USA 91: 8797–8801, 1994.PubMedGoogle Scholar
  247. 247.
    Schwamborn JC, Muller M, Becker AH, and Puschel AW. Ubiquitination of the GTPase Rap1B by the ubiquitin ligase Smurf2 is required for the establishment of neuronal polarity. EMBO J 26: 1410–1422, 2007.PubMedGoogle Scholar
  248. 248.
    Schwamborn JC and Puschel AW. The sequential activity of the GTPases Rap1B and Cdc42 determines neuronal polarity. Nat Neurosci 7: 923–929, 2004.PubMedGoogle Scholar
  249. 249.
    Sharma K, Fong DK, and Craig AM. Postsynaptic protein mobility in dendritic spines: long-term regulation by synaptic NMDA receptor activation. Mol Cell Neurosci 31: 702–712, 2006.PubMedGoogle Scholar
  250. 250.
    Sheng M and Hoogenraad CC. The postsynaptic architecture of excitatory synapses: a more quantitative view. Annu Rev Biochem 76: 823–847, 2007.PubMedGoogle Scholar
  251. 251.
    Shenoy SK, McDonald PH, Kohout TA, and Lefkowitz RJ. Regulation of receptor fate by ubiquitination of activated beta 2-adrenergic receptor and beta-arrestin. Science (New York) 294: 1307–1313, 2001.Google Scholar
  252. 252.
    Shih SC, Katzmann DJ, Schnell JD, Sutanto M, Emr SD, and Hicke L. Epsins and Vps27p/Hrs contain ubiquitin-binding domains that function in receptor endocytosis. Nat Cell Biol 4: 389–393, 2002.PubMedGoogle Scholar
  253. 253.
    Shimura H, Hattori N, Kubo S, Yoshikawa M, Kitada T, Matsumine H, Asakawa S, Minoshima S, Yamamura Y, Shimizu N, and Mizuno Y. Immunohistochemical and subcellular localization of Parkin protein: absence of protein in autosomal recessive juvenile parkinsonism patients. Ann Neurol 45: 668–672, 1999.PubMedGoogle Scholar
  254. 254.
    Shimura H, Schlossmacher MG, Hattori N, Frosch MP, Trockenbacher A, Schneider R, Mizuno Y, Kosik KS, and Selkoe DJ. Ubiquitination of a new form of alpha-synuclein by parkin from human brain: implications for Parkinson’s disease. Science (New York) 293: 263–269, 2001.Google Scholar
  255. 255.
    Skowyra D, Craig KL, Tyers M, Elledge SJ, and Harper JW. F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91: 209–219, 1997.PubMedGoogle Scholar
  256. 256.
    Schaefer H and Rongo C. KEL-8 Is a Substrate Receptor for CUL3-dependent Ubiquitin Ligase That Regulates Synaptic Glutamate Receptor Turnover. Mol Biol Cell 17: 1250–60, 2006.PubMedGoogle Scholar
  257. 257.
    Slagsvold T, Aasland R, Hirano S, Bache KG, Raiborg C, Trambaiolo D, Wakatsuki S, and Stenmark H. Eap45 in mammalian ESCRT-II binds ubiquitin via a phosphoinositide- interacting GLUE domain. J Biol Chem 280: 19600–19606, 2005.PubMedGoogle Scholar
  258. 258.
    Soboleva TA and Baker RT. Deubiquitinating enzymes: their functions and substrate specificity. Curr Protein & Peptide Sci 5: 191–200, 2004.Google Scholar
  259. 259.
    Sorkina T, Miranda M, Dionne KR, Hoover BR, Zahniser NR, and Sorkin A. RNA interference screen reveals an essential role of Nedd4-2 in dopamine transporter ubiquitination and endocytosis. J Neurosci 26: 8195–8205, 2006.PubMedGoogle Scholar
  260. 260.
    Speese SD, Trotta N, Rodesch CK, Aravamudan B, and Broadie K. The ubiquitin proteasome system acutely regulates presynaptic protein turnover and synaptic efficacy. Curr Biol 13: 899–910, 2003.PubMedGoogle Scholar
  261. 261.
    Springael JY, Galan JM, Haguenauer-Tsapis R, and Andre B. NH4+-induced downregulation of the Saccharomyces cerevisiae Gap1p permease involves its ubiquitination with lysine-63-linked chains. J Cell Sci 112 ( Pt 9): 1375–1383, 1999.PubMedGoogle Scholar
  262. 262.
    Sriram SR, Li X, Ko HS, Chung KK, Wong E, Lim KL, Dawson VL, and Dawson TM. Familial-associated mutations differentially disrupt the solubility, localization, binding and ubiquitination properties of parkin. Hum Mol Genet 14: 2571–2586, 2005.PubMedGoogle Scholar
  263. 263.
    Staropoli JF, McDermott C, Martinat C, Schulman B, Demireva E, and Abeliovich A. Parkin is a component of an SCF-like ubiquitin ligase complex and protects postmitotic neurons from kainate excitotoxicity. Neuron 37: 735–749, 2003.PubMedGoogle Scholar
  264. 264.
    Staub O, Gautschi I, Ishikawa T, Breitschopf K, Ciechanover A, Schild L, and Rotin D. Regulation of stability and function of the epithelial Na+ channel (ENaC) by ubiquitination. EMBO J 16: 6325–6336, 1997.PubMedGoogle Scholar
  265. 265.
    Stegmuller J, Konishi Y, Huynh MA, Yuan Z, Dibacco S, and Bonni A. Cell-intrinsic regulation of axonal morphogenesis by the Cdh1-APC target SnoN. Neuron 50: 389–400, 2006.PubMedGoogle Scholar
  266. 266.
    Stein V, House DR, Bredt DS, and Nicoll RA. Postsynaptic density-95 mimics and occludes hippocampal long-term potentiation and enhances long-term depression. J Neurosci 23: 5503–5506, 2003.PubMedGoogle Scholar
  267. 267.
    Steward O and Schuman EM. Protein synthesis at synaptic sites on dendrites. Annu Rev Neurosci 24: 299–325, 2001.PubMedGoogle Scholar
  268. 268.
    Strickland E, Hakala K, Thomas PJ, and DeMartino GN. Recognition of misfolding proteins by PA700, the regulatory subcomplex of the 26 S proteasome. J Biol Chem 275: 5565–5572, 2000.PubMedGoogle Scholar
  269. 269.
    Sutton MA and Schuman EM. Dendritic protein synthesis, synaptic plasticity, and memory. Cell 127: 49–58, 2006.PubMedGoogle Scholar
  270. 270.
    Swaminathan S, Amerik AY, and Hochstrasser M. The Doa4 deubiquitinating enzyme is required for ubiquitin homeostasis in yeast. Molr Biol Cell 10: 2583–2594, 1999.Google Scholar
  271. 271.
    Tang Z, Li B, Bharadwaj R, Zhu H, Ozkan E, Hakala K, Deisenhofer J, and Yu H. APC2 Cullin protein and APC11 RING protein comprise the minimal ubiquitin ligase module of the anaphase-promoting complex. Mol Biol Cell 12: 3839–3851, 2001.PubMedGoogle Scholar
  272. 272.
    Teo H, Veprintsev DB, and Williams RL. Structural insights into endosomal sorting complex required for transport (ESCRT-I) recognition of ubiquitinated proteins. J Biol Chem 279: 28689–28696, 2004.PubMedGoogle Scholar
  273. 273.
    Thompson BJ, Mathieu J, Sung HH, Loeser E, Rorth P, and Cohen SM. Tumor suppressor properties of the ESCRT-II complex component Vps25 in Drosophila. Dev Cell 9: 711–720, 2005.PubMedGoogle Scholar
  274. 274.
    Thrower JS, Hoffman L, Rechsteiner M, and Pickart CM. Recognition of the polyubiquitin proteolytic signal. EMBO J 19: 94–102, 2000.PubMedGoogle Scholar
  275. 275.
    Toni N, Buchs PA, Nikonenko I, Povilaitite P, Parisi L, and Muller D. Remodeling of synaptic membranes after induction of long-term potentiation. J Neurosci 21: 6245–6251, 2001.PubMedGoogle Scholar
  276. 276.
    Tsuriel S, Geva R, Zamorano P, Dresbach T, Boeckers T, Gundelfinger ED, Garner CC, and Ziv NE. Local sharing as a predominant determinant of synaptic matrix molecular dynamics. PLoS Biol 4: e271, 2006.PubMedGoogle Scholar
  277. 277.
    Tully T, Preat T, Boynton SC, and Del Vecchio M. Genetic dissection of consolidated memory in Drosophila. Cell 79: 35–47, 1994.PubMedGoogle Scholar
  278. 278.
    Tursun B, Schluter A, Peters MA, Viehweger B, Ostendorff HP, Soosairajah J, Drung A, Bossenz M, Johnsen SA, Schweizer M, Bernard O, and Bach I. The ubiquitin ligase Rnf6 regulates local LIM kinase 1 levels in axonal growth cones. Genes Dev 19: 2307–2319, 2005.PubMedGoogle Scholar
  279. 279.
    Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, Albanese A, Nussbaum R, Gonzalez-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks WP, Latchman DS, Harvey RJ, Dallapiccola B, Auburger G, and Wood NW. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science (New York) 304: 1158–1160, 2004.Google Scholar
  280. 280.
    van Roessel P, Elliott DA, Robinson IM, Prokop A, and Brand AH. Independent regulation of synaptic size and activity by the anaphase-promoting complex. Cell 119: 707–718, 2004.PubMedGoogle Scholar
  281. 281.
    van Woerden GM, Harris KD, Hojjati MR, Gustin RM, Qiu S, de Avila Freire R, Jiang YH, Elgersma Y, and Weeber EJ. Rescue of neurological deficits in a mouse model for Angelman syndrome by reduction of alphaCaMKII inhibitory phosphorylation. Nat Neurosci 10: 280–282, 2007.PubMedGoogle Scholar
  282. 282.
    Verma P, Chierzi S, Codd AM, Campbell DS, Meyer RL, Holt CE, and Fawcett JW. Axonal protein synthesis and degradation are necessary for efficient growth cone regeneration. J Neurosci 25: 331–342, 2005.PubMedGoogle Scholar
  283. 283.
    Verma R, Oania R, Graumann J, and Deshaies RJ. Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system. Cell 118: 99–110, 2004.PubMedGoogle Scholar
  284. 284.
    Vila M and Przedborski S. Genetic clues to the pathogenesis of Parkinson’s disease. Nat Med 10 Suppl: S58–62, 2004.PubMedGoogle Scholar
  285. 285.
    von Arnim AG. A hitchhiker’s guide to the proteasome. Sci STKE 2001: PE2, 2001.Google Scholar
  286. 286.
    Von Coelln R, Thomas B, Savitt JM, Lim KL, Sasaki M, Hess EJ, Dawson VL, and Dawson TM. Loss of locus coeruleus neurons and reduced startle in parkin null mice. Proc Nat Acad Sci USA 101: 10744–10749, 2004.Google Scholar
  287. 287.
    von Schwedler UK, Stuchell M, Muller B, Ward DM, Chung HY, Morita E, Wang HE, Davis T, He GP, Cimbora DM, Scott A, Krausslich HG, Kaplan J, Morham SG, and Sundquist WI. The protein network of HIV budding. Cell 114: 701–713, 2003.Google Scholar
  288. 288.
    Vu TH and Hoffman AR. Imprinting of the Angelman syndrome gene, UBE3A, is restricted to brain. Nat Genet 17: 12–13, 1997.PubMedGoogle Scholar
  289. 289.
    Walz J, Erdmann A, Kania M, Typke D, Koster AJ, and Baumeister W. 26S proteasome structure revealed by three-dimensional electron microscopy. J Struct Biol 121: 19–29, 1998.PubMedGoogle Scholar
  290. 290.
    Wan HI, DiAntonio A, Fetter RD, Bergstrom K, Strauss R, and Goodman CS. Highwire regulates synaptic growth in Drosophila. Neuron 26: 313–329, 2000.PubMedGoogle Scholar
  291. 291.
    Wang C, Lu R, Ouyang X, Ho MW, Chia W, Yu F, and Lim KL. Drosophila overexpressing parkin R275W mutant exhibits dopaminergic neuron degeneration and mitochondrial abnormalities. J Neurosci 27: 8563–8570, 2007.PubMedGoogle Scholar
  292. 292.
    Wang HR, Zhang Y, Ozdamar B, Ogunjimi AA, Alexandrova E, Thomsen GH, and Wrana JL. Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science (New York) 302: 1775–1779, 2003.Google Scholar
  293. 293.
    Weeber EJ, Jiang YH, Elgersma Y, Varga AW, Carrasquillo Y, Brown SE, Christian JM, Mirnikjoo B, Silva A, Beaudet AL, and Sweatt JD. Derangements of hippocampal calcium/ calmodulin-dependent protein kinase II in a mouse model for Angelman mental retardation syndrome. J Neurosci 23: 2634–2644, 2003.PubMedGoogle Scholar
  294. 294.
    Whitley P, Reaves BJ, Hashimoto M, Riley AM, Potter BV, and Holman GD. Identification of mammalian Vps24p as an effector of phosphatidylinositol 3,5-bisphosphatedependent endosome compartmentalization. J Biol Chem 278: 38786–38795, 2003.PubMedGoogle Scholar
  295. 295.
    Wilkinson CR, Ferrell K, Penney M, Wallace M, Dubiel W, and Gordon C. Analysis of a gene encoding Rpn10 of the fission yeast proteasome reveals that the polyubiquitinbinding site of this subunit is essential when Rpn12/Mts3 activity is compromised. J Bioll Chem 275: 15182–15192, 2000.Google Scholar
  296. 296.
    Willeumier K, Pulst SM, and Schweizer FE. Proteasome inhibition triggers activitydependent increase in the size of the recycling vesicle pool in cultured hippocampal neurons. J Neurosci 26: 11333–11341, 2006.PubMedGoogle Scholar
  297. 297.
    Williams CA, Beaudet AL, Clayton-Smith J, Knoll JH, Kyllerman M, Laan LA, Magenis RE, Moncla A, Schinzel AA, Summers JA, and Wagstaff J. Angelman syndrome 2005: updated consensus for diagnostic criteria. Am J Medical Genet 140: 413–418, 2006.Google Scholar
  298. 298.
    Williams RL and Urbe S. The emerging shape of the ESCRT machinery. Nat Rev 8: 355–368, 2007.Google Scholar
  299. 299.
    Wilson R, Goyal L, Ditzel M, Zachariou A, Baker DA, Agapite J, Steller H, and Meier P. The DIAP1 RING finger mediates ubiquitination of Dronc and is indispensable for regulating apoptosis. Nat Cell Biol 4: 445–450, 2002.PubMedGoogle Scholar
  300. 300.
    Wilson SM, Bhattacharyya B, Rachel RA, Coppola V, Tessarollo L, Householder DB, Fletcher CF, Miller RJ, Copeland NG, and Jenkins NA. Synaptic defects in ataxia mice result from a mutation in Usp14, encoding a ubiquitin-specific protease. Nat Genet 32: 420–425, 2002.PubMedGoogle Scholar
  301. 301.
    Winston JT, Strack P, Beer-Romero P, Chu CY, Elledge SJ, and Harper JW. The SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro. Genes Dev 13: 270–283, 1999.PubMedGoogle Scholar
  302. 302.
    Wojcik C and DeMartino GN. Intracellular localization of proteasomes. Int J Biochem Cell Biol 35: 579–589, 2003.PubMedGoogle Scholar
  303. 303.
    Wolf B, Seeger MA, and Chiba A. Commissureless endocytosis is correlated with initiation of neuromuscular synaptogenesis. Development 125: 3853–3863, 1998.PubMedGoogle Scholar
  304. 304.
    Wu C, Wairkar YP, Collins CA, and DiAntonio A. Highwire function at the Drosophila neuromuscular junction: spatial, structural, and temporal requirements. J Neurosci 25: 9557–9566, 2005.PubMedGoogle Scholar
  305. 305.
    Wyszynski M, Kim E, Dunah AW, Passafaro M, Valtschanoff JG, Serra-Pages C, Streuli M, Weinberg RJ, and Sheng M. Interaction between GRIP and liprin-alpha/SYD2 is required for AMPA receptor targeting. Neuron 34: 39–52, 2002.PubMedGoogle Scholar
  306. 306.
    Yang N, Higuchi O, Ohashi K, Nagata K, Wada A, Kangawa K, Nishida E, and Mizuno K. Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 393: 809–812, 1998.PubMedGoogle Scholar
  307. 307.
    Yang Y, Nishimura I, Imai Y, Takahashi R, and Lu B. Parkin suppresses dopaminergic neuron-selective neurotoxicity induced by Pael-R in Drosophila. Neuron 37: 911–924, 2003.PubMedGoogle Scholar
  308. 308.
    Yao I, Takagi H, Ageta H, Kahyo T, Sato S, Hatanaka K, Fukuda Y, Chiba T, Morone N, Yuasa S, Inokuchi K, Ohtsuka T, Macgregor GR, Tanaka K, and Setou M. SCRAPPER-Dependent Ubiquitination of Active Zone Protein RIM1 Regulates Synaptic Vesicle Release. Cell 130: 943–957, 2007.PubMedGoogle Scholar
  309. 309.
    Yost C, Torres M, Miller JR, Huang E, Kimelman D, and Moon RT. The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev 10: 1443–1454, 1996.PubMedGoogle Scholar
  310. 310.
    Young P, Deveraux Q, Beal RE, Pickart CM, and Rechsteiner M. Characterization of two polyubiquitin binding sites in the 26 S protease subunit 5a. J Biol Chem 273: 5461–5467, 1998.PubMedGoogle Scholar
  311. 311.
    Zamborlini A, Usami Y, Radoshitzky SR, Popova E, Palu G, and Gottlinger H. Release of autoinhibition converts ESCRT-III components into potent inhibitors of HIV-1 budding. Proc Nat Acad Sci USA 103: 19140–19145, 2006.PubMedGoogle Scholar
  312. 312.
    Zhai Q, Wang J, Kim A, Liu Q, Watts R, Hoopfer E, Mitchison T, Luo L, and He Z. Involvement of the ubiquitin-proteasome system in the early stages of wallerian degeneration. Neuron 39: 217–225, 2003.PubMedGoogle Scholar
  313. 313.
    Zhang Y, Gao J, Chung KK, Huang H, Dawson VL, and Dawson TM. Parkin functions as an E2-dependent ubiquitin- protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc Nat Acad Sci USA 97: 13354–13359, 2000.PubMedGoogle Scholar
  314. 314.
    Zhen M, Huang X, Bamber B, and Jin Y. Regulation of presynaptic terminal organization by C. elegans RPM-1, a putative guanine nucleotide exchanger with a RING-H2 finger domain. Neuron 26: 331–343, 2000.PubMedGoogle Scholar
  315. 315.
    Zhen M and Jin Y. The liprin protein SYD-2 regulates the differentiation of presynaptic termini in C. elegans. Nature 401: 371–375, 1999.PubMedGoogle Scholar
  316. 316.
    Zheng N, Schulman BA, Song L, Miller JJ, Jeffrey PD, Wang P, Chu C, Koepp DM, Elledge SJ, Pagano M, Conaway RC, Conaway JW, Harper JW, and Pavletich NP. Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature 416: 703–709, 2002.PubMedGoogle Scholar
  317. 317.
    Zoghbi HY. Postnatal neurodevelopmental disorders: meeting at the synapse? Science (New York) 302: 826–830, 2003.Google Scholar
  318. 318.
    Zwickl P, Ng D, Woo KM, Klenk HP, and Goldberg AL. An archaebacterial ATPase, homologous to ATPases in the eukaryotic 26 S proteasome, activates protein breakdown by 20 S proteasomes. J Biol Chem 274: 26008–26014, 1999.PubMedGoogle Scholar
  319. 319.
    Arevalo JC, Waite J, Rajagopal R, Beyna M, Chen ZY, Lee FS, and Chao MV. Cell survival through Trk neurotrophin receptors is differentially regulated by ubiquitination. Neuron 50: 549–559, 2006.PubMedGoogle Scholar
  320. 320.
    Choe EA, Liao L, Zhou JY, Cheng D, Duong DM, Jin P, Tsai LH, and Peng J. Neuronal morphogenesis is regulated by the interplay between cyclin-dependent kinase 5 and the ubiquitin ligase mind bomb 1. J Neurosci 27: 9503–9512, 2007.PubMedGoogle Scholar
  321. 321.
    Saigoh K, Wang YL, Suh JG, Yamanishi T, Sakai Y, Kiyosawa H, Harada T, Ichihara N, Wakana S, Kikuchi T, and Wada K. Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice. Nat Genet 23: 47–51, 1999.PubMedGoogle Scholar
  322. 322.
    Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S, Kawakami H, Nakamura S, Nishimura M, Akiguchi I, and et al. CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet 8: 221–228, 1994.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Thomas D. Helton
    • 1
  • Michael D. Ehlers
    • 1
  1. 1.Howard Hughes Medical Institute Department of NeurobiologyDuke University Medical CenterDurhamUSA

Personalised recommendations