Skip to main content

Molecular Properties and Cell Biology of the NMDA Receptor

  • Chapter
Structural And Functional Organization Of The Synapse

Abstract

NMDA receptors (NMDARs) play a distinct role at excitatory glutamatergic synapses, where they are usually localized with other ionotropic glutamate receptors, including tors. Two features are essential to their specialized roles in synaptic plasticity and the excitodependent magnesium block, the removal of which requires depolarization of the membrane potential. Second, upon activation, the NMDAR channel passes sodium and, importantly, calcium into the neuron. Calcium is the universal second messenger in numerous intracellular signaling cascades and is critical in synaptic plasticity and mechanisms of neurotoxicity (288).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abel, T., P.V. Nguyen, M. Barad, T.A. Deuel, E.R. Kandel, and R. Bourtchouladze. Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampusbased long-term memory. Cell 88: 615–626, 1997.

    PubMed  CAS  Google Scholar 

  2. Adesnik, H., R.A. Nicoll, and P.M. England. Photoinactivation of native AMPA receptors reveals their real-time trafficking. Neuron 48: 977–985, 2005.

    PubMed  CAS  Google Scholar 

  3. Al-Hallaq, R.A., T.P. Conrads, T.D. Veenstra, and R.J. Wenthold. NMDA diheteromeric receptor populations and associated proteins in rat hippocampus. J Neurosci 27: 8334–8343, 2007.

    PubMed  CAS  Google Scholar 

  4. Al-Hallaq, R.A., B.R. Jarabek, Z. Fu, S. Vicini, B.B. Wolfe, and R.P. Yasuda. Association of NR3A with the N-methyl-D-aspartate receptor NR1 and NR2 subunits. Mol Pharmacol 62: 1119–1127, 2002.

    PubMed  CAS  Google Scholar 

  5. Allen, J.A., R.A. Halverson-Tamboli, and M.M. Rasenick. Lipid raft microdomains and neurotransmitter signalling. Nat Rev Neurosci 8: 128–140, 2007.

    PubMed  CAS  Google Scholar 

  6. Amparan, D., D. Avram, C.G. Thomas, M.G. Lindahl, J. Yang, G. Bajaj, and J.E. Ishmael. Direct interaction of myosin regulatory light chain with the NMDA receptor. J Neurochem 92: 349–361, 2005.

    PubMed  CAS  Google Scholar 

  7. Andrasfalvy, B.K., and J.C. Magee. Changes in AMPA receptor currents following LTP induction on rat CA1 pyramidal neurones. J Physiol 559: 543–554, 2004.

    PubMed  CAS  Google Scholar 

  8. Andre, V.M., C. Cepeda, A. Venegas, Y. Gomez, and M.S. Levine. Altered cortical glutamate receptor function in the R6/2 model of Huntington’s disease. J Neurophysiol 95: 2108–2119, 2006.

    PubMed  CAS  Google Scholar 

  9. Arbuthnott, G.W., C.A. Ingham, and J.R. Wickens. Dopamine and synaptic plasticity in the neostriatum. J Anat 196: 587–596, 2000.

    PubMed  CAS  Google Scholar 

  10. Awobuluyi, M., J. Yang, Y. Ye, J.E. Chatterton, A. Godzik, S.A. Lipton, and D. Zhang. Subunit-specific roles of glycine-binding domains in activation of NR1/NR3 N-methyl- D-aspartate receptors. Mol Pharmacol 71: 112–122, 2007.

    PubMed  CAS  Google Scholar 

  11. Bardoni, R., C. Torsney, C.K. Tong, M. Prandini, and A.B. MacDermott. Presynaptic NMDA receptors modulate glutamate release from primary sensory neurons in rat spinal cord dorsal horn. J Neurosci 24: 2774–2781, 2004.

    PubMed  CAS  Google Scholar 

  12. Barria, A., and R. Malinow. Subunit-specific NMDA receptor trafficking to synapses. Neuron 35: 345–353, 2002.

    PubMed  CAS  Google Scholar 

  13. Barria, A., and R. Malinow. NMDA receptor subunit composition controls synaptic plasticity by regulating binding to CaMKII. Neuron 48: 289–301, 2005.

    PubMed  CAS  Google Scholar 

  14. Bashir, Z.I., S. Alford, S.N. Davies, A.D. Randall, and G.L. Collingridge. Long-term potentiation of NMDA receptor-mediated synaptic transmission in the hippocampus. Nature 349: 156–158, 1991.

    PubMed  CAS  Google Scholar 

  15. Basselin, M., L. Chang, J.M. Bell, and S.I. Rapoport. Chronic lithium chloride administration attenuates brain NMDA receptor-initiated signaling via arachidonic acid in unanesthetized rats. Neuropsychopharmacology 31: 1659–1674, 2006.

    PubMed  CAS  Google Scholar 

  16. Bayer, K.U., K. De, P., A.S. Leonard, J.W. Hell, and H. Schulman. Interaction with the NMDA receptor locks CaMKII in an active conformation. Nature 411: 801–805, 2001.

    PubMed  CAS  Google Scholar 

  17. Becker, S., and J.M. Wojtowicz. A model of hippocampal neurogenesis in memory and mood disorders. Trends Cogn Sci 11: 70–76, 2007.

    PubMed  Google Scholar 

  18. Behar, T.N., C.A. Scott, C.L. Greene, X. Wen, S.V. Smith, D. Maric, Q.Y. Liu, C.A. Colton, and J.L. Barker. Glutamate acting at NMDA receptors stimulates embryonic cortical neuronal migration. J Neurosci 19: 4449–4461, 1999.

    PubMed  CAS  Google Scholar 

  19. Bendel, O., B. Meijer, Y. Hurd, and G. von Euler. Cloning and expression of the human NMDA receptor subunit NR3B in the adult human hippocampus. Neurosci Lett 377: 31–36, 2005.

    PubMed  CAS  Google Scholar 

  20. Berberich, S., P. Punnakkal, V. Jensen, V. Pawlak, P.H. Seeburg, O. Hvalby, and G. Kohr. Lack of NMDA receptor subtype selectivity for hippocampal long-term potentiation. J Neurosci 25: 6907–6910, 2005.

    PubMed  CAS  Google Scholar 

  21. Bernard-Trifilo, J.A., E.A. Kramar, R. Torp, C.Y. Lin, E.A. Pineda, G. Lynch, and C.M. Gall. Integrin signaling cascades are operational in adult hippocampal synapses and modulate NMDA receptor physiology. J Neurochem 93: 834–849, 2005.

    PubMed  CAS  Google Scholar 

  22. Berretta, N., F. Berton, R. Bianchi, M. Brunelli, M. Capogna, and W. Francesconi. Longterm Potentiation of NMDA Receptor-mediated EPSP in Guinea-pig Hippocampal Slices. Eur J Neurosci 3: 850–854, 1991.

    PubMed  Google Scholar 

  23. Betarbet, R., O. Poisik, T.B. Sherer, and J.T. Greenamyre. Differential expression and ser897 phosphorylation of striatal N-methyl-D-aspartate receptor subunit NR1 in animal models of Parkinson’s disease. Exp Neurol 187: 76–85, 2004.

    PubMed  CAS  Google Scholar 

  24. Blanpied, T.A., D.B. Scott, and M.D. Ehlers. Dynamics and regulation of clathrin coats at specialized endocytic zones of dendrites and spines. Neuron 36: 435–449, 2002.

    PubMed  CAS  Google Scholar 

  25. Bleakman, D., A. Alt, and E.S. Nisenbaum. Glutamate receptors and pain. Semin Cell Dev Biol 17: 592–604, 2006.

    PubMed  CAS  Google Scholar 

  26. Blumer, J.B., L.J. Chandler, and S.M. Lanier. Expression analysis and subcellular distribution of the two G-protein regulators AGS3 and LGN indicate distinct functionality. Localization of LGN to the midbody during cytokinesis. J Biol Chem 277: 15897–15903, 2002.

    PubMed  CAS  Google Scholar 

  27. Boyce-Rustay, J.M., and A. Holmes. Genetic inactivation of the NMDA receptor NR2A subunit has anxiolytic- and antidepressant-like effects in mice. Neuropsychopharmacology 31: 2405–2414, 2006.

    PubMed  CAS  Google Scholar 

  28. Bresler, T., M. Shapira, T. Boeckers, T. Dresbach, M. Futter, C.C. Garner, K. Rosenblum, E.D. Gundelfinger, and N.E. Ziv. Postsynaptic density assembly is fundamentally different from presynaptic active zone assembly. J Neurosci 24: 1507–1520, 2004.

    PubMed  CAS  Google Scholar 

  29. Brewer, G.J., and C.W. Cotman. NMDA receptor regulation of neuronal morphology in cultured hippocampal neurons. Neurosci Lett 99: 268–273, 1989.

    PubMed  CAS  Google Scholar 

  30. Brickley, S.G., C. Misra, M.H. Mok, M. Mishina, and S.G. Cull-Candy. NR2B and NR2D subunits coassemble in cerebellar Golgi cells to form a distinct NMDA receptor subtype restricted to extrasynaptic sites. J Neurosci 23: 4958–4966, 2003.

    PubMed  CAS  Google Scholar 

  31. Bukalo, O., N. Fentrop, A.Y. Lee, B. Salmen, J.W. Law, C.T. Wotjak, M. Schweizer, A. Dityatev, and M. Schachner. Conditional ablation of the neural cell adhesion molecule reduces precision of spatial learning, long-term potentiation, and depression in the CA1 subfield of mouse hippocampus. J Neurosci 24: 1565–1577, 2004.

    PubMed  CAS  Google Scholar 

  32. Calabresi, P., D. Centonze, and G. Bernardi. Electrophysiology of dopamine in normal and denervated striatal neurons. Trends Neurosci 23: S57–S63, 2000.

    PubMed  CAS  Google Scholar 

  33. Calabresi, P., P. Giacomini, D. Centonze, and G. Bernardi. Levodopa-induced dyskinesia: a pathological form of striatal synaptic plasticity? Ann Neurol 47: S60–S68; discussion S68–S69, 2000.

    PubMed  CAS  Google Scholar 

  34. Calabresi, P., N.B. Mercuri, G. Sancesario, and G. Bernardi. Electrophysiology of dopamine- denervated striatal neurons. Implications for Parkinson’s disease. Brain 116: 433–452, 1993.

    PubMed  Google Scholar 

  35. Calon, F., A.H. Rajput, O. Hornykiewicz, P.J. Bedard, and T. Di Paolo. Levodopainduced motor complications are associated with alterations of glutamate receptors in Parkinson’s disease. Neurobiol Dis 14: 404–416, 2003.

    PubMed  CAS  Google Scholar 

  36. Cao, J., J.I. Viholainen, C. Dart, H.K. Warwick, M.L. Leyland, and M.J. Courtney. The PSD95-nNOS interface: a target for inhibition of excitotoxic p38 stress-activated protein kinase activation and cell death. J Cell Biol 168: 117–126, 2005.

    PubMed  CAS  Google Scholar 

  37. Carleton, A., L.T. Petreanu, R. Lansford, A. Alvarez-Buylla, and P.M. Lledo. Becoming a new neuron in the adult olfactory bulb. Nat Neurosci 6: 507–518, 2003.

    PubMed  CAS  Google Scholar 

  38. Casado, M., P. Isope, and P. Ascher. Involvement of presynaptic N-methyl-D-aspartate receptors in cerebellar long-term depression. Neuron 33: 123–130, 2002.

    PubMed  CAS  Google Scholar 

  39. Charriaut-Marlangue, C., S. Otani, C. Creuzet, Y. Ben-Ari, and J. Loeb. Rapid activation of hippocampal casein kinase II during long-term potentiation. Proc Natl Acad Sci USA 88: 10232–10236, 1991.

    PubMed  CAS  Google Scholar 

  40. Chatterton, J.E., M. Awobuluyi, L.S. Premkumar, H. Takahashi, M. Talantova, Y. Shin, J. Cui, S. Tu, K.A. Sevarino, N. Nakanishi, G. Tong, S.A. Lipton, and D. Zhang. Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature 415: 793–798, 2002.

    PubMed  CAS  Google Scholar 

  41. Chavis, P., and G. Westbrook. Integrins mediate functional pre- and postsynaptic maturation at a hippocampal synapse. Nature 411: 317–321, 2001.

    PubMed  CAS  Google Scholar 

  42. Chazot, P.L., and F.A. Stephenson. Biochemical evidence for the existence of a pool of unassembled C2 exon-containing NR1 subunits of the mammalian forebrain NMDA receptor. J Neurochem 68: 507–516, 1997.

    PubMed  CAS  Google Scholar 

  43. Chen, L., and L.Y. Huang. Protein kinase C reduces Mg2+ block of NMDA-receptor channels as a mechanism of modulation. Nature 356: 521–523, 1992.

    PubMed  CAS  Google Scholar 

  44. Chen, N., T. Luo, C. Wellington, M. Metzler, K. McCutcheon, M.R. Hayden, and L.A. Raymond. Subtype-specific enhancement of NMDA receptor currents by mutant huntingtin. J Neurochem 72: 1890–1898, 1999.

    PubMed  CAS  Google Scholar 

  45. Chen, W., and A. Helenius. Role of ribosome and translocon complex during folding of influenza hemagglutinin in the endoplasmic reticulum of living cells. Mol Biol Cell 11: 765–772, 2000.

    PubMed  CAS  Google Scholar 

  46. Cheng, C., D.M. Fass, and I.J. Reynolds. Emergence of excitotoxicity in cultured forebrain neurons coincides with larger glutamate-stimulated [Ca(2+)](i) increases and NMDA receptor mRNA levels. Brain Res 849: 97–108, 1999.

    PubMed  CAS  Google Scholar 

  47. Choi, Y.B., L. Tenneti, D.A. Le, J. Ortiz, G. Bai, H.S. Chen, and S.A. Lipton. Molecular basis of NMDA receptor-coupled ion channel modulation by S-nitrosylation. Nat Neurosci 3: 15–21, 2000.

    PubMed  CAS  Google Scholar 

  48. Christopherson, K.S., B.J. Hillier, W.A. Lim, and D.S. Bredt. PSD-95 assembles a ternary complex with the N-methyl-D-aspartic acid receptor and a bivalent neuronal NO synthase PDZ domain. J Biol Chem 274: 27467–27473, 1999.

    PubMed  CAS  Google Scholar 

  49. Chung, H.J., Y.H. Huang, L.F. Lau, and R.L. Huganir. Regulation of the NMDA receptor complex and trafficking by activity-dependent phosphorylation of the NR2B subunit PDZ ligand. J Neurosci 24: 10248–10259, 2004.

    PubMed  CAS  Google Scholar 

  50. Ciabarra, A.M., J.M. Sullivan, L.G. Gahn, G. Pecht, S. Heinemann, and K.A. Sevarino. Cloning and characterization of chi-1: a developmentally regulated member of a novel class of the ionotropic glutamate receptor family. J Neurosci 15: 6498–6508, 1995.

    PubMed  CAS  Google Scholar 

  51. Cleary, J., J.M. Hittner, M. Semotuk, P. Mantyh, and E. O’Hare. Beta-amyloid(1–40) effects on behavior and memory. Brain Res 682: 69–74, 1995.

    PubMed  CAS  Google Scholar 

  52. Colonnese, M.T., J.P. Zhao, and M. Constantine-Paton. NMDA receptor currents suppress synapse formation on sprouting axons in vivo. J Neurosci 25: 1291–1303, 2005.

    PubMed  CAS  Google Scholar 

  53. Cottrell, J.R., E. Borok, T.L. Horvath, and E. Nedivi. CPG2: a brain- and synapsespecific protein that regulates the endocytosis of glutamate receptors. Neuron 44: 677–690, 2004.

    PubMed  CAS  Google Scholar 

  54. Crump, F.T., K.S. Dillman, and A.M. Craig. cAMP-dependent protein kinase mediates activity-regulated synaptic targeting of NMDA receptors. J Neurosci 21: 5079–5088, 2001.

    PubMed  CAS  Google Scholar 

  55. Cull-Candy, S., S. Brickley, and M. Farrant. NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol 11: 327–335, 2001.

    PubMed  CAS  Google Scholar 

  56. Dalva, M.B., A.C. McClelland, and M.S. Kayser. Cell adhesion molecules: signalling functions at the synapse. Nat Rev Neurosci 8: 206–220, 2007.

    PubMed  CAS  Google Scholar 

  57. Dalva, M.B., M.A. Takasu, M.Z. Lin, S.M. Shamah, L. Hu, N.W. Gale, and M.E. Greenberg. EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell 103: 945–956, 2000.

    PubMed  CAS  Google Scholar 

  58. Das, S., Y.F. Sasaki, T. Rothe, L.S. Premkumar, M. Takasu, J.E. Crandall, P. Dikkes, D.A. Conner, P.V. Rayudu, W. Cheung, H.S. Chen, S.A. Lipton, and N. Nakanishi. Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A. Nature 393: 377–381, 1998.

    PubMed  CAS  Google Scholar 

  59. Davey, F., M. Hill, J. Falk, N. Sans, and F. J. Gunn-Moore. Synapse associated protein 102 is a novel binding partner to the cytoplasmic terminus of neurone-glial related cell adhesion molecule. J Neurochem 94: 1243–1253, 2005.

    PubMed  CAS  Google Scholar 

  60. Davies, C.A., D.M. Mann, P.Q. Sumpter, and P.O. Yates. A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer’s disease. J Neurol Sci 78: 151–164, 1987.

    PubMed  CAS  Google Scholar 

  61. DeGiorgio, L.A., K.N. Konstantinov, S.C. Lee, J.A. Hardin, B.T. Volpe, and B. Diamond. A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus. Nat Med 7: 1189–1193, 2001.

    PubMed  CAS  Google Scholar 

  62. Demyanenko, G.P., M. Schachner, E. Anton, R. Schmid, G. Feng, J. Sanes, and P.F. Maness. Close homolog of L1 modulates area-specific neuronal positioning and dendrite orientation in the cerebral cortex. Neuron 44: 423–437, 2004.

    PubMed  CAS  Google Scholar 

  63. Derkach, V., A. Barria, and T.R. Soderling. Ca2+/calmodulin-kinase II enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Proc Natl Acad Sci USA 96: 3269–3274, 1999.

    PubMed  CAS  Google Scholar 

  64. deSouza, S., and E.B. Ziff. AMPA receptors do the electric slide. Sci STKE2002: PE45, 2002.

    Google Scholar 

  65. DiFiglia, M. Excitotoxic injury of the neostriatum: a model for Huntington’s disease. Trends Neurosci 13: 286–289, 1990.

    PubMed  CAS  Google Scholar 

  66. Dingledine, R., K. Borges, D. Bowie, and S.F. Traynelis. The glutamate receptor ion channels. Pharmacol Rev 51: 7–61, 1999.

    PubMed  CAS  Google Scholar 

  67. Dosemeci, A., J.H. Tao-Cheng, L. Vinade, C.A. Winters, L. Pozzo-Miller, and T.S. Reese. Glutamate-induced transient modification of the postsynaptic density. Proc Natl Acad Sci USA 98: 10428–10432, 2001.

    PubMed  CAS  Google Scholar 

  68. Dracheva, S., S.A. Marras, S.L. Elhakem, F.R. Kramer, K.L. Davis, and V. Haroutunian. N-methyl-D-aspartic acid receptor expression in the dorsolateral prefrontal cortex of elderly patients with schizophrenia. Am J Psychiatry 158: 1400–1410, 2001.

    PubMed  CAS  Google Scholar 

  69. Du, Q., P.T. Stukenberg, and I.G. Macara. A mammalian partner of inscuteable binds NuMA and regulates mitotic spindle organization. Nat Cell Biol 3: 1069–1075, 2001.

    PubMed  CAS  Google Scholar 

  70. Dudman, J.T., M.E. Eaton, A. Rajadhyaksha, W. Macias, M. Taher, A. Barczak, K. Kameyama, R. Huganir, and C. Konradi. Dopamine D1 receptors mediate CREB phosphorylation via phosphorylation of the NMDA receptor at Ser897-NR1. J Neurochem 87: 922–934, 2003.

    PubMed  CAS  Google Scholar 

  71. Duguid, I.C., and T.G. Smart. Retrograde activation of presynaptic NMDA receptors enhances GABA release at cerebellar interneuron-Purkinje cell synapses. Nat Neurosci 7: 525–533, 2004.

    PubMed  CAS  Google Scholar 

  72. Dunah, A.W., A.C. Sirianni, A.A. Fienberg, E. Bastia, M.A. Schwarzschild, and D.G. Standaert. Dopamine D1-dependent trafficking of striatal N-methyl-D-aspartate glutamate receptors requires Fyn protein tyrosine kinase but not DARPP-32. Mol Pharmacol 65: 121–129, 2004.

    PubMed  CAS  Google Scholar 

  73. Dunah, A.W., and D.G. Standaert. Dopamine D1 receptor-dependent trafficking of striatal NMDA glutamate receptors to the postsynaptic membrane. J Neurosci 21: 5546–5558, 2001.

    PubMed  CAS  Google Scholar 

  74. Dunah, A.W., Y. Wang, R.P. Yasuda, K. Kameyama, R.L. Huganir, B.B. Wolfe, and D.G. Standaert. Alterations in subunit expression, composition, and phosphorylation of striatal N-methyl-D-aspartate glutamate receptors in a rat 6-hydroxydopamine model of Parkinson’s disease. Mol Pharmacol 57: 342–352, 2000.

    PubMed  CAS  Google Scholar 

  75. Dunah, A.W., R.P. Yasuda, Y.H. Wang, J. Luo, M. Davila-Garcia, M. Gbadegesin, S. Vicini, and B.B. Wolfe. Regional and ontogenic expression of the NMDA receptor subunit NR2D protein in rat brain using a subunit-specific antibody. J Neurochem 67: 2335–2345, 1996.

    PubMed  CAS  Google Scholar 

  76. Durand, G.M., M.V. Bennett, and R.S. Zukin. Splice variants of the N-methyl-Daspartate receptor NR1 identify domains involved in regulation by polyamines and protein kinase C. Proc Natl Acad Sci USA 90: 6731–6735, 1993.

    PubMed  CAS  Google Scholar 

  77. Durand, G.M., P. Gregor, X. Zheng, M.V. Bennett, G.R. Uhl, and R.S. Zukin. Cloning of an apparent splice variant of the rat N-methyl-D-aspartate receptor NMDAR1 with altered sensitivity to polyamines and activators of protein kinase C. Proc Natl Acad Sci USA 89: 9359–9363, 1992.

    PubMed  CAS  Google Scholar 

  78. Ehlers, M.D. Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat Neurosci 6: 231–242, 2003.

    PubMed  CAS  Google Scholar 

  79. Ehrlich, I., M. Klein, S. Rumpel, and R. Malinow. PSD-95 is required for activity-driven synapse stabilization. Proc Natl Acad Sci USA 104: 4176–4181, 2007.

    PubMed  CAS  Google Scholar 

  80. Eisen, A., and M. Weber. Treatment of amyotrophic lateral sclerosis. Drugs Aging 14: 173–196, 1999.

    PubMed  CAS  Google Scholar 

  81. El-Husseini, A.E., E. Schnell, D.M. Chetkovich, R.A. Nicoll, and D.S. Bredt. PSD-95 involvement in maturation of excitatory synapses. Science 290: 1364–1368, 2000.

    PubMed  CAS  Google Scholar 

  82. Elias, G.M., L. Funke, V. Stein, S.G. Grant, D.S. Bredt, and R.A. Nicoll. Synapsespecific and developmentally regulated targeting of AMPA receptors by a family of MAGUK scaffolding proteins. Neuron 52: 307–320, 2006.

    PubMed  CAS  Google Scholar 

  83. Ellgaard, L., and A. Helenius. ER quality control: towards an understanding at the molecular level. Curr Opin Cell Biol 13: 431–437, 2001.

    PubMed  CAS  Google Scholar 

  84. Erisir, A., and J.L. Harris. Decline of the critical period of visual plasticity is concurrent with the reduction of NR2B subunit of the synaptic NMDA receptor in layer 4. J Neurosci 23: 5208–5218, 2003.

    PubMed  CAS  Google Scholar 

  85. Fan, M.M., and L.A. Raymond. N-Methyl-D-aspartate (NMDA) receptor function and excitotoxicity in Huntington’s disease. Prog Neurobiol 81: 272–293, 2007.

    PubMed  CAS  Google Scholar 

  86. Fiebiger, E., D. Tortorella, M.H. Jouvin, J.P. Kinet, and H.L. Ploegh. Cotranslational endoplasmic reticulum assembly of FcepsilonRI controls the formation of functional IgE-binding receptors. J Exp Med 201: 267–277, 2005.

    PubMed  CAS  Google Scholar 

  87. Fong, D.K., A. Rao, F.T. Crump, and A.M. Craig. Rapid synaptic remodeling by protein kinase C: reciprocal translocation of NMDA receptors and calcium/calmodulindependent kinase II. J Neurosci 22: 2153–2164, 2002.

    PubMed  CAS  Google Scholar 

  88. Forrest, D., M. Yuzaki, H.D. Soares, L. Ng, D.C. Luk, M. Sheng, C.L. Stewart, J.I. Morgan, J.A. Connor, and T. Curran. Targeted disruption of NMDA receptor 1 gene abolishes NMDA response and results in neonatal death. Neuron 13: 325–338, 1994.

    PubMed  CAS  Google Scholar 

  89. Friedman, H.V., T. Bresler, C.C. Garner, and N.E. Ziv. Assembly of new individual excitatory synapses: time course and temporal order of synaptic molecule recruitment. Neuron 27: 57–69, 2000.

    PubMed  CAS  Google Scholar 

  90. Fu, Z., S.M. Logan, and S. Vicini. Deletion of the NR2A subunit prevents developmental changes of NMDA-mEPSCs in cultured mouse cerebellar granule neurones. J Physiol 563: 867–881, 2005.

    PubMed  CAS  Google Scholar 

  91. Fukaya, M., A. Kato, C. Lovett, S. Tonegawa, and M. Watanabe. Retention of NMDA receptor NR2 subunits in the lumen of endoplasmic reticulum in targeted NR1 knockout mice. Proc Natl Acad Sci USA 100: 4855–4860, 2003.

    PubMed  CAS  Google Scholar 

  92. Furukawa, H., S.K. Singh, R. Mancusso, and E. Gouaux. Subunit arrangement and function in NMDA receptors. Nature 438: 185–192, 2005.

    PubMed  CAS  Google Scholar 

  93. Furuyashiki, T., K. Fujisawa, A. Fujita, P. Madaule, S. Uchino, M. Mishina, H. Bito, and S. Narumiya. Citron, a Rho-target, interacts with PSD-95/SAP-90 at glutamatergic synapses in the thalamus. J Neurosci 19: 109–118, 1999.

    PubMed  CAS  Google Scholar 

  94. Futai, K., M.J. Kim, T. Hashikawa, P. Scheiffele, M. Sheng, and Y. Hayashi. Retrograde modulation of presynaptic release probability through signaling mediated by PSD-95- neuroligin. Nat Neurosci 10: 186–195, 2007.

    PubMed  CAS  Google Scholar 

  95. Fux, C.M., M. Krug, A. Dityatev, T. Schuster, and M. Schachner. NCAM180 and glutamate receptor subtypes in potentiated spine synapses: an immunogold electron microscopic study. Mol Cell Neurosci 24: 939–950, 2003.

    PubMed  CAS  Google Scholar 

  96. Gao, X.M., K. Sakai, R.C. Roberts, R.R. Conley, B. Dean, and C.A. Tamminga. Ionotropic glutamate receptors and expression of N-methyl-D-aspartate receptor subunits in subregions of human hippocampus: effects of schizophrenia. Am J Psychiatry 157: 1141–1149, 2000.

    PubMed  CAS  Google Scholar 

  97. Garcia, R.A., K. Vasudevan, and A. Buonanno. The neuregulin receptor ErbB-4 interacts with PDZ-containing proteins at neuronal synapses. Proc Natl Acad Sci USA 97: 3596–3601, 2000.

    PubMed  CAS  Google Scholar 

  98. Gardoni, F., and M. Di Luca. New targets for pharmacological intervention in the glutamatergic synapse. Eur J Pharmacol 545: 2–10, 2006.

    PubMed  CAS  Google Scholar 

  99. Gardoni, F., L.H. Schrama, D. van, J.J., W.H. Gispen, F. Cattabeni, and L. Di, M. AlphaCaMKII binding to the C-terminal tail of NMDA receptor subunit NR2A and its modulation by autophosphorylation. FEBS Lett 456: 394–398, 1999.

    PubMed  CAS  Google Scholar 

  100. Gerber, G., I. Kangrga, P.D. Ryu, J.S. Larew, and M. Randic. Multiple effects of phorbol esters in the rat spinal dorsal horn. J Neurosci 9: 3606–3617, 1989.

    PubMed  CAS  Google Scholar 

  101. Gerges, N.Z., D.S. Backos, C.N. Rupasinghe, M.R. Spaller, and J.A. Esteban. Dual role of the exocyst in AMPA receptor targeting and insertion into the postsynaptic membrane. EMBO J 25: 1623–1634, 2006.

    PubMed  CAS  Google Scholar 

  102. Goto, Y., T. Niidome, A. Akaike, T. Kihara, and H. Sugimoto. Amyloid beta-peptide preconditioning reduces glutamate-induced neurotoxicity by promoting endocytosis of NMDA receptor. Biochem Biophys Res Commun 351: 259–265, 2006.

    PubMed  CAS  Google Scholar 

  103. Frizelle, P.A., P.E. Chen, and D.J. Wyllie. Equilibrium constants for (R)-[(S)-1-(4-bromophenyl)- ethylamino]-(2,3-dioxo-1,2,3,4-tetrahydroquino xalin-5-yl)-methyl]-phosphonic acid (NVP-AAM077) acting at recombinant NR1/NR2A and NR1/NR2B N-methyl-Daspartate receptors: implications for studies of synaptic transmission. Mol Pharmacol 70: 1022–1032, 2006.

    PubMed  CAS  Google Scholar 

  104. Groc, L., M. Heine, L. Cognet, K. Brickley, F.A. Stephenson, B. Lounis, and D. Choquet. Differential activity-dependent regulation of the lateral mobilities of AMPA and NMDA receptors. Nat Neurosci 7: 695–696, 2004.

    PubMed  CAS  Google Scholar 

  105. Groc, L., M. Heine, S.L. Cousins, F.A. Stephenson, B. Lounis, L. Cognet, and D. Choquet. NMDA receptor surface mobility depends on NR2A-2B subunits. Proc Natl Acad Sci USA 103: 18769–18774, 2006.

    PubMed  CAS  Google Scholar 

  106. Grosshans, D.R., D.A. Clayton, S.J. Coultrap, and M.D. Browning. LTP leads to rapid surface expression of NMDA but not AMPA receptors in adult rat CA1. Nat Neurosci 5: 27–33, 2002.

    PubMed  CAS  Google Scholar 

  107. Grossman, S.D., L.J. Rosenberg, and J.R. Wrathall. Temporal-spatial pattern of acute neuronal and glial loss after spinal cord contusion. Exp Neurol 168: 273–282, 2001.

    PubMed  CAS  Google Scholar 

  108. Grunwald, I.C., M. Korte, D. Wolfer, G.A. Wilkinson, K. Unsicker, H.P. Lipp, T. Bonhoeffer, and R. Klein. Kinase-independent requirement of EphB2 receptors in hippocampal synaptic plasticity. Neuron 32: 1027–1040, 2001.

    PubMed  CAS  Google Scholar 

  109. Gu, Z., Q. Jiang, A.K. Fu, N.Y. Ip, and Z. Yan. Regulation of NMDA receptors by neuregulin signaling in prefrontal cortex. J Neurosci 25: 4974–4984, 2005.

    PubMed  CAS  Google Scholar 

  110. Guillaud, L., M. Setou, and N. Hirokawa. KIF17 dynamics and regulation of NR2B trafficking in hippocampal neurons. J Neurosci 23: 131–140, 2003.

    PubMed  CAS  Google Scholar 

  111. Hahn, C. G., H.Y. Wang, D.S. Cho, K. Talbot, R.E. Gur, W.H. Berrettini, K. Bakshi, J. Kamins, K.E. Borgmann-Winter, S.J. Siegel, R.J. Gallop, and S.E. Arnold. Altered neuregulin 1-erbB4 signaling contributes to NMDA receptor hypofunction in schizophrenia. Nat Med 12: 824–828, 2006.

    PubMed  CAS  Google Scholar 

  112. Hallett, P.J., A.W. Dunah, P. Ravenscroft, S. Zhou, E. Bezard, A.R. Crossman, J.M. Brotchie, and D.G. Standaert. Alterations of striatal NMDA receptor subunits associated with the development of dyskinesia in the MPTP-lesioned primate model of Parkinson’s disease. Neuropharmacology 48: 503–516, 2005.

    PubMed  CAS  Google Scholar 

  113. Hallett, P.J., and D.G. Standaert. Rationale for and use of NMDA receptor antagonists in Parkinson’s disease. Pharmacol Ther 102: 155–174, 2004.

    PubMed  CAS  Google Scholar 

  114. Hantraye, P., D. Riche, M. Maziere, and O. Isacson. A primate model of Huntington’s disease: behavioral and anatomical studies of unilateral excitotoxic lesions of the caudate- putamen in the baboon. Exp Neurol 108: 91–104, 1990.

    PubMed  CAS  Google Scholar 

  115. Hardingham, G.E., and H. Bading. The Yin and Yang of NMDA receptor signalling. Trends Neurosci 26: 81–89, 2003.

    PubMed  CAS  Google Scholar 

  116. Hardingham, G.E., Y. Fukunaga, and H. Bading. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci 5: 405–414, 2002.

    PubMed  CAS  Google Scholar 

  117. Harney, S.C., M. Rowan, and R. Anwyl. Long-term depression of NMDA receptormediated synaptic transmission is dependent on activation of metabotropic glutamate receptors and is altered to long-term potentiation by low intracellular calcium buffering. J Neurosci 26: 1128–1132, 2006.

    PubMed  CAS  Google Scholar 

  118. Harper, P.S. The epidemiology of Huntington’s disease. Hum Genet 89: 365–376, 1992.

    PubMed  CAS  Google Scholar 

  119. Hawkins, L.M., K. Prybylowski, K. Chang, C. Moussan, F.A. Stephenson, and R.J. Wenthold. Export from the endoplasmic reticulum of assembled N-methyl-D-aspartic acid receptors is controlled by a motif in the c terminus of the NR2 subunit. J Biol Chem 279: 28903–28910, 2004.

    PubMed  CAS  Google Scholar 

  120. Henderson, J.T., J. Georgiou, Z. Jia, J. Robertson, S. Elowe, J.C. Roder, and T. Pawson. The receptor tyrosine kinase EphB2 regulates NMDA-dependent synaptic function. Neuron 32: 1041–1056, 2001.

    PubMed  CAS  Google Scholar 

  121. Henkemeyer, M., O.S. Itkis, M. Ngo, P.W. Hickmott, and I.M. Ethell. Multiple EphB receptor tyrosine kinases shape dendritic spines in the hippocampus. J Cell Biol 163: 1313–1326, 2003.

    PubMed  CAS  Google Scholar 

  122. Herin, G.A., and E. Aizenman. Amino terminal domain regulation of NMDA receptor function. Eur J Pharmacol500: 101–111, 2004.

    PubMed  CAS  Google Scholar 

  123. Hering, H., C.C. Lin, and M. Sheng. Lipid rafts in the maintenance of synapses, dendritic spines, and surface AMPA receptor stability. J Neurosci 23: 3262–3271, 2003.

    PubMed  CAS  Google Scholar 

  124. Hirai, H., J. Kirsch, B. Laube, H. Betz, and J. Kuhse. The glycine binding site of the Nmethyl- D-aspartate receptor subunit NR1: identification of novel determinants of coagonist potentiation in the extracellular M3-M4 loop region. Proc Natl Acad Sci USA 93: 6031–6036, 1996.

    PubMed  CAS  Google Scholar 

  125. Hirao, K., Y. Hata, N. Ide, M. Takeuchi, M. Irie, I. Yao, M. Deguchi, A. Toyoda, T.C. Sudhof, and Y. Takai. A novel multiple PDZ domain-containing molecule interacting with N-methyl-D-aspartate receptors and neuronal cell adhesion proteins. J Biol Chem 273: 21105–21110, 1998.

    PubMed  CAS  Google Scholar 

  126. Hsu, S.C., A.E. Ting, C.D. Hazuka, S. Davanger, J.W. Kenny, Y. Kee, and R.H. Scheller. The mammalian brain rsec6/8 complex. Neuron 17: 1209–1219, 1996.

    PubMed  CAS  Google Scholar 

  127. Huh, K.H., and R.J. Wenthold. Turnover analysis of glutamate receptors identifies a rapidly degraded pool of the N-methyl-D-aspartate receptor subunit, NR1, in cultured cerebellar granule cells. J Biol Chem 274: 151–157, 1999.

    PubMed  CAS  Google Scholar 

  128. Humeau, Y., H. Shaban, S. Bissiere, and A. Luthi. Presynaptic induction of heterosynaptic associative plasticity in the mammalian brain. Nature 426: 841–845, 2003.

    PubMed  CAS  Google Scholar 

  129. Hynd, M.R., H.L. Scott, and P.R. Dodd. Glutamate(NMDA) receptor NR1 subunit mRNA expression in Alzheimer’s disease. J Neurochem 78: 175–182, 2001.

    PubMed  CAS  Google Scholar 

  130. Hynd, M.R., H.L. Scott, and P.R. Dodd. Selective loss of NMDA receptor NR1 subunit isoforms in Alzheimer’s disease. J Neurochem 89: 240–247, 2004.

    PubMed  CAS  Google Scholar 

  131. Hynd, M.R., H.L. Scott, and P.R. Dodd. Differential expression of N-methyl-Daspartate receptor NR2 isoforms in Alzheimer’s disease. J Neurochem 90: 913–919, 2004.

    PubMed  CAS  Google Scholar 

  132. Hynd, M.R., H.L. Scott, and P.R. Dodd. Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochem Int 45: 583–595, 2004.

    PubMed  CAS  Google Scholar 

  133. Isaac, J.T., R.A. Nicoll, and R.C. Malenka. Evidence for silent synapses: implications for the expression of LTP. Neuron 15: 427–434, 1995.

    PubMed  CAS  Google Scholar 

  134. Isaacson, J.S., and G.J. Murphy. Glutamate-mediated extrasynaptic inhibition: direct coupling of NMDA receptors to Ca(2+)-activated K+ channels. Neuron 31: 1027–1034, 2001.

    PubMed  CAS  Google Scholar 

  135. Ishii, T., K. Moriyoshi, H. Sugihara, K. Sakurada, H. Kadotani, M. Yokoi, C. Akazawa, R. Shigemoto, N. Mizuno, M. Masu, et al. Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits. J Biol Chem 268: 2836–2843, 1993.

    PubMed  CAS  Google Scholar 

  136. Jarabek, B.R., R.P. Yasuda, and B.B. Wolfe. Regulation of proteins affecting NMDA receptor-induced excitotoxicity in a Huntington’s mouse model. Brain 127: 505–516, 2004.

    PubMed  Google Scholar 

  137. Jason, G.W., O. Suchowersky, E.M. Pajurkova, L. Graham, M.L. Klimek, A.T. Garber, and D. Poirier-Heine. Cognitive manifestations of Huntington disease in relation to genetic structure and clinical onset. Arch Neurol 54: 1081–1088, 1997.

    PubMed  CAS  Google Scholar 

  138. Jourdain, P., L.H. Bergersen, K. Bhaukaurally, P. Bezzi, M. Santello, M. Domercq, C. Matute, F. Tonello, V. Gundersen, and A. Volterra. Glutamate exocytosis from astrocytes controls synaptic strength. Nat Neurosci 10: 331–339, 2007.

    PubMed  CAS  Google Scholar 

  139. Kadotani, H., T. Hirano, M. Masugi, K. Nakamura, K. Nakao, M. Katsuki, and S. Nakanishi. Motor discoordination results from combined gene disruption of the NMDA receptor NR2A and NR2C subunits, but not from single disruption of the NR2A or NR2C subunit. J Neurosci 16: 7859–7867, 1996.

    PubMed  CAS  Google Scholar 

  140. Kamenetz, F., T. Tomita, H. Hsieh, G. Seabrook, D. Borchelt, T. Iwatsubo, S. Sisodia, and R. Malinow. APP processing and synaptic function. Neuron 37: 925–937, 2003.

    PubMed  CAS  Google Scholar 

  141. Kanzaki, M., and J.E. Pessin. Insulin signaling: GLUT4 vesicles exit via the exocyst. Curr Biol 13: R574–R576, 2003.

    PubMed  CAS  Google Scholar 

  142. Karavanova, I., K. Vasudevan, J. Cheng, and A. Buonanno. Novel regional and developmental NMDA receptor expression patterns uncovered in NR2C subunit-betagalactosidase knock-in mice. Mol Cell Neurosci 34: 468–480, 2007.

    PubMed  CAS  Google Scholar 

  143. Kato, A., N. Rouach, R.A. Nicoll, and D.S. Bredt. Activity-dependent NMDA receptor degradation mediated by retrotranslocation and ubiquitination. Proc Natl Acad Sci USA 102: 5600–5605, 2005.

    PubMed  CAS  Google Scholar 

  144. Kaul, M., and S.A. Lipton. Signaling pathways to neuronal damage and apoptosis in human immunodeficiency virus type 1-associated dementia: chemokine receptors, excitotoxicity, and beyond. J Neurovirol 10(Suppl 1): 97–101, 2004.

    Google Scholar 

  145. Kennedy, M.B., and P. Manzerra. Telling tails. Proc Natl Acad Sci USA 98: 12323–12324, 2001.

    PubMed  CAS  Google Scholar 

  146. Kim, E., S. Naisbitt, Y.P. Hsueh, A. Rao, A. Rothschild, A.M. Craig, and M. Sheng. GKAP, a novel synaptic protein that interacts with the guanylate kinase-like domain of the PSD-95/SAP90 family of channel clustering molecules. J Cell Biol 136: 669–678, 1997.

    PubMed  CAS  Google Scholar 

  147. Kim, E., and M. Sheng. PDZ domain proteins of synapses. Nat Rev Neurosci 5: 771–781, 2004.

    PubMed  CAS  Google Scholar 

  148. Kim, J.H., D. Liao, L.F. Lau, and R.L. Huganir. SynGAP: a synaptic RasGAP that associates with the PSD-95/SAP90 protein family. Neuron 20: 683–691, 1998.

    PubMed  CAS  Google Scholar 

  149. Kirkham, M., and R.G. Parton. Clathrin-independent endocytosis: new insights into caveolae and non-caveolar lipid raft carriers. Biochim Biophys Acta 1746: 349–363, 2005.

    PubMed  CAS  Google Scholar 

  150. Kirson, E.D., C. Schirra, A. Konnerth, and Y. Yaari. Early postnatal switch in magnesium sensitivity of NMDA receptors in rat CA1 pyramidal cells. J Physiol 521(Pt 1): 99–111, 1999.

    Google Scholar 

  151. Kitamura, T., M. Mishina, and H. Sugiyama. Enhancement of neurogenesis by running wheel exercises is suppressed in mice lacking NMDA receptor epsilon 1 subunit. Neurosci Res 47: 55–63, 2003.

    PubMed  CAS  Google Scholar 

  152. Kneussel, M. Postsynaptic scaffold proteins at non-synaptic sites. The role of postsynaptic scaffold proteins in motor-protein-receptor complexes. EMBO Rep 6: 22–27, 2005.

    PubMed  CAS  Google Scholar 

  153. Ko, J., S. Kim, H.S. Chung, K. Kim, K. Han, H. Kim, H. Jun, B.K. Kaang, and E. Kim. SALM synaptic cell adhesion-like molecules regulate the differentiation of excitatory synapses. Neuron 50: 233–245, 2006.

    PubMed  CAS  Google Scholar 

  154. Kohr, G. NMDA receptor function: subunit composition versus spatial distribution. Cell Tissue Res 326: 439–446, 2006.

    PubMed  Google Scholar 

  155. Komuro, H., and P. Rakic. Modulation of neuronal migration by NMDA receptors. Science 260: 95–97, 1993.

    PubMed  CAS  Google Scholar 

  156. Kornau, H.C., L.T. Schenker, M.B. Kennedy, and P.H. Seeburg. Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269: 1737–1740, 1995.

    PubMed  CAS  Google Scholar 

  157. Kowal, C., L.A. Degiorgio, J.Y. Lee, M.A. Edgar, P.T. Huerta, B.T. Volpe, and B. Diamond. Human lupus autoantibodies against NMDA receptors mediate cognitive impairment. Proc Natl Acad Sci USA 103: 19854–19859, 2006.

    PubMed  CAS  Google Scholar 

  158. Kristiansen, L.V., and J.H. Meador-Woodruff. Abnormal striatal expression of transcripts encoding NMDA interacting PSD proteins in schizophrenia, bipolar disorder and major depression. Schizophr Res 78: 87–93, 2005.

    PubMed  Google Scholar 

  159. Kumada, T., and H. Komuro. Completion of neuronal migration regulated by loss of Ca(2+) transients. Proc Natl Acad Sci USA 101: 8479–8484, 2004.

    PubMed  CAS  Google Scholar 

  160. Kuppenbender, K.D., D.G. Standaert, T.J. Feuerstein, J.B.J. Penney, A.B. Young, and G.B. Landwehrmeyer. Expression of NMDA receptor subunit mRNAs in neurochemically identified projection and interneurons in the human striatum. J Comp Neurol 419: 407–421, 2000.

    PubMed  CAS  Google Scholar 

  161. Kurschner, C., P.G. Mermelstein, W.T. Holden, and D.J. Surmeier. CIPP, a novel multivalent PDZ domain protein, selectively interacts with Kir4.0 family members, NMDA receptor subunits, neurexins, and neuroligins. Mol Cell Neurosci 11: 161–172, 1998.

    PubMed  CAS  Google Scholar 

  162. Kuryatov, A., B. Laube, H. Betz, and J. Kuhse. Mutational analysis of the glycinebinding site of the NMDA receptor: structural similarity with bacterial amino acidbinding proteins. Neuron 12: 1291–1300, 1994.

    PubMed  CAS  Google Scholar 

  163. Kusumi, A., and K. Suzuki. Toward understanding the dynamics of membrane-raftbased molecular interactions. Biochim Biophys Acta 1746: 234–251, 2005.

    PubMed  CAS  Google Scholar 

  164. Kwon, O.B., M. Longart, D. Vullhorst, D.A. Hoffman, and A. Buonanno. Neuregulin-1 reverses long-term potentiation at CA1 hippocampal synapses. J Neurosci 25: 9378–9383, 2005.

    PubMed  CAS  Google Scholar 

  165. Lacor, P.N., M.C. Buniel, P.W. Furlow, A.S. Clemente, P.T. Velasco, M. Wood, K.L. Viola, and W.L. Klein. Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci 27: 796–807, 2007.

    PubMed  CAS  Google Scholar 

  166. Lambert, M.P., A.K. Barlow, B.A. Chromy, C. Edwards, R. Freed, M. Liosatos, T.E. Morgan, I. Rozovsky, B. Trommer, K.L. Viola, P. Wals, C. Zhang, C.E. Finch, G.A. Krafft, and W.L. Klein. Diffusible, nonfibrillar ligands derived from Abeta1–42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 95: 6448–6453, 1998.

    PubMed  CAS  Google Scholar 

  167. Lan, J.Y., V.A. Skeberdis, T. Jover, S.Y. Grooms, Y. Lin, R.C. Araneda, X. Zheng, M.V. Bennett, and R.S. Zukin. Protein kinase C modulates NMDA receptor trafficking and gating. Nat Neurosci 4: 382–390, 2001.

    PubMed  CAS  Google Scholar 

  168. Landles, C., and G.P. Bates. Huntingtin and the molecular pathogenesis of Huntington’s disease. Fourth in molecular medicine review series. EMBO Rep 5: 958–963, 2004.

    PubMed  CAS  Google Scholar 

  169. Landwehrmeyer, G.B., D.G. Standaert, C.M. Testa, J.B.J. Penney, and A.B. Young. NMDA receptor subunit mRNA expression by projection neurons and interneurons in rat striatum. J Neurosci 15: 5297–5307, 1995.

    PubMed  CAS  Google Scholar 

  170. Lau, C.G., and R.S. Zukin. NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat Rev Neurosci 8: 413–426, 2007.

    PubMed  CAS  Google Scholar 

  171. Lau, L.F., A. Mammen, M.D. Ehlers, S. Kindler, W.J. Chung, C.C. Garner, and R.L. Huganir. Interaction of the N-methyl-D-aspartate receptor complex with a novel synapse- associated protein, SAP102. J Biol Chem 271: 21622–21628, 1996.

    PubMed  CAS  Google Scholar 

  172. Laube, B., H. Hirai, M. Sturgess, H. Betz, and J. Kuhse. Molecular determinants of agonist discrimination by NMDA receptor subunits: analysis of the glutamate binding site on the NR2B subunit. Neuron 18: 493–503, 1997.

    PubMed  CAS  Google Scholar 

  173. Laurie, D.J., I. Bartke, R. Schoepfer, K. Naujoks, and P.H. Seeburg. Regional, developmental and interspecies expression of the four NMDAR2 subunits, examined using monoclonal antibodies. Brain Res Mol Brain Res 51: 23–32, 1997.

    PubMed  CAS  Google Scholar 

  174. Laurie, D.J., J. Putzke, W. Zieglgansberger, P.H. Seeburg, and T.R. Tolle. The distribution of splice variants of the NMDAR1 subunit mRNA in adult rat brain. Brain Res Mol Brain Res 32: 94–108, 1995.

    PubMed  CAS  Google Scholar 

  175. Laurie, D.J., and P.H. Seeburg. Regional and developmental heterogeneity in splicing of the rat brain NMDAR1 mRNA. J Neurosci 14: 3180–3194, 1994.

    PubMed  CAS  Google Scholar 

  176. Lavezzari, G., J. McCallum, C.M. Dewey, and K.W. Roche. Subunit-specific regulation of NMDA receptor endocytosis. J Neurosci 24: 6383–6391, 2004.

    PubMed  CAS  Google Scholar 

  177. Lawrence, A.D., B.J. Sahakian, J.R. Hodges, A.E. Rosser, K.W. Lange, and T.W. Robbins. Executive and mnemonic functions in early Huntington’s disease. Brain 119: 1633–1645, 1996.

    PubMed  Google Scholar 

  178. Leavitt, B.R., J.M. van Raamsdonk, J. Shehadeh, H. Fernandes, Z. Murphy, R.K. Graham, C.L. Wellington, L.A. Raymond, and M.R. Hayden. Wild-type huntingtin protects neurons from excitotoxicity. J Neurochem 96: 1121–1129, 2006.

    PubMed  CAS  Google Scholar 

  179. Lei, S., E. Czerwinska, W. Czerwinski, M.P. Walsh, and J.F. MacDonald. Regulation of NMDA receptor activity by F-actin and myosin light chain kinase. J Neurosci 21: 8464–8472, 2001.

    PubMed  CAS  Google Scholar 

  180. Leonard, A.S., I.A. Lim, D.E. Hemsworth, M.C. Horne, and J.W. Hell. Calcium/ calmodulin-dependent protein kinase II is associated with the N-methyl-Daspartate receptor. Proc Natl Acad Sci USA 96: 3239–3244, 1999.

    PubMed  CAS  Google Scholar 

  181. Levine, M.S., C. Cepeda, M.A. Hickey, S.M. Fleming, and M.F. Chesselet. Genetic mouse models of Huntington’s and Parkinson’s diseases: illuminating but imperfect. Trends Neurosci 27: 691–697, 2004.

    PubMed  CAS  Google Scholar 

  182. Levinson, J.N., N. Chery, K. Huang, T.P. Wong, K. Gerrow, R. Kang, O. Prange, Y.T. Wang, and A. El-Husseini. Neuroligins mediate excitatory and inhibitory synapse formation: involvement of PSD-95 and neurexin-1beta in neuroligin-induced synaptic specificity. J Biol Chem 280: 17312–17319, 2005.

    PubMed  CAS  Google Scholar 

  183. Li, B., N. Chen, T. Luo, Y. Otsu, T.H. Murphy, and L.A. Raymond. Differential regulation of synaptic and extra-synaptic NMDA receptors. Nat Neurosci 5: 833–834, 2002.

    PubMed  CAS  Google Scholar 

  184. Li, B.S., M.K. Sun, L. Zhang, S. Takahashi, W. Ma, L. Vinade, A.B. Kulkarni, R.O. Brady, and H.C. Pant. Regulation of NMDA receptors by cyclin-dependent kinase-5. Proc Natl Acad Sci USA 98: 12742–12747, 2001.

    PubMed  CAS  Google Scholar 

  185. Li, L., M. Fan, C.D. Icton, N. Chen, B.R. Leavitt, M.R. Hayden, T.H. Murphy, and L.A. Raymond. Role of NR2B-type NMDA receptors in selective neurodegeneration in Huntington disease. Neurobiol Aging 24: 1113–1121, 2003.

    PubMed  CAS  Google Scholar 

  186. Li, Z., and M. Sheng. Some assembly required: the development of neuronal synapses. Nat Rev Mol Cell Biol 4: 833–841, 2003.

    PubMed  CAS  Google Scholar 

  187. Lieberman, D.N., and I. Mody. Casein kinase-II regulates NMDA channel function in hippocampal neurons. Nat Neurosci 2: 125–132, 1999.

    PubMed  CAS  Google Scholar 

  188. Lien, C.C., Y. Mu, M. Vargas-Caballero, and M.M. Poo. Visual stimuli-induced LTD of GABAergic synapses mediated by presynaptic NMDA receptors. Nat Neurosci 9: 372–380, 2006.

    PubMed  CAS  Google Scholar 

  189. Lillemeier, B.F., J.R. Pfeiffer, Z. Surviladze, B.S. Wilson, and M.M. Davis. Plasma membrane-associated proteins are clustered into islands attached to the cytoskeleton. Proc Natl Acad Sci USA 103: 18992–18997, 2006.

    PubMed  CAS  Google Scholar 

  190. Lin, B., A.C. Arai, G. Lynch, and C.M. Gall. Integrins regulate NMDA receptormediated synaptic currents. J Neurophysiol 89: 2874–2878, 2003.

    PubMed  CAS  Google Scholar 

  191. Lin, S.Y., and M. Constantine-Paton. Suppression of sprouting: an early function of NMDA receptors in the absence of AMPA/kainate receptor activity. J Neurosci 18: 3725–3737, 1998.

    PubMed  CAS  Google Scholar 

  192. Lipton, S.A. The molecular basis of memantine action in Alzheimer’s disease and other neurologic disorders: low-affinity, uncompetitive antagonism. Curr Alzheimer Res 2: 155–165, 2005.

    PubMed  CAS  Google Scholar 

  193. Liu, L., T.P. Wong, M.F. Pozza, K. Lingenhoehl, Y. Wang, M. Sheng, Y.P. Auberson, and Y.T. Wang. Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science 304: 1021–1024, 2004.

    PubMed  CAS  Google Scholar 

  194. Liu, X.B., K.D. Murray, and E.G. Jones. Switching of NMDA receptor 2A and 2B subunits at thalamic and cortical synapses during early postnatal development. J Neurosci 24: 8885–8895, 2004.

    PubMed  CAS  Google Scholar 

  195. Loschmann, P.A., C. De Groote, L. Smith, U. Wullner, G. Fischer, J.A. Kemp, P. Jenner, and T. Klockgether. Antiparkinsonian activity of Ro 25–6981, a NR2B subunit specific NMDA receptor antagonist, in animal models of Parkinson’s disease. Exp Neurol 187: 86–93, 2004.

    PubMed  CAS  Google Scholar 

  196. Losi, G., K. Prybylowski, Z. Fu, J. Luo, R.J. Wenthold, and S. Vicini. PSD-95 regulates NMDA receptors in developing cerebellar granule neurons of the rat. J Physiol 548: 21–29, 2003.

    PubMed  CAS  Google Scholar 

  197. LoTurco, J.J., M.G. Blanton, and A.R. Kriegstein. Initial expression and endogenous activation of NMDA channels in early neocortical development. J Neurosci 11: 792–799, 1991.

    PubMed  CAS  Google Scholar 

  198. Low, C.M., F. Zheng, P. Lyuboslavsky, and S.F. Traynelis. Molecular determinants of coordinated proton and zinc inhibition of N-methyl-D-aspartate NR1/NR2A receptors. Proc Natl Acad Sci USA 97: 11062–11067, 2000.

    PubMed  CAS  Google Scholar 

  199. Luby, E.D., B.D. Cohen, G. Rosenbaum, J.S. Gottlieb, and R. Kelley. Study of a new schizophrenomimetic drug; sernyl. AMA Arch Neurol Psychiatry 81: 363–369, 1959.

    PubMed  CAS  Google Scholar 

  200. Luthi-Carter, R., B.L. Apostol, A.W. Dunah, M.M. DeJohn, L.A. Farrell, G.P. Bates, A.B. Young, D.G. Standaert, L.M. Thompson, and J.H. Cha. Complex alteration of NMDA receptors in transgenic Huntington’s disease mouse brain: analysis of mRNA and protein expression, plasma membrane association, interacting proteins, and phosphorylation. Neurobiol Dis 14: 624–636, 2003.

    PubMed  CAS  Google Scholar 

  201. Lynch, D.R., and R.P. Guttmann. Excitotoxicity: perspectives based on N-methyl-Daspartate receptor subtypes. J Pharmacol Exp Ther 300: 717–723, 2002.

    PubMed  CAS  Google Scholar 

  202. MacDonald, J.F., S.A. Kotecha, W.Y. Lu, and M.F. Jackson. Convergence of PKCdependent kinase signal cascades on NMDA receptors. Curr Drug Targets 2: 299–312, 2001.

    PubMed  CAS  Google Scholar 

  203. Mameli, M., M. Carta, L.D. Partridge, and C.F. Valenzuela. Neurosteroid-induced plasticity of immature synapses via retrograde modulation of presynaptic NMDA receptors. J Neurosci 25: 2285–2294, 2005.

    PubMed  CAS  Google Scholar 

  204. Manent, J.B., M. Demarque, I. Jorquera, C. Pellegrino, Y. Ben-Ari, L. Aniksztejn, and A. Represa. A noncanonical release of GABA and glutamate modulates neuronal migration. J Neurosci 25: 4755–4765, 2005.

    PubMed  CAS  Google Scholar 

  205. Manent, J.B., I. Jorquera, Y. Ben-Ari, L. Aniksztejn, and A. Represa. Glutamate acting on AMPA but not NMDA receptors modulates the migration of hippocampal interneurons. J Neurosci 26: 5901–5909, 2006.

    PubMed  CAS  Google Scholar 

  206. Matsuda, K., M. Fletcher, Y. Kamiya, and M. Yuzaki. Specific assembly with the NMDA receptor 3B subunit controls surface expression and calcium permeability of NMDA receptors. J Neurosci 23: 10064–10073, 2003.

    PubMed  CAS  Google Scholar 

  207. McCullumsmith, R.E., L.V. Kristiansen, M. Beneyto, E. Scarr, B. Dean, and J. H. Meador-Woodruff. Decreased NR1, NR2A, and SAP102 transcript expression in the hippocampus in bipolar disorder. Brain Res 1127: 108–118, 2007.

    PubMed  CAS  Google Scholar 

  208. McGee, A.W., J.R. Topinka, K. Hashimoto, R.S. Petralia, S. Kakizawa, F.W. Kauer, A. Aguilera-Moreno, R.J. Wenthold, M. Kano, and D.S. Bredt. PSD-93 knock-out mice reveal that neuronal MAGUKs are not required for development or function of parallel fiber synapses in cerebellum. J Neurosci 21: 3085–3091, 2001.

    PubMed  CAS  Google Scholar 

  209. McIlhinney, R.A., B. Le Bourdelles, E. Molnar, N. Tricaud, P. Streit, and P.J. Whiting. Assembly intracellular targeting and cell surface expression of the human N-methyl-Daspartate receptor subunits NR1a and NR2A in transfected cells. Neuropharmacology 37: 1355–1367, 1998.

    PubMed  CAS  Google Scholar 

  210. McIlhinney, R.A., E. Philipps, B. Le Bourdelles, S. Grimwood, K. Wafford, S. Sandhu, and P. Whiting. Assembly of N-methyl-D-aspartate (NMDA) receptors. Biochem Soc Trans 31: 865–868, 2003.

    PubMed  CAS  Google Scholar 

  211. McKinney, R.A., A. Luthi, C.E. Bandtlow, B.H. Gahwiler, and S.M. Thompson. Selective glutamate receptor antagonists can induce or prevent axonal sprouting in rat hippocampal slice cultures. Proc Natl Acad Sci USA 96: 11631–11636, 1999.

    PubMed  CAS  Google Scholar 

  212. Meador-Woodruff, J.H., and D.J. Healy. Glutamate receptor expression in schizophrenic brain. Brain Res Brain Res Rev 31: 288–294, 2000.

    PubMed  CAS  Google Scholar 

  213. Meddows, E., B. Le Bourdelles, S. Grimwood, K. Wafford, S. Sandhu, P. Whiting, and R.A. McIlhinney. Identification of molecular determinants that are important in the assembly of N-methyl-D-aspartate receptors. J Biol Chem 276: 18795–18803, 2001.

    PubMed  CAS  Google Scholar 

  214. Medina, I. Extrasynaptic NMDA receptors reshape gene ranks. Sci STKE 2007: pe23, 2007.

    Google Scholar 

  215. Mehta, S.Q., P.R. Hiesinger, S. Beronja, R.G. Zhai, K.L. Schulze, P. Verstreken, Y. Cao, Y. Zhou, U. Tepass, M.C. Crair, and H.J. Bellen. Mutations in Drosophila sec15 reveal a function in neuronal targeting for a subset of exocyst components. Neuron 46: 219–232, 2005.

    PubMed  CAS  Google Scholar 

  216. Menegoz, M., L.F. Lau, D. Herve, R.L. Huganir, and J.A. Girault. Tyrosine phosphorylation of NMDA receptor in rat striatum: effects of 6-OH-dopamine lesions. Neuroreport 7: 125–128, 1995.

    PubMed  CAS  Google Scholar 

  217. Meoni, P., B.H. Bunnemann, A.E. Kingsbury, D.G. Trist, and N.G. Bowery. NMDA NR1 subunit mRNA and glutamate NMDA-sensitive binding are differentially affected in the striatum and pre-frontal cortex of Parkinson’s disease patients. Neuropharmacology 38: 625–633, 1999.

    PubMed  CAS  Google Scholar 

  218. Migaud, M., P. Charlesworth, M. Dempster, L.C. Webster, A.M. Watabe, M. Makhinson, Y. He, M.F. Ramsay, R.G. Morris, J.H. Morrison, T.J. O’Dell, and S.G. Grant. Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein. Nature 396: 433–439, 1998.

    PubMed  CAS  Google Scholar 

  219. Mishizen-Eberz, A.J., R.A. Rissman, T.L. Carter, M.D. Ikonomovic, B.B. Wolfe, and D.M. Armstrong. Biochemical and molecular studies of NMDA receptor subunits NR1/2A/2B in hippocampal subregions throughout progression of Alzheimer’s disease pathology. Neurobiol Dis 15: 80–92, 2004.

    PubMed  CAS  Google Scholar 

  220. Miskevich, F., W. Lu, S.Y. Lin, and M. Constantine-Paton. Interaction between metabotropic and NMDA subtypes of glutamate receptors in sprout suppression at young synapses. J Neurosci 22: 226–238, 2002.

    PubMed  CAS  Google Scholar 

  221. Misra, C., and E.B. Ziff. EphB2 gets a GRIP on the dendritic arbor. Nat Neurosci 8: 848–850, 2005.

    PubMed  CAS  Google Scholar 

  222. Miyamoto, Y., K. Yamada, Y. Noda, H. Mori, M. Mishina, and T. Nabeshima. Lower sensitivity to stress and altered monoaminergic neuronal function in mice lacking the NMDA receptor epsilon 4 subunit. J Neurosci 22: 2335–2342, 2002.

    PubMed  CAS  Google Scholar 

  223. Mohn, A.R., R.R. Gainetdinov, M.G. Caron, and B.H. Koller. Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 98: 427–436, 1999.

    PubMed  CAS  Google Scholar 

  224. Mok, H., H. Shin, S. Kim, J.R. Lee, J. Yoon, and E. Kim. Association of the kinesin superfamily motor protein KIF1Balpha with postsynaptic density-95 (PSD-95), synapseassociated protein-97, and synaptic scaffolding molecule PSD-95/discs large/zona occludens- 1 proteins. J Neurosci 22: 5253–5258, 2002.

    PubMed  CAS  Google Scholar 

  225. Montgomery, J.M., and D.V. Madison. State-dependent heterogeneity in synaptic depression between pyramidal cell pairs. Neuron 33: 765–777, 2002.

    PubMed  CAS  Google Scholar 

  226. Monyer, H., N. Burnashev, D.J. Laurie, B. Sakmann, and P.H. Seeburg. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12: 529–540, 1994.

    PubMed  CAS  Google Scholar 

  227. Moya, F., and M. Valdeolmillos. Polarized increase of calcium and nucleokinesis in tangentially migrating neurons. Cereb Cortex 14: 610–618, 2004.

    PubMed  Google Scholar 

  228. Mu, Y., T. Otsuka, A.C. Horton, D.B. Scott, and M.D. Ehlers. Activity-dependent mRNA splicing controls ER export and synaptic delivery of NMDA receptors. Neuron 40: 581–594, 2003.

    PubMed  CAS  Google Scholar 

  229. Mueller, H.T., and J.H. Meador-Woodruff. NR3A NMDA receptor subunit mRNA expression in schizophrenia, depression and bipolar disorder. Schizophr Res 71: 361–370, 2004.

    PubMed  Google Scholar 

  230. Naisbitt, S., E. Kim, J.C. Tu, B. Xiao, C. Sala, J. Valtschanoff, R.J. Weinberg, P.F. Worley, and M. Sheng. Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron 23: 569–582, 1999.

    PubMed  CAS  Google Scholar 

  231. Nakazawa, T., S. Komai, T. Tezuka, C. Hisatsune, H. Umemori, K. Semba, M. Mishina, T. Manabe, and T. Yamamoto. Characterization of Fyn-mediated tyrosine phosphorylation sites on GluR epsilon 2 (NR2B) subunit of the N-methyl-D-aspartate receptor. J Biol Chem 276: 693–699, 2001.

    PubMed  CAS  Google Scholar 

  232. Nash, J.E., S.H. Fox, B. Henry, M.P. Hill, D. Peggs, S. McGuire, Y. Maneuf, C. Hille, J.M. Brotchie, and A.R. Crossman. Antiparkinsonian actions of ifenprodil in the MPTP-lesioned marmoset model of Parkinson’s disease. Exp Neurol 165: 136–142, 2000.

    PubMed  CAS  Google Scholar 

  233. Neyton, J., and P. Paoletti. Relating NMDA receptor function to receptor subunit composition: limitations of the pharmacological approach. J Neurosci 26: 1331–1333, 2006.

    PubMed  CAS  Google Scholar 

  234. Nichols, B.J., and J. Lippincott-Schwartz. Endocytosis without clathrin coats. Trends Cell Biol 11: 406–412, 2001.

    PubMed  CAS  Google Scholar 

  235. Niethammer, M., E. Kim, and M. Sheng. Interaction between the C terminus of NMDA receptor subunits and multiple members of the PSD-95 family of membrane-associated guanylate kinases. J Neurosci 16: 2157–2163, 1996.

    PubMed  CAS  Google Scholar 

  236. Nishimura, W., I. Yao, J. Iida, N. Tanaka, and Y. Hata. Interaction of synaptic scaffolding molecule and Beta -catenin. J Neurosci 22: 757–765, 2002.

    PubMed  CAS  Google Scholar 

  237. Nong, Y., Y.Q. Huang, and M.W. Salter. NMDA receptors are movin’ in. Curr Opin Neurobiol 14: 353–361, 2004.

    PubMed  CAS  Google Scholar 

  238. O’Connor, J.J., M.J. Rowan, and R. Anwyl. Long-lasting enhancement of NMDA receptor-mediated synaptic transmission by metabotropic glutamate receptor activation. Nature 367: 557–559, 1994.

    PubMed  CAS  Google Scholar 

  239. Obrietan, K., and K.R. Hoyt. CRE-mediated transcription is increased in Huntington’s disease transgenic mice. J Neurosci 24: 791–796, 2004.

    PubMed  CAS  Google Scholar 

  240. Oh, J.D., D.S. Russell, C.L. Vaughan, and T.N. Chase. Enhanced tyrosine phosphorylation of striatal NMDA receptor subunits: effect of dopaminergic denervation and LDOPA administration. Brain Res 813: 150–159, 1998.

    PubMed  CAS  Google Scholar 

  241. Oh, J.D., C.L. Vaughan, and T.N. Chase. Effect of dopamine denervation and dopamine agonist administration on serine phosphorylation of striatal NMDA receptor subunits. Brain Res 821: 433–442, 1999.

    PubMed  CAS  Google Scholar 

  242. Ohtakara, K., M. Nishizawa, I. Izawa, Y. Hata, S. Matsushima, W. Taki, H. Inada, Y. Takai, and M. Inagaki. Densin-180, a synaptic protein, links to PSD-95 through its direct interaction with MAGUIN-1. Genes Cells 7: 1149–1160, 2002.

    PubMed  CAS  Google Scholar 

  243. Okabe, S., C. Collin, J.M. Auerbach, N. Meiri, J. Bengzon, M.B. Kennedy, M. Segal, and R.D. McKay. Hippocampal synaptic plasticity in mice overexpressing an embryonic subunit of the NMDA receptor. J Neurosci 18: 4177–4188, 1998.

    PubMed  CAS  Google Scholar 

  244. Okabe, S., A. Miwa, and H. Okado. Alternative splicing of the C-terminal domain regulates cell surface expression of the NMDA receptor NR1 subunit. J Neurosci 19: 7781–7792, 1999.

    PubMed  CAS  Google Scholar 

  245. Oshima, S., M. Fukaya, N. Masabumi, T. Shirakawa, H. Oguchi, and M. Watanabe. Early onset of NMDA receptor GluR epsilon 1 (NR2A) expression and its abundant postsynaptic localization in developing motoneurons of the mouse hypoglossal nucleus. Neurosci Res 43: 239–250, 2002.

    PubMed  CAS  Google Scholar 

  246. Ozaki, M., M. Sasner, R. Yano, H.S. Lu, and A. Buonanno. Neuregulin-beta induces expression of an NMDA-receptor subunit. Nature 390: 691–694, 1997.

    PubMed  CAS  Google Scholar 

  247. Pak, D.T., S. Yang, S. Rudolph-Correia, E. Kim, and M. Sheng. Regulation of dendritic spine morphology by SPAR, a PSD-95-associated RapGAP. Neuron 31: 289–303, 2001.

    PubMed  CAS  Google Scholar 

  248. Passafaro, M., V. Piech, and M. Sheng. Subunit-specific temporal and spatial patterns of AMPA receptor exocytosis in hippocampal neurons. Nat Neurosci 4: 917–926, 2001.

    PubMed  CAS  Google Scholar 

  249. Paulsen, J.S., R.E. Ready, J.M. Hamilton, M.S. Mega, and J.L. Cummings. Neuropsychiatric aspects of Huntington’s disease. J Neurol Neurosurg Psychiatry 71: 310–314, 2001.

    PubMed  CAS  Google Scholar 

  250. Pavlov, I., R. Riekki, and T. Taira. Synergistic action of GABA-A and NMDA receptors in the induction of long-term depression in glutamatergic synapses in the newborn rat hippocampus. Eur J Neurosci 20: 3019–3026, 2004.

    PubMed  Google Scholar 

  251. Pearce, I.A., M.A. Cambray-Deakin, and R.D. Burgoyne. Glutamate acting on NMDA receptors stimulates neurite outgrowth from cerebellar granule cells. FEBS Lett 223: 143–147, 1987.

    PubMed  CAS  Google Scholar 

  252. Perez-Otano, I., and M.D. Ehlers. Learning from NMDA receptor trafficking: clues to the development and maturation of glutamatergic synapses. Neurosignals 13: 175–189, 2004.

    PubMed  CAS  Google Scholar 

  253. Perez-Otano, I., R. Lujan, S.J. Tavalin, M. Plomann, J. Modregger, X.B. Liu, E.G. Jones, S.F. Heinemann, D.C. Lo, and M.D. Ehlers. Endocytosis and synaptic removal of NR3A-containing NMDA receptors by PACSIN1/syndapin1. Nat Neurosci 9: 611–621, 2006.

    PubMed  CAS  Google Scholar 

  254. Perez-Otano, I., C.T. Schulteis, A. Contractor, S.A. Lipton, J.S. Trimmer, N.J. Sucher, and S.F. Heinemann. Assembly with the NR1 subunit is required for surface expression of NR3A-containing NMDA receptors. J Neurosci 21: 1228–1237, 2001.

    PubMed  CAS  Google Scholar 

  255. Perez-Otano, I., and M.D. Ehlers. Homeostatic plasticity and NMDA receptor trafficking. Trends Neurosci 28: 229–238, 2005.

    PubMed  CAS  Google Scholar 

  256. Perin-Dureau, F., J. Rachline, J. Neyton, and P. Paoletti. Mapping the binding site of the neuroprotectant ifenprodil on NMDA receptors. J Neurosci 22: 5955–5965, 2002.

    PubMed  CAS  Google Scholar 

  257. Petralia, R.S., N. Sans, Y.X. Wang, and R.J. Wenthold. Ontogeny of postsynaptic density proteins at glutamatergic synapses. Mol Cell Neurosci 29: 436–452, 2005.

    PubMed  CAS  Google Scholar 

  258. Petralia, R.S., Y.X. Wang, and R.J. Wenthold. Internalization at glutamatergic synapses during development. Eur J Neurosci 18: 3207–3217, 2003.

    PubMed  Google Scholar 

  259. Petralia, R.S., L.A. Dunbar, Y.-X. Wang, and R.J. Wenthold. Morphological correlates of glutamate receptor trafficking to synapses. Soc Neurosci Abstr 843.2, 2004.

    Google Scholar 

  260. Petralia, R.S., L.A. Dunbar, Y.-X. Wang, and R.J. Wenthold. Specific endosomal associations during the trafficking of synaptic glutamate receptors. Soc Neurosci Abs 949.1, 2005.

    Google Scholar 

  261. Petralia, R.S., J.A. Esteban, Y.X. Wang, J.G. Partridge, H.M. Zhao, R.J. Wenthold, and R. Malinow. Selective acquisition of AMPA receptors over postnatal development suggests a molecular basis for silent synapses. Nat Neurosci 2: 31–36, 1999.

    PubMed  CAS  Google Scholar 

  262. Petralia, R.S., Y.X. Wang, and R.J. Wenthold. NMDA receptors and PSD-95 are found in attachment plaques in cerebellar granular layer glomeruli. Eur J Neurosci 15: 583–587, 2002.

    PubMed  Google Scholar 

  263. Philpot, B.D., A.K. Sekhar, H.Z. Shouval, and M.F. Bear. Visual experience and deprivation bidirectionally modify the composition and function of NMDA receptors in visual cortex. Neuron 29: 157–169, 2001.

    PubMed  CAS  Google Scholar 

  264. Philpot, B.D., K.K. Cho, and M.F. Bear. Obligatory Role of NR2A for Metaplasticity in Visual Cortex. Neuron 53: 495–502, 2007.

    PubMed  CAS  Google Scholar 

  265. Picconi, B., F. Gardoni, D. Centonze, D. Mauceri, M.A. Cenci, G. Bernardi, P. Calabresi, and M. Di Luca. Abnormal Ca2+-calmodulin-dependent protein kinase II function mediates synaptic and motor deficits in experimental parkinsonism. J Neurosci 24: 5283–5291, 2004.

    PubMed  CAS  Google Scholar 

  266. Polo-Parada, L., C.M. Bose, F. Plattner, and L.T. Landmesser. Distinct roles of different neural cell adhesion molecule (NCAM) isoforms in synaptic maturation revealed by analysis of NCAM 180 kDa isoform-deficient mice. J Neurosci 24: 1852–1864, 2004.

    PubMed  CAS  Google Scholar 

  267. Prybylowski, K., K. Chang, N. Sans, L. Kan, S. Vicini, and R.J. Wenthold. The synaptic localization of NR2B-containing NMDA receptors is controlled by interactions with PDZ proteins and AP-2. Neuron 47: 845–857, 2005.

    PubMed  CAS  Google Scholar 

  268. Prybylowski, K., Z. Fu, G. Losi, L.M. Hawkins, J. Luo, K. Chang, R.J. Wenthold, and S. Vicini. Relationship between availability of NMDA receptor subunits and their expression at the synapse. J Neurosci 22: 8902–8910, 2002.

    PubMed  CAS  Google Scholar 

  269. Prybylowski, K.L., and B.B. Wolfe. Developmental differences in alternative splicing of the NR1 protein in rat cortex and cerebellum. Brain Res Dev Brain Res 123: 143–150, 2000.

    PubMed  CAS  Google Scholar 

  270. Quinlan, E.M., D. Lebel, I. Brosh, and E. Barkai. A molecular mechanism for stabilization of learning-induced synaptic modifications. Neuron 41: 185–192, 2004.

    PubMed  CAS  Google Scholar 

  271. Quinlan, E.M., D.H. Olstein, and M.F. Bear. Bidirectional, experience-dependent regulation of N-methyl-D-aspartate receptor subunit composition in the rat visual cortex during postnatal development. Proc Natl Acad Sci USA 96: 12876–12880, 1999.

    PubMed  CAS  Google Scholar 

  272. Quinlan, E.M., B.D. Philpot, R.L. Huganir, and M.F. Bear. Rapid, experiencedependent expression of synaptic NMDA receptors in visual cortex in vivo. Nat Neurosci 2: 352–357, 1999.

    PubMed  CAS  Google Scholar 

  273. Racz, B., T.A. Blanpied, M.D. Ehlers, and R.J. Weinberg. Lateral organization of endocytic machinery in dendritic spines. Nat Neurosci 7: 917–918, 2004.

    PubMed  CAS  Google Scholar 

  274. Rajan, I., and H.T. Cline. Glutamate receptor activity is required for normal development of tectal cell dendrites in vivo. J Neurosci 18: 7836–7846, 1998.

    PubMed  CAS  Google Scholar 

  275. Rampon, C., Y.P. Tang, J. Goodhouse, E. Shimizu, M. Kyin, and J.Z. Tsien. Enrichment induces structural changes and recovery from nonspatial memory deficits in CA1 NMDAR1-knockout mice. Nat Neurosci 3: 238–244, 2000.

    PubMed  CAS  Google Scholar 

  276. Rao, A., E. Kim, M. Sheng, and A.M. Craig. Heterogeneity in the molecular composition of excitatory postsynaptic sites during development of hippocampal neurons in culture. J Neurosci 18: 1217–1229, 1998.

    PubMed  CAS  Google Scholar 

  277. Rashid, N.A., and M.A. Cambray-Deakin. N-methyl-D-aspartate effects on the growth, morphology and cytoskeleton of individual neurons in vitro. Brain Res Dev Brain Res 67: 301–308, 1992.

    PubMed  CAS  Google Scholar 

  278. Regalado, M.P., R.T. Terry-Lorenzo, C.L. Waites, C.C. Garner, and R.C. Malenka. Transsynaptic signaling by postsynaptic synapse-associated protein 97. J Neurosci 26: 2343–2357, 2006.

    PubMed  CAS  Google Scholar 

  279. Roche, K.W., S. Standley, J. McCallum, L. Dune, C., M.D. Ehlers, and R.J. Wenthold. Molecular determinants of NMDA receptor internalization. Nat Neurosci 4: 794–802, 2001.

    PubMed  CAS  Google Scholar 

  280. Rumbaugh, G., K. Prybylowski, J.F. Wang, and S. Vicini. Exon 5 and spermine regulate deactivation of NMDA receptor subtypes. J Neurophysiol 83: 1300–1306, 2000.

    PubMed  CAS  Google Scholar 

  281. Rumbaugh, G., and S. Vicini. Distinct synaptic and extrasynaptic NMDA receptors in developing cerebellar granule neurons. J Neurosci 19: 10603–10610, 1999.

    PubMed  CAS  Google Scholar 

  282. Ruthazer, E.S., C.J. Akerman, and H.T. Cline. Control of axon branch dynamics by correlated activity in vivo. Science 301: 66–70, 2003.

    PubMed  CAS  Google Scholar 

  283. Salter, M.W., and L.V. Kalia. Src kinases: a hub for NMDA receptor regulation. Nat Rev Neurosci 5: 317–328, 2004. Molecular Properties and Cell Biology of the NMDA

    PubMed  CAS  Google Scholar 

  284. Sampo, B., S. Kaech, S. Kunz, and G. Banker. Two distinct mechanisms target membrane proteins to the axonal surface. Neuron 37: 611–624, 2003.

    PubMed  CAS  Google Scholar 

  285. Sans, N., K. Prybylowski, R.S. Petralia, K. Chang, Y.X. Wang, C. Racca, S. Vicini, and R.J. Wenthold. NMDA receptor trafficking through an interaction between PDZ proteins and the exocyst complex. Nat Cell Biol 5: 520–530, 2003.

    PubMed  CAS  Google Scholar 

  286. Sans, N., P.Y. Wang, Q. Du, R.S. Petralia, Y.X. Wang, S. Nakka, J.B. Blumer, I.G. Macara, and R.J. Wenthold. mPins modulates PSD-95 and SAP102 trafficking and influences NMDA receptor surface expression. Nat Cell Biol 7: 1179–1190, 2005.

    PubMed  Google Scholar 

  287. Sans, N., R.S. Petralia, Y.X. Wang, J. Blahos, 2nd, J.W. Hell, and R.J. Wenthold. A developmental change in NMDA receptor-associated proteins at hippocampal synapses. J Neurosci 20: 1260–1271, 2000.

    PubMed  CAS  Google Scholar 

  288. Sattler, R., and M. Tymianski. Molecular mechanisms of calcium-dependent excitotoxicity. J Mol Med 78: 3–13, 2000.

    PubMed  CAS  Google Scholar 

  289. Scarpini, E., P. Scheltens, and H. Feldman. Treatment of Alzheimer’s disease: current status and new perspectives. Lancet Neurol 2: 539–547, 2003.

    PubMed  CAS  Google Scholar 

  290. Schnell, E., M. Sizemore, S. Karimzadegan, L. Chen, D.S. Bredt, and R.A. Nicoll. Direct interactions between PSD-95 and stargazin control synaptic AMPA receptor number. Proc Natl Acad Sci USA 99: 13902–13907, 2002.

    PubMed  CAS  Google Scholar 

  291. Schorge, S., and D. Colquhoun. Studies of NMDA receptor function and stoichiometry with truncated and tandem subunits. J Neurosci 23: 1151–1158, 2003.

    PubMed  CAS  Google Scholar 

  292. Schwarcz, R., and C. Kohler. Differential vulnerability of central neurons of the rat to quinolinic acid. Neurosci Lett 38: 85–90, 1983.

    PubMed  CAS  Google Scholar 

  293. Scott, D.B., T.A. Blanpied, and M.D. Ehlers. Coordinated PKA and PKC phoshorylation suppresses RXR-mediated ER retention and regulates the surface delivery of NMDA receptors. Neuropharmacology 45: 755–767, 2003.

    PubMed  CAS  Google Scholar 

  294. Scott, D.B., I. Michailidis, Y. Mu, D. Logothetis, and M.D. Ehlers. Endocytosis and degradative sorting of NMDA receptors by conserved membrane-proximal signals. J Neurosci 24: 7096–7109, 2004.

    PubMed  CAS  Google Scholar 

  295. Scott, D.B., T.A. Blanpied, G.T. Swanson, C. Zhang, and M.D. Ehlers. An NMDA receptor ER retention signal regulated by phosphorylation and alternative splicing. J Neurosci 21: 3063–3072, 2001.

    PubMed  CAS  Google Scholar 

  296. Selkoe, D.J. Alzheimer’s disease is a synaptic failure. Science 298: 789–791, 2002.

    PubMed  CAS  Google Scholar 

  297. Setou, M., T. Nakagawa, D.H. Seog, and N. Hirokawa. Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. Science 288: 1796–1802, 2000.

    PubMed  CAS  Google Scholar 

  298. Shankar, G. M., B.L. Bloodgood, M. Townsend, D.M. Walsh, D.J. Selkoe, and B.L. Sabatini. Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci 27: 2866–2875, 2007.

    PubMed  CAS  Google Scholar 

  299. Shen, K., and T. Meyer. Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. Science 284: 162–166, 1999.

    PubMed  CAS  Google Scholar 

  300. Sheng, M., J. Cummings, L.A. Roldan, Y.N. Jan, and L.Y. Jan. Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature 368: 144–147, 1994.

    PubMed  CAS  Google Scholar 

  301. Shrestha, B.R., O.V. Vitolo, P. Joshi, T. Lordkipanidze, M. Shelanski, and A. Dunaevsky. Amyloid beta peptide adversely affects spine number and motility in hippocampal neurons. Mol Cell Neurosci 33: 274–282, 2006.

    PubMed  CAS  Google Scholar 

  302. Sigismund, S., T. Woelk, C. Puri, E. Maspero, C. Tacchetti, P. Transidico, F. Di, P. P., and S. Polo. Clathrin-independent endocytosis of ubiquitinated cargos. Proc Natl Acad Sci USA 102: 2760–2765, 2005.

    PubMed  CAS  Google Scholar 

  303. Simonian, S.X., and A.E. Herbison. Differing, spatially restricted roles of ionotropic glutamate receptors in regulating the migration of gnrh neurons during embryogenesis. J Neurosci 21: 934–943, 2001.

    PubMed  CAS  Google Scholar 

  304. Sjostrom, P.J., G.G. Turrigiano, and S.B. Nelson. Neocortical LTD via coincident activation of presynaptic NMDA and cannabinoid receptors. Neuron 39: 641–654, 2003.

    PubMed  Google Scholar 

  305. Skeberdis, V.A., V. Chevaleyre, C.G. Lau, J.H. Goldberg, D.L. Pettit, S.O. Suadicani, Y. Lin, M.V. Bennett, R. Yuste, P.E. Castillo, and R.S. Zukin. Protein kinase A regulates calcium permeability of NMDA receptors. Nat Neurosci 9: 501–510, 2006.

    PubMed  CAS  Google Scholar 

  306. Small, D.H., S.S. Mok, and J.C. Bornstein. Alzheimer’s disease and Abeta toxicity: from top to bottom. Nat Rev Neurosci 2: 595–598, 2001.

    PubMed  CAS  Google Scholar 

  307. Snyder, E.M., B.D. Philpot, K.M. Huber, X. Dong, J.R. Fallon, and M.F. Bear. Internalization of ionotropic glutamate receptors in response to mGluR activation. Nat Neurosci 4: 1079–1085, 2001.

    PubMed  CAS  Google Scholar 

  308. Snyder, E.M., Y. Nong, C.G. Almeida, S. Paul, T. Moran, E.Y. Choi, A.C. Nairn, M.W. Salter, P.J. Lombroso, G.K. Gouras, and P. Greengard. Regulation of NMDA receptor trafficking by amyloid-beta. Nat Neurosci 8: 1051–1058, 2005.

    PubMed  CAS  Google Scholar 

  309. Song, C., Y. Zhang, C.G. Parsons, and Y.F. Liu. Expression of polyglutamineexpanded huntingtin induces tyrosine phosphorylation of N-methyl-D-aspartate receptors. J Biol Chem 278: 33364–33369, 2003.

    PubMed  CAS  Google Scholar 

  310. Soriano, F. X., S. Papadia, F. Hofmann, N.R. Hardingham, H. Bading, and G.E. Hardingham. Preconditioning doses of NMDA promote neuroprotection by enhancing neuronal excitability. J Neurosci 26: 4509–4518, 2006.

    PubMed  CAS  Google Scholar 

  311. Spacek, J., and K.M. Harris. Three-dimensional organization of smooth endoplasmic reticulum in hippocampal CA1 dendrites and dendritic spines of the immature and mature rat. J Neurosci 17: 190–203, 1997.

    PubMed  CAS  Google Scholar 

  312. Sprengel, R., B. Suchanek, C. Amico, R. Brusa, N. Burnashev, A. Rozov, O. Hvalby, V. Jensen, O. Paulsen, P. Andersen, J.J. Kim, R.F. Thompson, W. Sun, L.C. Webster, S.G. Grant, J. Eilers, A. Konnerth, J. Li, J.O. McNamara, and P.H. Seeburg. Importance of the intracellular domain of NR2 subunits for NMDA receptor function in vivo. Cell 92: 279–289, 1998.

    PubMed  CAS  Google Scholar 

  313. Stahl, S.M. Beyond the dopamine hypothesis to the NMDA glutamate receptor hypofunction hypothesis of schizophrenia. CNS Spectr 12: 265–268, 2007.

    PubMed  Google Scholar 

  314. Standley, S., K.W. Roche, J. McCallum, N. Sans, and R.J. Wenthold. PDZ domain suppression of an ER retention signal in NMDA receptor NR1 splice variants. Neuron 28: 887–898, 2000.

    PubMed  CAS  Google Scholar 

  315. Starling, A.J., V.M. Andre, C. Cepeda, M. de Lima, S.H. Chandler, and M.S. Levine. Alterations in N-methyl-D-aspartate receptor sensitivity and magnesium blockade occur early in development in the R6/2 mouse model of Huntington’s disease. J Neurosci Res 82: 377–386, 2005.

    PubMed  CAS  Google Scholar 

  316. Stefansson, H., E. Sigurdsson, V. Steinthorsdottir, S. Bjornsdottir, T. Sigmundsson, S. Ghosh, J. Brynjolfsson, S. Gunnarsdottir, O. Ivarsson, T.T. Chou, O. Hjaltason, B. Birgisdottir, H. Jonsson, V.G. Gudnadottir, E. Gudmundsdottir, A. Bjornsson, B. Ingvarsson, A. Ingason, S. Sigfusson, H. Hardardottir, R.P. Harvey, D. Lai, M. Zhou, D. Brunner, V. Mutel, A. Gonzalo, G. Lemke, J. Sainz, G. Johannesson, T. Andresson, D. Gudbjartsson, A. Manolescu, M.L. Frigge, M.E. Gurney, A. Kong, J.R. Gulcher, H. Petursson, and K. Stefansson. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 71: 877–892, 2002.

    PubMed  Google Scholar 

  317. Steigerwald, F., T.W. Schulz, L.T. Schenker, M.B. Kennedy, P.H. Seeburg, and G. Kohr. C-Terminal truncation of NR2A subunits impairs synaptic but not extrasynaptic localization of NMDA receptors. J Neurosci 20: 4573–4581, 2000.

    PubMed  CAS  Google Scholar 

  318. Stern-Bach, Y., B. Bettler, M. Hartley, P.O. Sheppard, P.J. O’Hara, and S.F. Heinemann. Agonist selectivity of glutamate receptors is specified by two domains structurally related to bacterial amino acid-binding proteins. Neuron 13: 1345–1357, 1994.

    PubMed  CAS  Google Scholar 

  319. Stocca, G., and S. Vicini. Increased contribution of NR2A subunit to synaptic NMDA receptors in developing rat cortical neurons. J Physiol 507: 13–24, 1998.

    PubMed  CAS  Google Scholar 

  320. Strack, S., and R.J. Colbran. Autophosphorylation-dependent targeting of calcium/ calmodulin-dependent protein kinase II by the NR2B subunit of the N-methyl-Daspartate receptor. J Biol Chem 273: 20689–20692, 1998.

    PubMed  CAS  Google Scholar 

  321. Sucher, N.J., S. Akbarian, C.L. Chi, C.L. Leclerc, M. Awobuluyi, D.L. Deitcher, M.K. Wu, J.P. Yuan, E.G. Jones, and S.A. Lipton. Developmental and regional expression pattern of a novel NMDA receptor-like subunit (NMDAR-L) in the rodent brain. J Neurosci 15: 6509–6520, 1995.

    PubMed  CAS  Google Scholar 

  322. Sun, Y., A. Savanenin, P.H. Reddy, and Y.F. Liu. Polyglutamine-expanded huntingtin promotes sensitization of N-methyl-D-aspartate receptors via post-synaptic density 95. J Biol Chem 276: 24713–24718, 2001.

    PubMed  CAS  Google Scholar 

  323. Sytnyk, V., I. Leshchyns’ka, M. Delling, G. Dityateva, A. Dityatev, and M. Schachner. Neural cell adhesion molecule promotes accumulation of TGN organelles at sites of neuron- to-neuron contacts. J Cell Biol 159: 649–661, 2002.

    PubMed  CAS  Google Scholar 

  324. Takahashi, T., D. Feldmeyer, N. Suzuki, K. Onodera, S.G. Cull-Candy, K. Sakimura, and M. Mishina. Functional correlation of NMDA receptor epsilon subunits expression with the properties of single-channel and synaptic currents in the developing cerebellum. J Neurosci 16: 4376–4382, 1996.

    PubMed  CAS  Google Scholar 

  325. Takasu, M.A., M.B. Dalva, R.E. Zigmond, and M.E. Greenberg. Modulation of NMDA receptor-dependent calcium influx and gene expression through EphB receptors. Science 295: 491–495, 2002.

    PubMed  CAS  Google Scholar 

  326. Tang, Y.P., E. Shimizu, G.R. Dube, C. Rampon, G.A. Kerchner, M. Zhuo, G. Liu, and J.Z. Tsien. Genetic enhancement of learning and memory in mice. Nature 401: 63–69, 1999.

    PubMed  CAS  Google Scholar 

  327. Thomas, C.G., A.J. Miller, and G.L. Westbrook. Synaptic and extrasynaptic NMDA receptor NR2 subunits in cultured hippocampal neurons. J Neurophysiol 95: 1727–1734, 2006.

    PubMed  CAS  Google Scholar 

  328. Thompson, C.L., D.L. Drewery, H.D. Atkins, F.A. Stephenson, and P.L. Chazot. Immunohistochemical localization of N-methyl-D-aspartate receptor subunits in the adult murine hippocampal formation: evidence for a unique role of the NR2D subunit. Brain Res Mol Brain Res 102: 55–61, 2002.

    PubMed  CAS  Google Scholar 

  329. Tingley, W.G., M.D. Ehlers, K. Kameyama, C. Doherty, J.B. Ptak, C.T. Riley, and R.L. Huganir. Characterization of protein kinase A and protein kinase C phosphorylation of the N-methyl-D-aspartate receptor NR1 subunit using phosphorylation site-specific antibodies. J Biol Chem 272: 5157–5166, 1997.

    PubMed  CAS  Google Scholar 

  330. Tolias, K.F., J.B. Bikoff, A. Burette, S. Paradis, D. Harrar, S. Tavazoie, R.J. Weinberg, and M.E. Greenberg. The Rac1-GEF Tiam1 couples the NMDA receptor to the activitydependent development of dendritic arbors and spines. Neuron 45: 525–538, 2005.

    PubMed  CAS  Google Scholar 

  331. Tolias, K.F., J.B. Bikoff, C.G. Kane, C.S. Tolias, L. Hu, and M.E. Greenberg. The Rac1 guanine nucleotide exchange factor Tiam1 mediates EphB receptor-dependent dendritic spine development. Proc Natl Acad Sci USA 104: 7265–7270, 2007.

    PubMed  CAS  Google Scholar 

  332. Tomita, S., L. Chen, Y. Kawasaki, R.S. Petralia, R.J. Wenthold, R.A. Nicoll, and D.S. Bredt. Functional studies and distribution define a family of transmembrane AMPA receptor regulatory proteins. J Cell Biol 161: 805–816, 2003.

    PubMed  CAS  Google Scholar 

  333. Tovar, K.R., and G.L. Westbrook. The incorporation of NMDA receptors with a distinct subunit composition at nascent hippocampal synapses in vitro. J Neurosci 19: 4180–4188, 1999.

    PubMed  CAS  Google Scholar 

  334. Tovar, K.R., and G.L. Westbrook. Mobile NMDA receptors at hippocampal synapses. Neuron 34: 255–264, 2002.

    PubMed  CAS  Google Scholar 

  335. Townsend, M., J.P. Cleary, T. Mehta, J. Hofmeister, S. Lesne, E. O’Hare, D.M. Walsh, and D.J. Selkoe. Orally available compound prevents deficits in memory caused by the Alzheimer amyloid-beta oligomers. Ann Neurol 60: 668–676, 2006.

    PubMed  CAS  Google Scholar 

  336. Townsend, M., A. Yoshii, M. Mishina, and M. Constantine-Paton. Developmental loss of miniature N-methyl-D-aspartate receptor currents in NR2A knockout mice. Proc Natl Acad Sci USA 100: 1340–1345, 2003.

    PubMed  CAS  Google Scholar 

  337. Traynelis, S.F., M. Hartley, and S.F. Heinemann. Control of proton sensitivity of the NMDA receptor by RNA splicing and polyamines. Science 268: 873–876, 1995.

    PubMed  CAS  Google Scholar 

  338. Triller, A., and D. Choquet. Surface trafficking of receptors between synaptic and extrasynaptic membranes: and yet they do move!. Trends Neurosci 28: 133–139, 2005.

    PubMed  CAS  Google Scholar 

  339. Tu, J.C., B. Xiao, S. Naisbitt, J.P. Yuan, R.S. Petralia, P. Brakeman, A. Doan, V.K. Aakalu, A.A. Lanahan, M. Sheng, and P.F. Worley. Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins. Neuron 23: 583–592, 1999.

    PubMed  CAS  Google Scholar 

  340. Turrigiano, G.G., K.R. Leslie, N.S. Desai, L.C. Rutherford, and S.B. Nelson. Activity- dependent scaling of quantal amplitude in neocortical neurons. Nature 391: 892–896, 1998.

    PubMed  CAS  Google Scholar 

  341. Tymianski, M., M.P. Charlton, P.L. Carlen, and C.H. Tator. Source specificity of early calcium neurotoxicity in cultured embryonic spinal neurons. J Neurosci 13: 2085–2104, 1993.

    PubMed  CAS  Google Scholar 

  342. Tyzio, R., A. Represa, I. Jorquera, Y. Ben-Ari, H. Gozlan, and L. Aniksztejn. The establishment of GABAergic and glutamatergic synapses on CA1 pyramidal neurons is sequential and correlates with the development of the apical dendrite. J Neurosci 19: 10372–10382, 1999.

    PubMed  CAS  Google Scholar 

  343. Uitti, R.J., A.H. Rajput, J.E. Ahlskog, K.P. Offord, D.R. Schroeder, M.M. Ho, M. Prasad, A. Rajput, and P. Basran. Amantadine treatment is an independent predictor of improved survival in Parkinson’s disease. Neurology 46: 1551–1556, 1996.

    PubMed  CAS  Google Scholar 

  344. Van de Ven, T.J., H.M. VanDongen, and A.M. VanDongen. The nonkinase phorbol ester receptor alpha 1-chimerin binds the NMDA receptor NR2A subunit and regulates dendritic spine density. J Neurosci 25: 9488–9496, 2005.

    PubMed  Google Scholar 

  345. van Zundert, B., A. Yoshii, and M. Constantine-Paton. Receptor compartmentalization and trafficking at glutamate synapses: a developmental proposal. Trends Neurosci 27: 428–437, 2004.

    PubMed  Google Scholar 

  346. Vanhoutte, P., and H. Bading. Opposing roles of synaptic and extrasynaptic NMDA receptors in neuronal calcium signalling and BDNF gene regulation. Curr Opin Neurobiol 13: 366–371, 2003.

    PubMed  CAS  Google Scholar 

  347. Vicini, S., J.F. Wang, J.H. Li, W.J. Zhu, Y.H. Wang, J.H. Luo, B.B. Wolfe, and D.R. Grayson. Functional and pharmacological differences between recombinant Nmethyl- D-aspartate receptors. J Neurophysiol 79: 555–566, 1998.

    PubMed  CAS  Google Scholar 

  348. Vissel, B., J.J. Krupp, S.F. Heinemann, and G.L. Westbrook. A use-dependent tyrosine dephosphorylation of NMDA receptors is independent of ion flux. Nat Neurosci 4: 587–596, 2001.

    PubMed  CAS  Google Scholar 

  349. Vonsattel, J.P., and M. DiFiglia. Huntington disease. J Neuropathol Exp Neurol 57: 369–384, 1998.

    PubMed  CAS  Google Scholar 

  350. Wafford, K.A., M. Kathoria, C.J. Bain, G. Marshall, B. Le Bourdelles, J.A. Kemp, and P.J. Whiting. Identification of amino acids in the N-methyl-D-aspartate receptor NR1 subunit that contribute to the glycine binding site. Mol Pharmacol 47: 374–380, 1995.

    PubMed  CAS  Google Scholar 

  351. Walsh, D.M., and D.J. Selkoe. Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron 44: 181–193, 2004.

    PubMed  CAS  Google Scholar 

  352. Waltereit, R., and M. Weller. Signaling from cAMP/PKA to MAPK and synaptic plasticity. Mol Neurobiol 27: 99–106, 2003.

    PubMed  CAS  Google Scholar 

  353. Wang, C.Y., K. Chang, R.S. Petralia, Y.X. Wang, G.K. Seabold, and R.J. Wenthold. A novel family of adhesion-like molecules that interacts with the NMDA receptor. J Neurosci 26: 2174–2183, 2006.

    PubMed  CAS  Google Scholar 

  354. Wang, C.X., and A. Shuaib. NMDA/NR2B selective antagonists in the treatment of ischemic brain injury. Curr Drug Targets CNS Neurol Disord 4: 143–151, 2005.

    PubMed  CAS  Google Scholar 

  355. Wang, J., S. Liu, Y. Fu, J.H. Wang, and Y. Lu. Cdk5 activation induces hippocampal CA1 cell death by directly phosphorylating NMDA receptors. Nat Neurosci 6: 1039–1047, 2003.

    PubMed  CAS  Google Scholar 

  356. Wang, J.K., and V. Thukral. Presynaptic NMDA receptors display physiological characteristics of homomeric complexes of NR1 subunits that contain the exon 5 insert in the N-terminal domain. J Neurochem 66: 865–868, 1996.

    PubMed  CAS  Google Scholar 

  357. Wang, Y.T., and M.W. Salter. Regulation of NMDA receptors by tyrosine kinases and phosphatases. Nature 369: 233–235, 1994.

    PubMed  CAS  Google Scholar 

  358. Washbourne, P., J.E. Bennett, and A.K. McAllister. Rapid recruitment of NMDA receptor transport packets to nascent synapses. Nat Neurosci 5: 751–759, 2002.

    PubMed  CAS  Google Scholar 

  359. Washbourne, P., X.B. Liu, E.G. Jones, and A.K. McAllister. Cycling of NMDA receptors during trafficking in neurons before synapse formation. J Neurosci 24: 8253–8264, 2004.

    PubMed  CAS  Google Scholar 

  360. Watanabe, M., Y. Inoue, K. Sakimura, and M. Mishina. Developmental changes in distribution of NMDA receptor channel subunit mRNAs. Neuroreport 3: 1138–1140, 1992.

    PubMed  CAS  Google Scholar 

  361. Wei, F., G.D. Wang, G.A. Kerchner, S.J. Kim, H.M. Xu, Z.F. Chen, and M. Zhuo. Genetic enhancement of inflammatory pain by forebrain NR2B overexpression. Nat Neurosci 4: 164–169, 2001.

    PubMed  CAS  Google Scholar 

  362. Weissman, A.M. Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2: 169–178, 2001.

    PubMed  CAS  Google Scholar 

  363. Weitlauf, C., Y. Honse, Y.P. Auberson, M. Mishina, D.M. Lovinger, and D.G. Winder. Activation of NR2A-containing NMDA receptors is not obligatory for NMDA receptordependent long-term potentiation. J Neurosci 25: 8386–8390, 2005.

    PubMed  CAS  Google Scholar 

  364. Wenthold, R.J., K. Prybylowski, S. Standley, N. Sans, and R.S. Petralia. Trafficking of NMDA receptors. Annu Rev Pharmacol Toxicol 43: 335–358, 2003.

    PubMed  CAS  Google Scholar 

  365. Wenzel, A., D. Benke, H. Mohler, and J.M. Fritschy. N-methyl-D-aspartate receptors containing the NR2D subunit in the retina are selectively expressed in rod bipolar cells. Neuroscience 78: 1105–1112, 1997.

    PubMed  CAS  Google Scholar 

  366. Westphal, R.S., S.J. Tavalin, J.W. Lin, N.M. Alto, I.D. Fraser, L.K. Langeberg, M. Sheng, and J.D. Scott. Regulation of NMDA receptors by an associated phosphatasekinase signaling complex. Science 285: 93–96, 1999.

    PubMed  CAS  Google Scholar 

  367. Willard, F.S., R.J. Kimple, and D.P. Siderovski. Return of the GDI: the GoLoco motif in cell division. Annu Rev Biochem 73: 925–951, 2004.

    PubMed  CAS  Google Scholar 

  368. Wong, R.W., M. Setou, J. Teng, Y. Takei, and N. Hirokawa. Overexpression of motor protein KIF17 enhances spatial and working memory in transgenic mice. Proc Natl Acad Sci USA 99: 14500–14505, 2002.

    PubMed  CAS  Google Scholar 

  369. Woo, N.H., H.K. Teng, C.J. Siao, C. Chiaruttini, P.T. Pang, T.A. Milner, B.L. Hempstead, and B. Lu. Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nat Neurosci 8: 1069–1077, 2005.

    PubMed  CAS  Google Scholar 

  370. Woo, T.U., J.P. Walsh, and F.M. Benes. Density of glutamic acid decarboxylase 67 messenger RNA-containing neurons that express the N-methyl-D-aspartate receptor subunit NR2A in the anterior cingulate cortex in schizophrenia and bipolar disorder. Arch Gen Psychiatry 61: 649–657, 2004.

    PubMed  CAS  Google Scholar 

  371. Wu, H. Y., E.Y. Yuen, Y.F. Lu, M. Matsushita, H. Matsui, Z. Yan, and K. Tomizawa. Regulation of N-methyl-D-aspartate receptors by calpain in cortical neurons. J Biol Chem 280: 21588–21593, 2005.

    PubMed  CAS  Google Scholar 

  372. Wyszynski, M., J. Lin, A. Rao, E. Nigh, A.H. Beggs, A.M. Craig, and M. Sheng. Competitive binding of alpha-actinin and calmodulin to the NMDA receptor. Nature 385: 439–442, 1997.

    PubMed  CAS  Google Scholar 

  373. Xia, H., Z.D. Hornby, and R.C. Malenka. An ER retention signal explains differences in surface expression of NMDA and AMPA receptor subunits. Neuropharmacology 41: 714–723, 2001.

    PubMed  CAS  Google Scholar 

  374. Xiong, Z.G., R. Raouf, W.Y. Lu, L.Y. Wang, B.A. Orser, E.M. Dudek, M.D. Browning, and J.F. MacDonald. Regulation of N-methyl-D-aspartate receptor function by constitutively active protein kinase C. Mol Pharmacol 54: 1055–1063, 1998.

    PubMed  CAS  Google Scholar 

  375. Yang, J., G.L. Woodhall, and R.S. Jones. Tonic facilitation of glutamate release by presynaptic NR2B-containing NMDA receptors is increased in the entorhinal cortex of chronically epileptic rats. J Neurosci 26: 406–410, 2006.

    PubMed  CAS  Google Scholar 

  376. Yang, W., C. Zheng, Q. Song, X. Yang, S. Qiu, C. Liu, Z. Chen, S. Duan, and J. Luo. A three amino acid tail following the TM4 region of the N-methyl-D-aspartate receptor (NR) 2 subunits is sufficient to overcome endoplasmic reticulum retention of NR1-1a subunit. J Biol Chem 282: 9269–9278, 2007.

    PubMed  CAS  Google Scholar 

  377. Yao, I., Y. Hata, N. Ide, K. Hirao, M. Deguchi, H. Nishioka, A. Mizoguchi, and Y. Takai. MAGUIN, a novel neuronal membrane-associated guanylate kinase-interacting protein. J Biol Chem 274: 11889–11896, 1999.

    PubMed  CAS  Google Scholar 

  378. Yeaman, C., K.K. Grindstaff, J.R. Wright, and W.J. Nelson. Sec6/8 complexes on trans-Golgi network and plasma membrane regulate late stages of exocytosis in mammalian cells. J Cell Biol 155: 593–604, 2001.

    PubMed  CAS  Google Scholar 

  379. Yi, Z., R.S. Petralia, K. Prybylowski, N. Sans, Y.-X. Wang, and R.J. Wenthold. GIPC, a single PDZ domain-containing protein, interacts with the NMDA receptor and regulates its surface expression. Soc Neurosci Abs 31.14, 2006.

    Google Scholar 

  380. Yi, Z., R.S. Petralia, N. Sans, and W. RJ. NMDA receptors interact with GIPC. Soc Neurosci Abs 487.10, 2005.

    Google Scholar 

  381. Yoshii, A., M.H. Sheng, and M. Constantine-Paton. Eye opening induces a rapid dendritic localization of PSD-95 in central visual neurons. Proc Natl Acad Sci USA 100: 1334–1339, 2003.

    PubMed  CAS  Google Scholar 

  382. Young, A.B., J.T. Greenamyre, Z. Hollingsworth, R. Albin, C. D’Amato, I. Shoulson, and J.B. Penney. NMDA receptor losses in putamen from patients with Huntington’s disease. Science 241: 981–983, 1988.

    PubMed  CAS  Google Scholar 

  383. Yuen, E.Y., Q. Jiang, J. Feng, and Z. Yan. Microtubule regulation of N-methyl-Daspartate receptor channels in neurons. J Biol Chem 280: 29420–29427, 2005.

    PubMed  CAS  Google Scholar 

  384. Zarate, C.A., J. Quiroz, J. Payne, and H.K. Manji. Modulators of the glutamatergic system: implications for the development of improved therapeutics in mood disorders. Psychopharmacol Bull 36: 35–83, 2002.

    PubMed  Google Scholar 

  385. Zarate, C.A.J., J.B. Singh, P.J. Carlson, N.E. Brutsche, R. Ameli, D.A. Luckenbaugh, D.S. Charney, and H.K. Manji. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63: 856–864, 2006.

    PubMed  CAS  Google Scholar 

  386. Zeron, M.M., N. Chen, A. Moshaver, A.T. Lee, C.L. Wellington, M.R. Hayden, and L.A. Raymond. Mutant huntingtin enhances excitotoxic cell death. Mol Cell Neurosci 17: 41–53, 2001.

    PubMed  CAS  Google Scholar 

  387. Zeron, M.M., O. Hansson, N. Chen, C.L. Wellington, B.R. Leavitt, P. Brundin, M.R. Hayden, and L.A. Raymond. Increased sensitivity to N-methyl-D-aspartate receptormediated excitotoxicity in a mouse model of Huntington’s disease. Neuron 33: 849–860, 2002.

    PubMed  CAS  Google Scholar 

  388. Zhang, S.J., M.N. Steijaert, D. Lau, G. Schutz, C. Delucinge-Vivier, P. Descombes, and H. Bading. Decoding NMDA Receptor Signaling: identification of Genomic Programs Specifying Neuronal Survival and Death. Neuron 53: 549–562, 2007.

    PubMed  CAS  Google Scholar 

  389. Zhang, W., L. Vazquez, M. Apperson, and M.B. Kennedy. Citron binds to PSD-95 at glutamatergic synapses on inhibitory neurons in the hippocampus. J Neurosci 19: 96–108, 1999.

    PubMed  CAS  Google Scholar 

  390. Zheng, X., L. Zhang, A.P. Wang, M.V. Bennett, and R.S. Zukin. Protein kinase C potentiation of N-methyl-D-aspartate receptor activity is not mediated by phosphorylation of N-methyl-D-aspartate receptor subunits. Proc Natl Acad Sci USA 96: 15262–15267, 1999.

    Google Scholar 

  391. Ziv, N.E., and C.C. Garner. Cellular and molecular mechanisms of presynaptic assembly. Nat Rev Neurosci 5: 385–399, 2004.

    PubMed  CAS  Google Scholar 

  392. Zukin, R.S., and M.V. Bennett. Alternatively spliced isoforms of the NMDARI receptor subunit. Trends Neurosci 18: 306–313, 1995.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wenthold, R.J., Al-Hallaq, R.A., Swanwick, C.C., Petralia, R.S. (2008). Molecular Properties and Cell Biology of the NMDA Receptor. In: Hell, J.W., Ehlers, M.D. (eds) Structural And Functional Organization Of The Synapse. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-77232-5_12

Download citation

Publish with us

Policies and ethics