Surface Trafficking of Membrane Proteins at Excitatory and Inhibitory Synapses

  • Daniel Choquet
  • Antoine Triller


AMPA Receptor Dendritic Spine Fluorescence Correlation Spectroscopy Glycine Receptor Inhibitory Synapse 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adesnik H, Nicoll RA, and England PM. Photoinactivation of native AMPA receptors reveals their real-time trafficking. Neuron 48: 977–985, 2005.PubMedGoogle Scholar
  2. 2.
    Ashby MC, De La Rue SA, Ralph GS, Uney J, Collingridge GL, and Henley JM. Removal of AMPA receptors (AMPARs) from synapses is preceded by transient endocytosis of extrasynaptic AMPARs. J Neurosci 24: 5172–5176, 2004.PubMedGoogle Scholar
  3. 3.
    Ashby MC, Maier SR, Nishimune A, and Henley JM. Lateral diffusion drives constitutive exchange of AMPA receptors at dendritic spines and is regulated by spine morphology. J Neurosci 26: 7046–7055, 2006.PubMedGoogle Scholar
  4. 4.
    Axelrod D, Koppel DE, Schlessinger J, Elson E, and Webb WW. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J 16: 1055–1069, 1976.PubMedGoogle Scholar
  5. 5.
    Axelrod D, Ravdin P, Koppel DE, Schlessinger J, Webb WW, Elson EL, and Podleski TR. Lateral motion of fluorescently labeled acetylcholine receptors in membranes of developing muscle fibers. Proc Natl Acad Sci USA 73: 4594–4598, 1976.PubMedGoogle Scholar
  6. 6.
    Bacia K and Schwille P. A dynamic view of cellular processes by in vivo fluorescence auto- and cross-correlation spectroscopy. Methods 29: 74–85, 2003.PubMedGoogle Scholar
  7. 7.
    Bannai H, Levi S, Schweizer C, Dahan M, and Triller A. Imaging the lateral diffusion of membrane molecules with quantum dots. Nat Protoc 1: 2628–2634, 2006.PubMedGoogle Scholar
  8. 8.
    Bats C, Groc L, and Choquet D. The interaction between Stargazin and PSD-95 regulates AMPA receptor surface trafficking. Neuron 53: 719–734, 2007.PubMedGoogle Scholar
  9. 9.
    Baude A, Nusser Z, Roberts JDB, Mulvihill E, McIhinney RAJ, and Somogyi P. The metabotropic glutamate receptors (mGluR1$α )$ is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunoglod reaction. Neuron 11: 771–787, 1993.PubMedGoogle Scholar
  10. 10.
    Bawendi MG, Wilson WL, Rothberg L, Carroll PJ, Jedju TM, Steigerwald ML, and Brus LE. Electronic structure and photoexcited-carrier dynamics in nanometer-size CdSe clusters. Phys Rev Lett 65: 1623–1626, 1990.PubMedGoogle Scholar
  11. 11.
    Bear MF and Malenka RC. Synaptic plasticity: LTP and LTD. Curr Opin Neurobiol 4: 389–399, 1994.PubMedGoogle Scholar
  12. 12.
    Beattie EC, Carroll RC, Yu X, Morishita W, Yasuda H, von Zastrow M, and Malenka RC. Regulation of AMPA receptor endocytosis by a signaling mechanism shared with LTD. Nat Neurosci 3: 1291–1300, 2000.PubMedGoogle Scholar
  13. 13.
    Berciaud S, Cognet L, Blab GA, and Lounis B. Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals. Phys Rev Lett 93: 257402, 2004.PubMedGoogle Scholar
  14. 14.
    Beretta F, Sala C, Saglietti L, Hirling H, Sheng M, and Passafaro M. NSF interaction is important for direct insertion of GluR2 at synaptic sites. Mol Cell Neurosci 28: 650–660, 2005.PubMedGoogle Scholar
  15. 15.
    Berne BJ and Pecora R. Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics. New York: Dover, 2000.Google Scholar
  16. 16.
    Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, and Hess HF. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313: 1642–1645, 2006.PubMedGoogle Scholar
  17. 17.
    Blanpied TA, Scott DB, and Ehlers MD. Dynamics and regulation of clathrin coats at specialized endocytic zones of dendrites and spines. Neuron 36: 435–449, 2002.PubMedGoogle Scholar
  18. 18.
    Bloodgood BL and Sabatini BL. Neuronal activity regulates diffusion across the neck of dendritic spines. Science 310: 866–869, 2005.PubMedGoogle Scholar
  19. 19.
    Bogdanov Y, Michels G, Armstrong-Gold C, Haydon PG, Lindstrom J, Pangalos M, and Moss SJ. Synaptic GABAA receptors are directly recruited from their extrasynaptic counterparts. EMBO J 25: 4381–4389, 2006.PubMedGoogle Scholar
  20. 20.
    Borgdorff AJ and Choquet D. Regulation of AMPA receptor lateral movements. Nature 417: 649–653, 2002.PubMedGoogle Scholar
  21. 21.
    Bouzigues C, Levi S, Triller A, and Dahan M. Single quantum dot tracking of membrane receptors. Methods Mol Biol 374: 81–92, 2007.PubMedGoogle Scholar
  22. 22.
    Bouzigues C, Morel M, Triller A, and Dahan M. Asymmetric redistribution of GABA receptors during GABA gradient sensing by nerve growth cones analyzed by single quantum dot imaging. Proc Natl Acad Sci USA, 104: 11251–11256, 2007.PubMedGoogle Scholar
  23. 23.
    Boyer D, Tamarat P, Maali A, Lounis B, and Orrit M. Photothermal imaging of nanometer- sized metal particles among scatterers. Science 297: 1160–1163, 2002.PubMedGoogle Scholar
  24. 24.
    Bruchez M, Jr., Moronne M, Gin P, Weiss S, and Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science 281: 2013–2016, 1998.PubMedGoogle Scholar
  25. 25.
    Cai D, Verhey KJ, and Meyhofer E. Tracking single Kinesin molecules in the cytoplasm of mammalian cells. Biophys J 92: 4137–4144, 2007.PubMedGoogle Scholar
  26. 26.
    Cambi A, Lidke DS, Arndt-Jovin DJ, Figdor CG, and Jovin TM. Ligand-conjugated quantum dots monitor antigen uptake and processing by dendritic cells. Nano Lett 7: 970–977, 2007.PubMedGoogle Scholar
  27. 27.
    Carroll RC, Beattie EC, Xia H, Luscher C, Altschuler Y, Nicoll RA, Malenka RC, and von Zastrow M. Dynamin-dependent endocytosis of ionotropic glutamate receptors. Proc Natl Acad Sci USA 96: 14112–14117, 1999.PubMedGoogle Scholar
  28. 28.
    Carroll RC, Lissin DV, von Zastrow M, Nicoll RA, and Malenka RC. Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures. Nat Neurosci 2: 454–460, 1999.PubMedGoogle Scholar
  29. 29.
    Chambers JJ, Gouda H, Young DM, Kuntz ID, and England PM. Photochemically knocking out glutamate receptors in vivo. J Am Chem Soc 126: 13886–13887, 2004.PubMedGoogle Scholar
  30. 30.
    Charrier C, Ehrensperger MV, Dahan M, Levi S, and Triller A. Cytoskeleton regulation of glycine receptor number at synapses and diffusion in the plasma membrane. J Neurosci 26: 8502–8511, 2006.PubMedGoogle Scholar
  31. 31.
    Choquet D and Triller A. The role of receptor diffusion in the organization of the postsynaptic membrane. Nat Rev Neurosci 4: 251–265, 2003.PubMedGoogle Scholar
  32. 32.
    Cognet L, Coussen F, Choquet D, and Lounis B. Fluorescence microscopy of single autofluorescent proteins for cellular biology. C R Phys 3: 645–656, 2002.Google Scholar
  33. 33.
    Cognet L, Lounis B, and Choquet D. Tracking receptors by optical imaging of single molecules. In: Imaging in Neuroscience and Development: A Laboratory Manual (Yuste R and Konnerth A ed.). Cold Spring Harbor, NY: Cold Spring Harbor Lab Press, 2005, p. 521.Google Scholar
  34. 34.
    Cognet L, Tardin C, Boyer D, Choquet D, Tamarat P, and Lounis B. Single metallic nanoparticle imaging for protein detection in cells. Proc Natl Acad Sci USA 100: 11350– 11355, 2003.PubMedGoogle Scholar
  35. 35.
    Collingridge GL, Isaac JT, and Wang YT. Receptor trafficking and synaptic plasticity. Nat Rev Neurosci 5: 952–962, 2004.PubMedGoogle Scholar
  36. 36.
    Cooney JR, Hurlburt JL, Selig DK, Harris KM, and Fiala JC. Endosomal compartments serve multiple hippocampal dendritic spines from a widespread rather than a local store of recycling membrane. J Neurosci 22: 2215–2224, 2002.PubMedGoogle Scholar
  37. 37.
    Cottrell JR, Borok E, Horvath TL, and Nedivi E. CPG2: a brain- and synapse-specific protein that regulates the endocytosis of glutamate receptors. Neuron 44: 677–690, 2004.PubMedGoogle Scholar
  38. 38.
    Courty S, Luccardini C, Bellaiche Y, Cappello G, and Dahan M. Tracking individual kinesin motors in living cells using single quantum-dot imaging. Nano Lett 6: 1491–1495, 2006.PubMedGoogle Scholar
  39. 39.
    Dahan M, Levi S, Luccardini C, Rostaing P, Riveau B, and Triller A. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302: 442–445, 2003.PubMedGoogle Scholar
  40. 40.
    Daumas F, Destainville N, Millot C, Lopez A, Dean D, and Salomé L. Confined diffusion without fences of a G protein coupled receptor as revealed by single particle tracking. Biophys J 84, 2003. quantum dot imaging. Proc Natl Acad Sci USA, 104: 11251–11256, 2007.Google Scholar
  41. 41.
    Delehanty JB, Medintz IL, Pons T, Brunel FM, Dawson PE, and Mattoussi H. Selfassembled quantum dot-peptide bioconjugates for selective intracellular delivery. Bioconjug Chem 17: 920–927, 2006.PubMedGoogle Scholar
  42. 42.
    Derkach VA, Oh MC, Guire ES, and Soderling TR. Regulatory mechanisms of AMPA receptors in synaptic plasticity. Nat Rev Neurosci 8: 101–113, 2007.PubMedGoogle Scholar
  43. 43.
    Dietrich C, Yang B, Fujiwara T, Kusumi A, and Jacobson K. Relationship of lipid rafts to transient confinement zones detected by single particle tracking. Biophys J 82: 274–284, 2002.PubMedGoogle Scholar
  44. 44.
    Donnert G, Eggeling C, and Hell SW. Major signal increase in fluorescence microscopy through dark-state relaxation. Nat Methods 4: 81–86, 2007.PubMedGoogle Scholar
  45. 45.
    Eggeling C, Widengren J, Brand L, Schaffer J, Felekyan S, and Seidel CA. Analysis of photobleaching in single-molecule multicolor excitation and Forster resonance energy transfer measurements. J Phys Chem A Mol Spectrosc Kinet Environ Gen Theory 110: 2979–2995, 2006.PubMedGoogle Scholar
  46. 46.
    Ehlers MD. Reinsertion or degradation of AMPA receptors determined by activitydependent endocytic sorting. Neuron 28: 511–525, 2000.PubMedGoogle Scholar
  47. 47.
    Ehlers MD, Heine M, Groc L, Lee MC, and Choquet D. Diffusional trapping of GluR1 AMPA receptors by input-specific synaptic activity. Neuron 54: 447–460, 2007.PubMedGoogle Scholar
  48. 48.
    Ehrensperger MV, Hanus C, Vannier C, Triller A, and Dahan M. Multiple association states between glycine receptors and gephyrin identified by SPT analysis. Biophys J 92: 3706–3718, 2007.PubMedGoogle Scholar
  49. 49.
    Fujiwara T, Ritchie K, Murakoshi H, Jacobson K, and Kusumi A. Phospholipids undergo hop diffusion in compartmentalized cell membrane. J Cell Biol 157: 1071–1081, 2002.PubMedGoogle Scholar
  50. 50.
    Fusi S, Drew PJ, and Abbott LF. Cascade models of synaptically stored memories. Neuron 45: 599–611, 2005.PubMedGoogle Scholar
  51. 51.
    Geerts H, De Brabander M, Nuydens R, Geuens S, Moeremans M, De Mey J, and Hollenbeck P. Nanovid tracking: a new automatic method for the study of mobility in living cells based on colloidal gold and video microscopy. Biophys J 52: 775–782, 1987.PubMedCrossRefGoogle Scholar
  52. 52.
    Gerges NZ, Backos DS, Rupasinghe CN, Spaller MR, and Esteban JA. Dual role of the exocyst in AMPA receptor targeting and insertion into the postsynaptic membrane. EMBO J 25: 1623–1634, 2006.PubMedGoogle Scholar
  53. 53.
    Gray NW, Weimer RM, Bureau I, and Svoboda K. Rapid redistribution of synaptic PSD- 95 in the neocortex in vivo. PLoS Biol 4: e370, 2006.PubMedGoogle Scholar
  54. 54.
    Groc L and Choquet D. AMPA and NMDA glutamate receptor trafficking: multiple roads for reaching and leaving the synapse. Cell Tissue Res 326: 423–438, 2006.PubMedGoogle Scholar
  55. 55.
    Groc L, Gustafsson B, and Hanse E. AMPA signalling in nascent glutamatergic synapses: there and not there! Trends Neurosci 29: 132–139, 2006.PubMedGoogle Scholar
  56. 56.
    Groc L, Heine M, Cognet L, Brickley K, Stephenson FA, Lounis B, and Choquet D. Differential activity-dependent regulation of the lateral mobilities of AMPA and NMDA receptors. Nat Neurosci 7: 695–696, 2004.PubMedGoogle Scholar
  57. 57.
    Groc L, Heine M, Cousins SL, Stephenson FA, Lounis B, Cognet L, and Choquet D. NMDA receptor surface mobility depends on NR2A-2B subunits. Proc Natl Acad Sci USA 103: 18769–18774, 2006.PubMedGoogle Scholar
  58. 58.
    Han Y, Alsayed AM, Nobili M, Zhang J, Lubensky TC, and Yodh AG. Brownian motion of an ellipsoid. Science 314: 626–630, 2006.PubMedGoogle Scholar
  59. 59.
    Hanus C, Ehrensperger MV, and Triller A. Activity-dependent movements of postsynaptic scaffolds at inhibitory synapses. J Neurosci 26: 4586–4595, 2006.PubMedGoogle Scholar
  60. 60.
    Hanus C, Vannier C, and Triller A. Intracellular association of glycine receptor with gephyrin increases its plasma membrane accumulation rate. J Neurosci 24: 1119–1128, 2004.PubMedGoogle Scholar
  61. 61.
    Hayashi Y, Shi SH, Esteban JA, Piccini A, Poncer JC, and Malinow R. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287: 2262–2267, 2000.PubMedGoogle Scholar
  62. 62.
    Higgins JS and Benoit HC. Polymers and Neutron Scattering. Oxford: Oxford University Press, 1997.Google Scholar
  63. 63.
    Holcman D and Triller A. Modeling synaptic dynamics driven by receptor lateral diffusion. Biophys J 91: 2405–2415, 2006.PubMedGoogle Scholar
  64. 64.
    Howarth M, Takao K, Hayashi Y, and Ting AY. Targeting quantum dots to surface proteins in living cells with biotin ligase. Proc Natl Acad Sci USA 102: 7583–7588, 2005.PubMedGoogle Scholar
  65. 65.
    Husi H and Grant SG. Proteomics of the nervous system. Trends Neurosci 24: 259–266, 2001.PubMedGoogle Scholar
  66. 66.
    Jacquier V, Prummer M, Segura JM, Pick H, and Vogel H. Visualizing odorant receptor trafficking in living cells down to the single-molecule level. Proc Natl Acad Sci USA 103: 14325–14330, 2006.PubMedGoogle Scholar
  67. 67.
    Ju W, Morishita W, Tsui J, Gaietta G, Deerinck TJ, Adams SR, Garner CC, Tsien RY, Ellisman MH, and Malenka RC. Activity-dependent regulation of dendritic synthesis and trafficking of AMPA receptors. Nat Neurosci 7: 244–253, 2004.PubMedGoogle Scholar
  68. 68.
    Koda LY and Partlow LM. Membrane marker movement on sympathetic axons in tissue culture. J Neurobiol 7: 157–172, 1976.PubMedGoogle Scholar
  69. 69.
    Kopec CD, Li B, Wei W, Boehm J, and Malinow R. Glutamate receptor exocytosis and spine enlargement during chemically induced long-term potentiation. J Neurosci 26: 2000–2009, 2006.PubMedGoogle Scholar
  70. 70.
    Kusumi A, Nakada C, Ritchie K, Murase K, Suzuki K, Murakoshi H, Kasai RS, Kondo J, and Fujiwara T. Paradigm shift of the plasma membrane concept from the twodimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu Rev Biophys Biomol Struct 34: 351–378, 2005.PubMedGoogle Scholar
  71. 71.
    Kusumi A, Sako Y, and Yamamoto M. Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys J 65: 2021–2040, 1993.PubMedGoogle Scholar
  72. 72.
    Lasne D, Blab GA, Berciaud S, Heine M, Groc L, Choquet D, Cognet L, and Lounis B. Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells. Biophys J 91: 4598–4604, 2006.PubMedGoogle Scholar
  73. 73.
    Lata S, Gavutis M, Tampe R, and Piehler J. Specific and stable fluorescence labeling of histidine-tagged proteins for dissecting multi-protein complex formation. J Am Chem Soc 128: 2365–2372, 2006.PubMedGoogle Scholar
  74. 74.
    Lau CG and Zukin RS. NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat Rev Neurosci 8: 413–426, 2007.PubMedGoogle Scholar
  75. 75.
    Lee SH, Simonetta A, and Sheng M. Subunit rules governing the sorting of internalized AMPA receptors in hippocampal neurons. Neuron 43: 221–236, 2004.PubMedGoogle Scholar
  76. 76.
    Levitan ES, Lanni F, and Shakiryanova D. In vivo imaging of vesicle motion and release at the Drosophila neuromuscular junction. Nat Protoc 2: 1117–1125, 2007.PubMedGoogle Scholar
  77. 77.
    Lidke DS, Lidke KA, Rieger B, Jovin TM, and Arndt-Jovin DJ. Reaching out for signals: filopodia sense EGF and respond by directed retrograde transport of activated receptors. J Cell Biol 170: 619–626, 2005.PubMedGoogle Scholar
  78. 78.
    Lin JW, Ju W, Foster K, Lee SH, Ahmadian G, Wyszynski M, Wang YT, and Sheng M. Distinct molecular mechanisms and divergent endocytotic pathways of AMPA receptor internalization. Nat Neurosci 3: 1282–1290, 2000.PubMedGoogle Scholar
  79. 79.
    Lippincott-Schwartz J, Snapp E, and Kenworthy A. Studying protein dynamics in living cells. Nat Rev Mol Cell Biol 2: 444–456, 2001.PubMedGoogle Scholar
  80. 80.
    Lisman J and Raghavachari S. A unified model of the presynaptic and postsynaptic changes during LTP at CA1 synapses. Sci STKE 2006: re11, 2006.Google Scholar
  81. 81.
    Lledo PM, Zhang X, Sudhof TC, Malenka RC, and Nicoll RA. Postsynaptic membrane fusion and long-term potentiation. Science 279: 399–403, 1998.PubMedGoogle Scholar
  82. 82.
    Lu W, Man H, Ju W, Trimble WS, MacDonald JF, and Wang YT. Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron 29: 243–254, 2001.PubMedGoogle Scholar
  83. 83.
    Luscher C, Xia H, Beattie EC, Carroll RC, von Zastrow M, Malenka RC, and Nicoll RA. Role of AMPA receptor cycling in synaptic transmission and plasticity. Neuron 24: 649– 658, 1999.PubMedGoogle Scholar
  84. 84.
    Luthi A, Chittajallu R, Duprat F, Palmer MJ, Benke TA, Kidd FL, Henley JM, Isaac JT, and Collingridge GL. Hippocampal LTD expression involves a pool of AMPARs regulated by the NSF-GluR2 interaction. Neuron 24: 389–399, 1999.PubMedGoogle Scholar
  85. 85.
    Malinow R and Malenka RC. AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 25: 103–126, 2002.PubMedGoogle Scholar
  86. 86.
    Man HY, Lin JW, Ju WH, Ahmadian G, Liu L, Becker LE, Sheng M, and Wang YT. Regulation of AMPA receptor-mediated synaptic transmission by clathrin-dependent receptor internalization. Neuron 25: 649–662, 2000.PubMedGoogle Scholar
  87. 87.
    Masugi-Tokita M, Tarusawa E, Watanabe M, Molnar E, Fujimoto K, and Shigemoto R. Number and density of AMPA receptors in individual synapses in the rat cerebellum as revealed by SDS-digested freeze-fracture replica labeling. J Neurosci 27: 2135–2144, 2007.PubMedGoogle Scholar
  88. 88.
    Meier J, Vannier C, Sergé A, Triller A, and Choquet D. Fast and reversible trapping of surface glycine receptors by gephyrin. Nat Neurosci 4: 253–260, 2001.PubMedGoogle Scholar
  89. 89.
    Metzler M, Li B, Gan L, Georgiou J, Gutekunst CA, Wang Y, Torre E, Devon RS, Oh R, Legendre-Guillemin V, Rich M, Alvarez C, Gertsenstein M, McPherson PS, Nagy A, Wang YT, Roder JC, Raymond LA, and Hayden MR. Disruption of the endocytic protein HIP1 results in neurological deficits and decreased AMPA receptor trafficking. EMBO J 22: 3254–3266, 2003.PubMedGoogle Scholar
  90. 90.
    Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, and Weiss S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307: 538–544, 2005.PubMedGoogle Scholar
  91. 91.
    Miesenbock G, De Angelis DA, and Rothman JE. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394: 192–195, 1998.PubMedGoogle Scholar
  92. 92.
    Monyer H, Burnashev N, Laurie DJ, Sakmann B, and Seeburg PH. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12: 529–540, 1994.PubMedGoogle Scholar
  93. 93.
    Murase K, Fujiwara T, Umemura Y, Suzuki K, Iino R, Yamashita H, Saito M, Murakoshi H, Ritchie K, and Kusumi A. Ultrafine membrane compartments for molecular diffusion as revealed by single molecule techniques. Biophys J 86: 4075–4093, 2004.PubMedGoogle Scholar
  94. 94.
    Nakada C, Ritchie K, Oba Y, Nakamura M, Hotta Y, Iino R, Kasai RS, Yamaguchi K, Fujiwara T, and Kusumi A. Accumulation of anchored proteins forms membrane diffusion barriers during neuronal polarization. Nat Cell Biol 5: 626–632, 2003.PubMedGoogle Scholar
  95. 95.
    Nicoll RA, Tomita S, and Bredt DS. Auxiliary subunits assist AMPA-type glutamate receptors. Science 311: 1253–1256, 2006.PubMedGoogle Scholar
  96. 96.
    Nong Y, Huang YQ, Ju W, Kalia LV, Ahmadian G, Wang YT, and Salter MW. Glycine binding primes NMDA receptor internalization. Nature 422: 302–307, 2003.PubMedGoogle Scholar
  97. 97.
    Nusser Z, Mulvihill E, Streit P, and Somogyi P. Subsynaptic segragation of metabotropic and ionotropic glutamate receptors as revealed by immunogold localization. Neuroscience 61: 421–427, 1994.PubMedGoogle Scholar
  98. 98.
    Ober RJ, Ram S, and Ward ES. Localization accuracy in single-molecule microscopy. Biophys J 86: 1185–1200, 2004.PubMedGoogle Scholar
  99. 99.
    Osten P, Khatri L, Perez JL, Kohr G, Giese G, Daly C, Schulz TW, Wensky A, Lee LM, and Ziff EB. Mutagenesis reveals a role for ABP/GRIP binding to GluR2 in synaptic surface accumulation of the AMPA receptor. Neuron 27: 313–325, 2000.PubMedGoogle Scholar
  100. 100.
    Park M, Penick EC, Edwards JG, Kauer JA, and Ehlers MD. Recycling endosomes supply AMPA receptors for LTP. Science 305: 1972–1975, 2004.PubMedGoogle Scholar
  101. 101.
    Park M, Salgado JM, Ostroff L, Helton TD, Robinson CG, Harris KM, and Ehlers MD. Plasticity-induced growth of dendritic spines by exocytic trafficking from recycling endosomes. Neuron 52: 817–830, 2006.PubMedGoogle Scholar
  102. 102.
    Passafaro M, Piech V, and Sheng M. Subunit-specific temporal and spatial patterns of AMPA receptor exocytosis in hippocampal neurons. Nat Neurosci 4: 917–926, 2001.PubMedGoogle Scholar
  103. 103.
    Peng J, Kim MJ, Cheng D, Duong DM, Gygi SP, and Sheng M. Semiquantitative proteomic analysis of rat forebrain postsynaptic density fractions by mass spectrometry. J Biol Chem 279: 21003–21011, 2004.PubMedGoogle Scholar
  104. 104.
    Petralia RS, Wang YX, and Wenthold RJ. Internalization at glutamatergic synapses during development. Eur J Neurosci 18: 3207–3217, 2003.PubMedGoogle Scholar
  105. 105.
    Pickard L, Noel J, Duckworth JK, Fitzjohn SM, Henley JM, Collingridge GL, and Molnar E. Transient synaptic activation of NMDA receptors leads to the insertion of native AMPA receptors at hippocampal neuronal plasma membranes. Neuropharmacology 41: 700–713, 2001.PubMedGoogle Scholar
  106. 106.
    Pinaud F, King D, Moore HP, and Weiss S. Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J Am Chem Soc 126: 6115–6123, 2004.PubMedGoogle Scholar
  107. 107.
    Pucadyil TJ and Chattopadhyay A. The human serotonin(1A) receptor exhibits Gprotein- dependent cell surface dynamics. Glycoconj J 24: 25–31, 2007.PubMedGoogle Scholar
  108. 108.
    Racz B, Blanpied TA, Ehlers MD, and Weinberg RJ. Lateral organization of endocytic machinery in dendritic spines. Nat Neurosci 7: 917–918, 2004.PubMedGoogle Scholar
  109. 109.
    Rasse TM, Fouquet W, Schmid A, Kittel RJ, Mertel S, Sigrist CB, Schmidt M, Guzman A, Merino C, Qin G, Quentin C, Madeo FF, Heckmann M, and Sigrist SJ. Glutamate receptor dynamics organizing synapse formation in vivo. Nat Neurosci 8: 898–905, 2005.PubMedGoogle Scholar
  110. 110.
    Reits EA and Neefjes JJ. From fixed to FRAP: measuring protein mobility and activity in living cells. Nat Cell Biol 3: E145–E 147, 2001.Google Scholar
  111. 111.
    Richards DA, De Paola V, Caroni P, Gahwiler BH, and McKinney RA. AMPA-receptor activation regulates the diffusion of a membrane marker in parallel with dendritic spine motility in the mouse hippocampus. J Physiol 558: 503–512, 2004.PubMedGoogle Scholar
  112. 112.
    Roche KW, Standley S, McCallum J, Dune Ly C, Ehlers MD, and Wenthold RJ. Molecular determinants of NMDA receptor internalization. Nat Neurosci 4: 794–802, 2001.PubMedGoogle Scholar
  113. 113.
    Rosenberg M, Meier J, Triller A, and Vannier C. Dynamics of glycine receptor insertion in the neuronal plasma membrane. J Neurosci 21: 5036–5044, 2001.PubMedGoogle Scholar
  114. 114.
    Salome L, Cazeils JL, Lopez A, and Tocanne JF. Characterization of membrane domains by FRAP experiments at variable observation areas. Eur Biophys J 27: 391–402, 1998.PubMedGoogle Scholar
  115. 115.
    Sans N, Prybylowski K, Petralia RS, Chang K, Wang YX, Racca C, Vicini S, and Wenthold RJ. NMDA receptor trafficking through an interaction between PDZ proteins and the exocyst complex. Nat Cell Biol 5: 520–530, 2003.PubMedGoogle Scholar
  116. 116.
    Sauliere A, Gaibelet G, Millot C, Mazeres S, Lopez A, and Salome L. Diffusion of the mu opioid receptor at the surface of human neuroblastoma SH-SY5Y cells is restricted to permeable domains. FEBS Lett 580: 5227–5231, 2006.PubMedGoogle Scholar
  117. 117.
    Saxton MJ and Jacobson K. Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct 26: 373–399, 1997.PubMedGoogle Scholar
  118. 118.
    Scott L, Zelenin S, Malmersjo S, Kowalewski JM, Markus EZ, Nairn AC, Greengard P, Brismar H, and Aperia A. Allosteric changes of the NMDA receptor trap diffusible dopamine 1 receptors in spines. Proc Natl Acad Sci USA 103: 762–767, 2006.PubMedGoogle Scholar
  119. 119.
    Seisenberger G, Ried MU, Endreβ T, Buning H, Hallek M, and Brauchle C. Realtime single-molecule imaging of the infection pathway of an adeno-associated virus. Science 294: 1929–1932, 2001.PubMedGoogle Scholar
  120. 120.
    Sekine-Aizawa Y and Huganir RL. Imaging of receptor trafficking by using alphabungarotoxin- binding-site-tagged receptors. Proc Natl Acad Sci USA 101: 17114–17119, 2004.PubMedGoogle Scholar
  121. 121.
    Serge A, Fourgeaud L, Hemar A, and Choquet D. Receptor activation and homer differentially control the lateral mobility of metabotropic glutamate receptor 5 in the neuronal membrane. J Neurosci 22: 3910–3920, 2002.PubMedGoogle Scholar
  122. 122.
    Sheng M, Cummings J, Roldan LA, Jan YN, and Jan LY. Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature 368: 144–147, 1994.PubMedGoogle Scholar
  123. 123.
    Sheng M and Nakagawa T. Neurobiology: glutamate receptors on the move. Nature 417: 601–602, 2002.PubMedGoogle Scholar
  124. 124.
    Shi S, Hayashi Y, Esteban JA, and Malinow R. Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell 105: 331–343, 2001.PubMedGoogle Scholar
  125. 125.
    Shouval HZ. Clusters of interacting receptors can stabilize synaptic efficacies. Proc Natl Acad Sci USA 102: 14440–14445, 2005.PubMedGoogle Scholar
  126. 126.
    Siksou L, Rostaing P, Lechaire J, Boudier T, Ohtsuka T, Fejtová A, Kao H, Greengard P, Gundelfinger E, Triller A, and Marty S. Three-dimensional architecture of presynaptic terminal cytomatrix. J Neurosci 27: 6868–6877, 2007.PubMedGoogle Scholar
  127. 127.
    Singer SJ and Nicolson GL. The fluid mosaic model of the structure of cell membranes. Science 175: 720–731, 1972.PubMedGoogle Scholar
  128. 128.
    Snee PT, Somers RC, Nair G, Zimmer JP, Bawendi MG, and Nocera DG. A ratiometric CdSe/ZnS nanocrystal pH sensor. J Am Chem Soc 128: 13320–13321, 2006.PubMedGoogle Scholar
  129. 129.
    Snyder EM, Philpot BD, Huber KM, Dong X, Fallon JR, and Bear MF. Internalization of ionotropic glutamate receptors in response to mGluR activation. Nat Neurosci 4: 1079–1085, 2001.PubMedGoogle Scholar
  130. 130.
    Sonnleitner A, Mannuzzu LM, Terakawa S, and Isacoff EY. Structural rearrangements in single ion channels detected optically in living cells. Proc Natl Acad Sci USA 99: 12759–12764, 2002.PubMedGoogle Scholar
  131. 131.
    Spacek J and Harris KM. Three-dimensional organization of smooth endoplasmic reticulum in hippocampal CA1 dendrites and dendritic spines of the immature and mature rat. J Neurosci 17: 190–203, 1997.PubMedGoogle Scholar
  132. 132.
    Tanaka J, Matsuzaki M, Tarusawa E, Momiyama A, Molnar E, Kasai H, and Shigemoto R. Number and density of AMPA receptors in single synapses in immature cerebellum. J Neurosci 25: 799–807, 2005.PubMedGoogle Scholar
  133. 133.
    Tardin C, Cognet L, Bats C, Lounis B, and Choquet D. Direct imaging of lateral movements of AMPA receptors inside synapses. EMBO J 22: 4656–4665, 2003.PubMedGoogle Scholar
  134. 134.
    Thomas CG, Miller AJ, and Westbrook GL. Synaptic and extrasynaptic NMDA receptor NR2 subunits in cultured hippocampal neurons. J Neurophysiol 95: 1727–1734, 2006.PubMedGoogle Scholar
  135. 135.
    Thomas P, Mortensen M, Hosie AM, and Smart TG. Dynamic mobility of functional GABAA receptors at inhibitory synapses. Nat Neurosci 8: 889–897, 2005.PubMedGoogle Scholar
  136. 136.
    Thorne RG and Nicholson C. In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc Natl Acad Sci USA 103: 5567–5572, 2006.PubMedGoogle Scholar
  137. 137.
    Thoumine O, Saint-Michel E, Dequidt C, Falk J, Rudge R, Galli T, Faivre-Sarrailh C, and Choquet D. Weak effect of membrane diffusion on the rate of receptor accumulation at adhesive contacts. Biophys J 89: L40–L 42, 2005.Google Scholar
  138. 138.
    Tomita S, Stein V, Stocker TJ, Nicoll RA, and Bredt DS. Bidirectional synaptic plasticity regulated by phosphorylation of stargazin-like TARPs. Neuron 45: 269–277, 2005.PubMedGoogle Scholar
  139. 139.
    Toni N, Buchs PA, Nikonenko I, Povilaitite P, Parisi L, and Muller D. Remodeling of synaptic membranes after induction of long-term potentiation. J Neurosci 21: 6245– 6251, 2001.PubMedGoogle Scholar
  140. 140.
    Tovar KR and Westbrook GL. The incorporation of NMDA receptors with a distinct subunit composition at nascent hippocampal synapses in vitro. J Neurosci 19: 4180–4188, 1999.PubMedGoogle Scholar
  141. 141.
    Tovar KR and Westbrook GL. Mobile NMDA receptors at hippocampal synapses. Neuron 34: 255–264, 2002.PubMedGoogle Scholar
  142. 142.
    Triller A and Choquet D. Surface trafficking of receptors between synaptic and extrasynaptic membranes: and yet they do move! Trends Neurosci 28: 133–139, 2005.PubMedGoogle Scholar
  143. 143.
    Tsuriel S, Geva R, Zamorano P, Dresbach T, Boeckers T, Gundelfinger ED, Garner CC, and Ziv NE. Local sharing as a predominant determinant of synaptic matrix molecular dynamics. PLoS Biol 4: e271, 2006.PubMedGoogle Scholar
  144. 144.
    Vidnyánszky Z, Hámori J, Négyessy L, Rüegg D, Knöpfel T, Kuhn R, and Görcs T. Cellular and subecellular localization of the mGluR5 metabotropicglutamate receptor in rat spinal cord. NeuroReport 6: 209–213, 1994.PubMedCrossRefGoogle Scholar
  145. 145.
    Wang YT and Linden DJ. Expression of cerebellar long-term depression requires postsynaptic clathrin-mediated endocytosis. Neuron 25: 635–647, 2000.PubMedGoogle Scholar
  146. 146.
    Winckler B, Forscher P, and Mellman I. A diffusion barrier maintains distribution of membrane proteins in polarized neurons. Nature 397: 698–701, 1999.PubMedGoogle Scholar
  147. 147.
    Zhou Q, Xiao M, and Nicoll RA. Contribution of cytoskeleton to the internalization of AMPA receptors. Proc Natl Acad Sci USA 98: 1261–1266, 2001.PubMedGoogle Scholar
  148. 148.
    Zhu JJ, Esteban JA, Hayashi Y, and Malinow R. Postnatal synaptic potentiation: delivery of GluR4-containing AMPA receptors by spontaneous activity. Nat Neurosci 3: 1098–1106, 2000.PubMedGoogle Scholar
  149. 149.
    Ziff EB. TARPs and the AMPA receptor trafficking paradox. Neuron 53: 627–633, 2007.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Daniel Choquet
    • 1
  • Antoine Triller
    • 2
  1. 1.UMR 5091 CNRSUniversité de Bordeaux 2 Physiologie Cellulaire de la Synapse Institut François Magendie rue Camille33077 Bordeaux CedexFrance
  2. 2.Inserm UR497Ecole Normale Supérieure Biologie Cellulaire de la Synapse N&P46rue d’Ulm 75005 Paris

Personalised recommendations