Skip to main content

Abstract

Homeostatic synaptic plasticity mechanisms provide a means for neurons and circuitsto maintain stable function in the face of perturbations such as developmental or activitydependent changes in synapse number or strength. These forms of plasticity use negative feedback signaling to adjust synaptic properties to keep activity close to some internal set point value. Recent work suggests that there are likely multiple forms of synaptic homeostasis, mediated by distinct signaling pathways and with distinct expression mechanisms. Both excitatory and inhibitory synapses are subject to homeostatic regulation, and the form of plasticity present at a particular synapse likely depends on its function within a neuronal circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott LF and Nelson SB. Synaptic plasticity: taming the beast. Nat Neurosci 3: 1178–1183, 2000.

    Article  PubMed  CAS  Google Scholar 

  2. Abraham WC and Bear MF. Metaplasticity: the plasticity of synaptic plasticity. Trends In Neurosciences 19: 126–130, 1996.

    Article  PubMed  CAS  Google Scholar 

  3. Alder J, Thakker-Varia S, Bangasser DA, Kuroiwa M, Plummer MR, Shors TJ, and Black IB. Brain-derived neurotrophic factor-induced gene expression reveals novel actions of VGF in hippocampal synaptic plasticity. J Neurosci 23: 10800–10808, 2003.

    PubMed  CAS  Google Scholar 

  4. Bear MF. Mechanism for a sliding synaptic modification threshold. Neuron 15: 1–4,1995.

    Google Scholar 

  5. Beattie EC, Stellwagen D, Morishita W, Bresnahan JC, Ha BK, Von Zastrow M, Beattie MS, and Malenka RC. Control of synaptic strength by glial TNFalpha. Science 295: 2282–2285, 2002.

    Article  PubMed  CAS  Google Scholar 

  6. Berg DK and Hall ZW. Increased extrajunctional acetylcholine sensitivity produced by chronic acetylcholine sensitivity produced by chronic post-synaptic neuromuscular blockade. J Physiol 244: 659–676, 1975.

    PubMed  CAS  Google Scholar 

  7. Bienenstock EL, Cooper LN, and Munro PW. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 2: 32–48, 1982.

    PubMed  CAS  Google Scholar 

  8. Burrone J, O’Byrne M, and Murthy VN. Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons. Nature 420: 414–418, 2002.

    Article  PubMed  CAS  Google Scholar 

  9. Cannon WB. The Wisdom of the Body. New York: W.W. Norton Co., Inc, 1932.

    Google Scholar 

  10. Chagnac-Amitai Y and Connors BW. Horizontal spread of synchronized activity in neocortex and its control by GABA-mediated inhibition. J Neurophysiol 61: 747–758, 1989.

    PubMed  CAS  Google Scholar 

  11. Chowdhury S, Shepherd JD, Okuno H, Lyford G, Petralia RS, Plath N, Kuhl D, Huganir RL, and Worley PF. Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking. Neuron 52: 445–459, 2006.

    Article  PubMed  CAS  Google Scholar 

  12. Copi A, Jungling K, and Gottmann K. Activity – and BDNF-induced plasticity of miniature synaptic currents in ES cell-derived neurons integrated in a neocortical network. J Neurophysiol 94: 4538–4543, 2005.

    Article  PubMed  CAS  Google Scholar 

  13. Corner MA and Ramakers GJ. Spontaneous firing as an epigenetic factor in brain development – physiological consequences of chronic tetrodotoxin and picrotoxin exposure on cultured rat neocortex neurons. Brain Res Dev Brain Res 65: 57–64, 1992.

    Article  PubMed  CAS  Google Scholar 

  14. Davis GW. Homeostatic Control of Neural Activity: From Phenomenology to Molecular Design. Annu Rev Neurosci29: 307–323, 2006.

    Article  PubMed  CAS  Google Scholar 

  15. Davis GW and Bezprozvanny I. Maintaining the stability of neural function: a homeostatic hypothesis. Annu Rev Physiol 63: 847–869, 2001.

    Article  PubMed  CAS  Google Scholar 

  16. De Gois S, Schafer MK, Defamie N, Chen C, Ricci A, Weihe E, Varoqui H, and Erickson JD. Homeostatic scaling of vesicular glutamate and GABA transporter expression in rat neocortical circuits. J Neurosci 25: 7121–7133, 2005.

    Article  PubMed  Google Scholar 

  17. Desai NS, Cudmore RH, Nelson SB, and Turrigiano GG. Critical periods for experiencedependent synaptic scaling in visual cortex. Nat Neurosci 5: 783–789, 2002.

    PubMed  CAS  Google Scholar 

  18. Desai NS, Rutherford LC, and Turrigiano GG. BDNF regulates the intrinsic excitability of cortical neurons. Learn Mem 6: 284–291, 1999. Design. Annu Rev Neurosci 29: 307–323, 2006.

    CAS  Google Scholar 

  19. Erickson JD, De Gois S, Varoqui H, Schafer MK, and Weihe E. Activity-dependent regulation of vesicular glutamate and GABA transporters: a means to scale quantal size. Neurochem Int 48: 643–649, 2006.

    PubMed  CAS  Google Scholar 

  20. Frank CA, Kennedy MJ, Goold CP, Marek KW, and Davis GW. Mechanisms underlying the rapid induction and sustained expression of synaptic homeostasis. Neuron 52: 663–677, 2006.

    Article  PubMed  CAS  Google Scholar 

  21. Gaiarsa JL, Caillard O, and Ben-Ari Y. Long-term plasticity at GABAergic and glycinergic synapses: mechanisms and functional significance. Trends Neurosci 25: 564–570, 2002.

    Article  PubMed  CAS  Google Scholar 

  22. Goel A and Lee HK. Persistence of experience-induced homeostatic synaptic plasticity through adulthood in superficial layers of mouse visual cortex. J Neurosci 27: 6692–6700, 2007.

    Article  PubMed  CAS  Google Scholar 

  23. Gonzalez-Islas C and Wenner P. Spontaneous network activity in the embryonic spinal cord regulates AMPAergic and GABAergic synaptic strength. Neuron 49: 563–575, 2006.

    Article  PubMed  CAS  Google Scholar 

  24. Guzowski JF, McNaughton BL, Barnes CA, and Worley PF. Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nat Neurosci 2: 1120–1124, 1999.

    Article  PubMed  CAS  Google Scholar 

  25. Hartman KN, Pal SK, Burrone J, and Murthy VN. Activity-dependent regulation of inhibitory synaptic transmission in hippocampal neurons. Nat Neurosci 9: 642–649, 2006.

    Article  PubMed  CAS  Google Scholar 

  26. Hendry SH and Jones EG. Reduction in number of immunostained GABAergic neurones in deprived-eye dominance columns of monkey area 17. Nature 320: 750–753, 1986.

    Article  PubMed  CAS  Google Scholar 

  27. Hensch TK, Fagiolini M, Mataga N, Stryker MP, Baekkeskov S, and Kash SF. Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science 282: 1504–1508, 1998.

    Article  PubMed  CAS  Google Scholar 

  28. Hohnke CD, Oray S, and Sur M. Activity-dependent patterning of retinogeniculate axons proceeds with a constant contribution from AMPA and NMDA receptors. J Neurosci 20: 8051–8060, 2000.

    PubMed  CAS  Google Scholar 

  29. Huang ZJ, Kirkwood A, Pizzorusso T, Porciatti V, Morales B, Bear MF, Maffei L, and Tonegawa S. BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98: 739–755, 1999.

    Article  PubMed  CAS  Google Scholar 

  30. Isaac JT, Ashby M, and McBain CJ. The Role of the GluR2 Subunit in AMPA Receptor Function and Synaptic Plasticity. Neuron 54: 859–871, 2007.

    Article  PubMed  CAS  Google Scholar 

  31. Jankowsky JL and Patterson PH. Cytokine and growth factor involvement in long-term potentiation. Mol Cell Neurosci 14: 273–286, 1999.

    CAS  Google Scholar 

  32. Ju W, Morishita W, Tsui J, Gaietta G, Deerinck TJ, Adams SR, Garner CC, Tsien RY, Ellisman MH, and Malenka RC. Activity-dependent regulation of dendritic synthesis and trafficking of AMPA receptors. Nat Neurosci, 2004.

    Google Scholar 

  33. Kilman V, van Rossum MC, and Turrigiano GG. Activity deprivation reduces miniature IPSC amplitude by decreasing the number of postsynaptic GABA(A) receptors clustered at neocortical synapses. J Neurosci 22: 1328–1337, 2002.

    PubMed  CAS  Google Scholar 

  34. Kirkwood A and Bear MF. Elementary forms of synaptic plasticity in the visual cortex. Biol Res 28: 73–80, 1995.

    PubMed  CAS  Google Scholar 

  35. Kirkwood A and Bear MF. Hebbian synapses in visual cortex. J Neurosci 14: 1634–1645, 1994.

    PubMed  CAS  Google Scholar 

  36. Kirov SA, Sorra KE, and Harris KM. Slices have more synapses than perfusion-fixed hippocampus from both young and mature rats. J Neurosci 19: 2876–2886, 1999.

    PubMed  CAS  Google Scholar 

  37. Kotak VC, Fujisawa S, Lee FA, Karthikeyan O, Aoki C, and Sanes DH. Hearing loss raises excitability in the auditory cortex. J Neurosci 25: 3908–3918, 2005.

    Article  PubMed  CAS  Google Scholar 

  38. Kriegstein AR. Synaptic responses of cortical pyramidal neurons to light stimulation in the isolated turtle visual system. J Neurosci 7: 2488–2492, 1987.

    PubMed  CAS  Google Scholar 

  39. Lamsa K, Heeroma JH, and Kullmann DM. Hebbian LTP in feed-forward inhibitory interneurons and the temporal fidelity of input discrimination. Nat Neurosci 8: 916–924, 2005.

    PubMed  CAS  Google Scholar 

  40. Lamsa KP, Heeroma JH, Somogyi P, Rusakov DA, and Kullmann DM. Anti-Hebbian long-term potentiation in the hippocampal feedback inhibitory circuit. Science 315: 1262–1266, 2007.

    Article  PubMed  CAS  Google Scholar 

  41. Leslie KR, Nelson SB, and Turrigiano GG. Postsynaptic depolarization scales quantal amplitude in cortical pyramidal neurons. J Neurosci 21: RC170, 2001.

    Google Scholar 

  42. Lissin DV, Gomperts SN, Carroll RC, Christine CW, Kalman D, Kitamura M, Hardy S, Nicoll RA, Malenka RC, and von Zastrow M. Activity differentially regulates the surface expression of synaptic AMPA and NMDA glutamate receptors. Proc Natl Acad Sci USA 95: 7097–7102, 1998.

    Article  PubMed  CAS  Google Scholar 

  43. Lomo T and Westgaard RH. Further studies on the control of ACh sensitivity by muscle activity in the rat. J Physiol 252: 603–626, 1975.

    PubMed  CAS  Google Scholar 

  44. Maffei A, Nataraj K, Nelson SB, and Turrigiano GG. Potentiation of cortical inhibition by visual deprivation. Nature 443: 81–84, 2006.

    Article  PubMed  CAS  Google Scholar 

  45. Maffei A, Nelson SB, and Turrigiano GG. Selective reconfiguration of layer 4 visual cortical circuitry by visual deprivation. Nat Neurosci 7: 1353–1359, 2004.

    Article  PubMed  CAS  Google Scholar 

  46. Malenka RC and Bear MF. LTP and LTD: an embarrassment of riches. Neuron 44: 5–21, 2004.

    Article  PubMed  CAS  Google Scholar 

  47. Malenka RC and Nicoll RA. Long-term potentiation – a decade of progress? Science 285: 1870–1874, 1999.

    Google Scholar 

  48. Malinow R and Malenka RC. AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 25: 103–126, 2002.

    Article  PubMed  CAS  Google Scholar 

  49. Marder E and Goaillard JM. Variability, compensation and homeostasis in neuron and network function. Nat Rev Neurosci 7: 563–574, 2006.

    Article  PubMed  CAS  Google Scholar 

  50. Marder E and Prinz AA. Current compensation in neuronal homeostasis. Neuron 37: 2–4, 2003.

    Article  PubMed  CAS  Google Scholar 

  51. Marder E and Prinz AA. Modeling stability in neuron and network function: the role of activity in homeostasis. Bioessays 24: 1145–1154, 2002.

    Article  PubMed  CAS  Google Scholar 

  52. Marty S, Berninger B, Carroll P, and Thoenen H. GABAergic stimulation regulates the phenotype of hippocampal interneurons through the regulation of brain-derived neurotrophic factor. Neuron 16: 565–570, 1996.

    Article  PubMed  CAS  Google Scholar 

  53. Marty S, Berzaghi Mda P, and Berninger B. Neurotrophins and activity-dependent plasticity of cortical interneurons. Trends Neurosci 20: 198–202, 1997.

    Article  PubMed  CAS  Google Scholar 

  54. McLean Bolton M, Pittman AJ, and Lo DC. Brain-derived neurotrophic factor differentially regulates excitatory and inhibitory synaptic transmission in hippocampal cultures. J Neurosci 20: 3221–3232, 2000.

    Google Scholar 

  55. Miller KD. Synaptic economics: competition and cooperation in synaptic plasticity. Neuron 17: 371–374, 1996.

    Article  PubMed  CAS  Google Scholar 

  56. Miller KD and MacKay DJC. The role of constraints in Hebbian learning. Neural Comput 6: 100–124, 1994.

    Article  Google Scholar 

  57. Mu Y, Ostuka T, Horton AC, Scott DB, and Ehlers MD. Activity-dependent mRNA splicing controls ER export and synaptic delivery of NMDA receptors. Neuron 40: 581–594, 2003.

    Article  PubMed  CAS  Google Scholar 

  58. Murthy VN, Schikorski T, Stevens CF, and Zhu Y. Inactivity produces increases in neurotransmitter release and synapse size. Neuron 32: 673–682, 2001.

    Article  PubMed  CAS  Google Scholar 

  59. Myme CI, Sugino K, Turrigiano GG, and Nelson SB. The NMDA-to-AMPA ratio at synapses onto layer 2/3 pyramidal neurons is conserved across prefrontal and visual cortices. J Neurophysiol 90: 771–779, 2003.

    Article  PubMed  CAS  Google Scholar 

  60. Nelson SB. Temporal interactions in the cat visual system. III. Pharmacological studies of cortical suppression suggest a presynaptic mechanism. J Neurosci 11: 369–380, 1991.

    PubMed  CAS  Google Scholar 

  61. Nugent FS, Penick EC, and Kauer JA. Opioids block long-term potentiation of inhibitory synapses. Nature 446: 1086–1090, 2007.

    Article  PubMed  CAS  Google Scholar 

  62. O’Brien RJ, Kamboj S, Ehlers MD, Rosen KR, Fischbach GD, and Huganir RL. Activity- dependent modulation of synaptic AMPA receptor accumulation. Neuron 21: 1067–1078, 1998.

    Article  PubMed  CAS  Google Scholar 

  63. Paradis S, Sweeney ST, and Davis GW. Homeostatic control of presynaptic release is triggered by postsynaptic membrane depolarization. Neuron 30: 737–749, 2001.

    Article  PubMed  CAS  Google Scholar 

  64. Perez-Otano I and Ehlers MD. Homeostatic plasticity and NMDA receptor trafficking. Trends Neurosci 28: 229–238, 2005.

    Article  PubMed  CAS  Google Scholar 

  65. Sekhar AK, Shouval HZ, and Bear MF. Visual experience and deprivation bidirectionally modify the composition and function of NMDA receptors in visual cortex. Neuron 29: 157–169, 2001.

    Article  PubMed  CAS  Google Scholar 

  66. Quinlan EM, Philpot BD, Huganir RL, and Bear MF. Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo. Nat Neurosci 2: 352–357, 1999.

    Article  PubMed  CAS  Google Scholar 

  67. Ramakers GJ, Corner MA, and Habets AM. Development in the absence of spontaneous bioelectric activity results in increased stereotyped burst firing in cultures of dissociated cerebral cortex. Exp Brain Res 79: 157–166, 1990.

    Article  PubMed  CAS  Google Scholar 

  68. Rao A and Craig AM. Activity regulates the synaptic localization of the NMDA receptor in hippocampal neurons. Neuron 19: 801–812, 1997.

    Article  PubMed  CAS  Google Scholar 

  69. Rao VR, Pintchovski SA, Chin J, Peebles CL, Mitra S, and Finkbeiner S. AMPA receptors regulate transcription of the plasticity-related immediate-early gene Arc. Nat Neurosci 9: 887–895, 2006.

    Article  PubMed  CAS  Google Scholar 

  70. Rial Verde EM, Lee-Osbourne J, Worley PF, Malinow R, and Cline HT. Increased expression of the immediate-early gene arc/arg3.1 reduces AMPA receptor-mediated synaptic transmission. Neuron 52: 461–474, 2006.

    Article  PubMed  Google Scholar 

  71. Rich MM and Wenner P. Sensing and expressing homeostatic synaptic plasticity. Trends Neurosci 30: 119–125, 2007.

    Article  PubMed  CAS  Google Scholar 

  72. Rosen KM, Moghekar A, and O’Brien RJ. Activity dependent localization of synaptic NMDA receptors in spinal neurons. Mol Cell Neurosci 34: 578–591, 2007.

    Article  PubMed  CAS  Google Scholar 

  73. Rutherford LC, DeWan A, Lauer HM, and Turrigiano GG. Brain-derived neurotrophic factor mediates the activity-dependent regulation of inhibition in neocortical cultures. J Neurosci 17: 4527–4535, 1997.

    PubMed  CAS  Google Scholar 

  74. Rutherford LC, Nelson SB, and Turrigiano GG. BDNF has opposite effects on the quantal amplitude of pyramidal neuron and interneuron excitatory synapses. Neuron 21: 521–530, 1998.

    Article  PubMed  CAS  Google Scholar 

  75. Shepherd JD, Rumbaugh G, Wu J, Chowdhury S, Plath N, Kuhl D, Huganir RL, and Worley PF. Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors. Neuron 52: 475–484, 2006.

    Article  PubMed  CAS  Google Scholar 

  76. Stacy RC, Demas J, Burgess RW, Sanes JR, and Wong RO. Disruption and recovery of patterned retinal activity in the absence of acetylcholine. J Neurosci 25: 9347–9357, 2005.

    Article  PubMed  CAS  Google Scholar 

  77. Stellwagen D and Malenka RC. Synaptic scaling mediated by glial TNF-alpha. Nature 440: 1054–1059, 2006.

    Article  PubMed  CAS  Google Scholar 

  78. Sutton MA, Ito HT, Cressy P, Kempf C, Woo JC, and Schuman EM. Miniature neurotransmission stabilizes synaptic function via tonic suppression of local dendritic protein synthesis. Cell 125: 785–799, 2006.

    Article  PubMed  CAS  Google Scholar 

  79. Swanwick CC, Murthy NR, and Kapur J. Activity-dependent scaling of GABAergic synapse strength is regulated by brain-derived neurotrophic factor. Mol Cell Neurosci 31: 481–492, 2006.

    Article  PubMed  CAS  Google Scholar 

  80. Thiagarajan TC, Lindskog M, Malgaroli A, and Tsien RW. LTP and adaptation to inactivity: overlapping mechanisms and implications for metaplasticity. Neuropharmacology 52: 156–175, 2007.

    Article  PubMed  CAS  Google Scholar 

  81. Thiagarajan TC, Lindskog M, and Tsien RW. Adaptation to synaptic inactivity in hippocampal neurons. Neuron 47: 725–737, 2005.

    Article  PubMed  CAS  Google Scholar 

  82. Thiagarajan TC, Piedras-Renteria ES, and Tsien RW. alpha- and betaCaMKII. Inverse regulation by neuronal activity and opposing effects on synaptic strength. Neuron 36: 1103–1114, 2002.

    Article  PubMed  CAS  Google Scholar 

  83. Trasande CA and Ramirez JM. Activity deprivation leads to seizures in hippocampal slice cultures: is epilepsy the consequence of homeostatic plasticity? J Clin Neurophysiol 24: 154–164, 2007.

    Article  PubMed  Google Scholar 

  84. Turrigiano GG. Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends Neurosci 22: 221–227, 1999.

    Article  PubMed  CAS  Google Scholar 

  85. Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, and Nelson SB. Activitydependent scaling of quantal amplitude in neocortical neurons. Nature 391: 892–896, 1998.

    Article  PubMed  CAS  Google Scholar 

  86. Turrigiano GG and Nelson SB. Hebb and homeostasis in neuronal plasticity. Curr Opin Neurobiol 10: 358–364, 2000.

    Article  PubMed  CAS  Google Scholar 

  87. Turrigiano GG and Nelson SB. Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci 5: 97–107, 2004.

    Article  PubMed  CAS  Google Scholar 

  88. Tzingounis AV and Nicoll RA. Arc/Arg3.1: linking gene expression to synaptic plasticity and memory. Neuron 52: 403–407, 2006.

    Article  PubMed  CAS  Google Scholar 

  89. Umemiya M, Senda M, and Murphy TH. Behaviour of NMDA and AMPA receptormediated miniature EPSCs at rat cortical neuron synapses identified by calcium imaging. J Physiol 521: 113–122, 1999.

    Article  PubMed  CAS  Google Scholar 

  90. Vazdarjanova A, McNaughton BL, Barnes CA, Worley PF, and Guzowski JF. Experience- dependent coincident expression of the effector immediate-early genes arc and Homer 1a in hippocampal and neocortical neuronal networks. J Neurosci 22: 10067–10071, 2002.

    PubMed  CAS  Google Scholar 

  91. Wallace W and Bear MF. A morphological correlate of synaptic scaling in visual cortex. J Neurosci 24: 6928–6938, 2004.

    Article  PubMed  CAS  Google Scholar 

  92. Wang S, Jia Z, Roder J, and Murphy TH. AMPA receptor-mediated miniature synaptic calcium transients in GluR2 null mice. J Neurophysiol 88: 29–40, 2002.

    PubMed  CAS  Google Scholar 

  93. Watt AJ,Sjostrom PJ, Hausser M, Nelson SB, and Turrigiano GG. A proportional but slower NMDA potentiation follows AMPA potentiation in LTP. Nat Neurosci, 2004.

    Google Scholar 

  94. Watt AJ, van Rossum MC, MacLeod KM, Nelson SB, and Turrigiano GG. Activity coregulates quantal AMPA and NMDA currents at neocortical synapses. Neuron 26: 659–670, 2000.

    Article  PubMed  CAS  Google Scholar 

  95. Wibrand K, Messaoudi E, Havik B, Steenslid V, Lovlie R, Steen VM, and Bramham CR. Identification of genes co-upregulated with Arc during BDNF-induced long-term potentiation in adult rat dentate gyrus in vivo. Eur J Neurosci 23: 1501–1511, 2006.

    Article  PubMed  Google Scholar 

  96. Wierenga CJ, Ibata K, and Turrigiano GG. Postsynaptic expression of homeostatic plasticity at neocortical synapses. J Neurosci 25: 2895–2905, 2005.

    Article  PubMed  CAS  Google Scholar 

  97. Wierenga CJ, Walsh MF, and Turrigiano GG. Temporal Regulation of the Expression Locus of Homeostatic Plasticity. J Neurophysiol, 2006.

    Google Scholar 

  98. Zhang W and D.J. L. The other side of the engram: experience-driven changes in neuronal intrinsic excitability. Nat Rev Neurosci 4: 885–900, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Turrigiano, G. (2008). Homeostatic Synaptic Plasticity. In: Hell, J.W., Ehlers, M.D. (eds) Structural And Functional Organization Of The Synapse. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-77232-5_18

Download citation

Publish with us

Policies and ethics