Advertisement

Molecular Properties and Cell Biology of the NMDA Receptor

  • Robert J. Wenthold
  • Rana A. Al-Hallaq
  • Catherine Croft Swanwick
  • Ronald S. Petralia

Abstract

NMDA receptors (NMDARs) play a distinct role at excitatory glutamatergic synapses, where they are usually localized with other ionotropic glutamate receptors, including tors. Two features are essential to their specialized roles in synaptic plasticity and the excitodependent magnesium block, the removal of which requires depolarization of the membrane potential. Second, upon activation, the NMDAR channel passes sodium and, importantly, calcium into the neuron. Calcium is the universal second messenger in numerous intracellular signaling cascades and is critical in synaptic plasticity and mechanisms of neurotoxicity (288).

Keywords

NMDA Receptor Cerebellar Granule Cell NR2B Subunit NMDA Receptor Subunit Excitotoxic Cell Death 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abel, T., P.V. Nguyen, M. Barad, T.A. Deuel, E.R. Kandel, and R. Bourtchouladze. Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampusbased long-term memory. Cell 88: 615–626, 1997.PubMedGoogle Scholar
  2. 2.
    Adesnik, H., R.A. Nicoll, and P.M. England. Photoinactivation of native AMPA receptors reveals their real-time trafficking. Neuron 48: 977–985, 2005.PubMedGoogle Scholar
  3. 3.
    Al-Hallaq, R.A., T.P. Conrads, T.D. Veenstra, and R.J. Wenthold. NMDA diheteromeric receptor populations and associated proteins in rat hippocampus. J Neurosci 27: 8334–8343, 2007.PubMedGoogle Scholar
  4. 4.
    Al-Hallaq, R.A., B.R. Jarabek, Z. Fu, S. Vicini, B.B. Wolfe, and R.P. Yasuda. Association of NR3A with the N-methyl-D-aspartate receptor NR1 and NR2 subunits. Mol Pharmacol 62: 1119–1127, 2002.PubMedGoogle Scholar
  5. 5.
    Allen, J.A., R.A. Halverson-Tamboli, and M.M. Rasenick. Lipid raft microdomains and neurotransmitter signalling. Nat Rev Neurosci 8: 128–140, 2007.PubMedGoogle Scholar
  6. 6.
    Amparan, D., D. Avram, C.G. Thomas, M.G. Lindahl, J. Yang, G. Bajaj, and J.E. Ishmael. Direct interaction of myosin regulatory light chain with the NMDA receptor. J Neurochem 92: 349–361, 2005.PubMedGoogle Scholar
  7. 7.
    Andrasfalvy, B.K., and J.C. Magee. Changes in AMPA receptor currents following LTP induction on rat CA1 pyramidal neurones. J Physiol 559: 543–554, 2004.PubMedGoogle Scholar
  8. 8.
    Andre, V.M., C. Cepeda, A. Venegas, Y. Gomez, and M.S. Levine. Altered cortical glutamate receptor function in the R6/2 model of Huntington’s disease. J Neurophysiol 95: 2108–2119, 2006.PubMedGoogle Scholar
  9. 9.
    Arbuthnott, G.W., C.A. Ingham, and J.R. Wickens. Dopamine and synaptic plasticity in the neostriatum. J Anat 196: 587–596, 2000.PubMedGoogle Scholar
  10. 10.
    Awobuluyi, M., J. Yang, Y. Ye, J.E. Chatterton, A. Godzik, S.A. Lipton, and D. Zhang. Subunit-specific roles of glycine-binding domains in activation of NR1/NR3 N-methyl- D-aspartate receptors. Mol Pharmacol 71: 112–122, 2007.PubMedGoogle Scholar
  11. 11.
    Bardoni, R., C. Torsney, C.K. Tong, M. Prandini, and A.B. MacDermott. Presynaptic NMDA receptors modulate glutamate release from primary sensory neurons in rat spinal cord dorsal horn. J Neurosci 24: 2774–2781, 2004.PubMedGoogle Scholar
  12. 12.
    Barria, A., and R. Malinow. Subunit-specific NMDA receptor trafficking to synapses. Neuron 35: 345–353, 2002.PubMedGoogle Scholar
  13. 13.
    Barria, A., and R. Malinow. NMDA receptor subunit composition controls synaptic plasticity by regulating binding to CaMKII. Neuron 48: 289–301, 2005.PubMedGoogle Scholar
  14. 14.
    Bashir, Z.I., S. Alford, S.N. Davies, A.D. Randall, and G.L. Collingridge. Long-term potentiation of NMDA receptor-mediated synaptic transmission in the hippocampus. Nature 349: 156–158, 1991.PubMedGoogle Scholar
  15. 15.
    Basselin, M., L. Chang, J.M. Bell, and S.I. Rapoport. Chronic lithium chloride administration attenuates brain NMDA receptor-initiated signaling via arachidonic acid in unanesthetized rats. Neuropsychopharmacology 31: 1659–1674, 2006.PubMedGoogle Scholar
  16. 16.
    Bayer, K.U., K. De, P., A.S. Leonard, J.W. Hell, and H. Schulman. Interaction with the NMDA receptor locks CaMKII in an active conformation. Nature 411: 801–805, 2001.PubMedGoogle Scholar
  17. 17.
    Becker, S., and J.M. Wojtowicz. A model of hippocampal neurogenesis in memory and mood disorders. Trends Cogn Sci 11: 70–76, 2007.PubMedGoogle Scholar
  18. 18.
    Behar, T.N., C.A. Scott, C.L. Greene, X. Wen, S.V. Smith, D. Maric, Q.Y. Liu, C.A. Colton, and J.L. Barker. Glutamate acting at NMDA receptors stimulates embryonic cortical neuronal migration. J Neurosci 19: 4449–4461, 1999.PubMedGoogle Scholar
  19. 19.
    Bendel, O., B. Meijer, Y. Hurd, and G. von Euler. Cloning and expression of the human NMDA receptor subunit NR3B in the adult human hippocampus. Neurosci Lett 377: 31–36, 2005.PubMedGoogle Scholar
  20. 20.
    Berberich, S., P. Punnakkal, V. Jensen, V. Pawlak, P.H. Seeburg, O. Hvalby, and G. Kohr. Lack of NMDA receptor subtype selectivity for hippocampal long-term potentiation. J Neurosci 25: 6907–6910, 2005.PubMedGoogle Scholar
  21. 21.
    Bernard-Trifilo, J.A., E.A. Kramar, R. Torp, C.Y. Lin, E.A. Pineda, G. Lynch, and C.M. Gall. Integrin signaling cascades are operational in adult hippocampal synapses and modulate NMDA receptor physiology. J Neurochem 93: 834–849, 2005.PubMedGoogle Scholar
  22. 22.
    Berretta, N., F. Berton, R. Bianchi, M. Brunelli, M. Capogna, and W. Francesconi. Longterm Potentiation of NMDA Receptor-mediated EPSP in Guinea-pig Hippocampal Slices. Eur J Neurosci 3: 850–854, 1991.PubMedGoogle Scholar
  23. 23.
    Betarbet, R., O. Poisik, T.B. Sherer, and J.T. Greenamyre. Differential expression and ser897 phosphorylation of striatal N-methyl-D-aspartate receptor subunit NR1 in animal models of Parkinson’s disease. Exp Neurol 187: 76–85, 2004.PubMedGoogle Scholar
  24. 24.
    Blanpied, T.A., D.B. Scott, and M.D. Ehlers. Dynamics and regulation of clathrin coats at specialized endocytic zones of dendrites and spines. Neuron 36: 435–449, 2002.PubMedGoogle Scholar
  25. 25.
    Bleakman, D., A. Alt, and E.S. Nisenbaum. Glutamate receptors and pain. Semin Cell Dev Biol 17: 592–604, 2006.PubMedGoogle Scholar
  26. 26.
    Blumer, J.B., L.J. Chandler, and S.M. Lanier. Expression analysis and subcellular distribution of the two G-protein regulators AGS3 and LGN indicate distinct functionality. Localization of LGN to the midbody during cytokinesis. J Biol Chem 277: 15897–15903, 2002.PubMedGoogle Scholar
  27. 27.
    Boyce-Rustay, J.M., and A. Holmes. Genetic inactivation of the NMDA receptor NR2A subunit has anxiolytic- and antidepressant-like effects in mice. Neuropsychopharmacology 31: 2405–2414, 2006.PubMedGoogle Scholar
  28. 28.
    Bresler, T., M. Shapira, T. Boeckers, T. Dresbach, M. Futter, C.C. Garner, K. Rosenblum, E.D. Gundelfinger, and N.E. Ziv. Postsynaptic density assembly is fundamentally different from presynaptic active zone assembly. J Neurosci 24: 1507–1520, 2004.PubMedGoogle Scholar
  29. 29.
    Brewer, G.J., and C.W. Cotman. NMDA receptor regulation of neuronal morphology in cultured hippocampal neurons. Neurosci Lett 99: 268–273, 1989.PubMedGoogle Scholar
  30. 30.
    Brickley, S.G., C. Misra, M.H. Mok, M. Mishina, and S.G. Cull-Candy. NR2B and NR2D subunits coassemble in cerebellar Golgi cells to form a distinct NMDA receptor subtype restricted to extrasynaptic sites. J Neurosci 23: 4958–4966, 2003.PubMedGoogle Scholar
  31. 31.
    Bukalo, O., N. Fentrop, A.Y. Lee, B. Salmen, J.W. Law, C.T. Wotjak, M. Schweizer, A. Dityatev, and M. Schachner. Conditional ablation of the neural cell adhesion molecule reduces precision of spatial learning, long-term potentiation, and depression in the CA1 subfield of mouse hippocampus. J Neurosci 24: 1565–1577, 2004.PubMedGoogle Scholar
  32. 32.
    Calabresi, P., D. Centonze, and G. Bernardi. Electrophysiology of dopamine in normal and denervated striatal neurons. Trends Neurosci 23: S57–S63, 2000.PubMedGoogle Scholar
  33. 33.
    Calabresi, P., P. Giacomini, D. Centonze, and G. Bernardi. Levodopa-induced dyskinesia: a pathological form of striatal synaptic plasticity? Ann Neurol 47: S60–S68; discussion S68–S69, 2000.PubMedGoogle Scholar
  34. 34.
    Calabresi, P., N.B. Mercuri, G. Sancesario, and G. Bernardi. Electrophysiology of dopamine- denervated striatal neurons. Implications for Parkinson’s disease. Brain 116: 433–452, 1993.PubMedGoogle Scholar
  35. 35.
    Calon, F., A.H. Rajput, O. Hornykiewicz, P.J. Bedard, and T. Di Paolo. Levodopainduced motor complications are associated with alterations of glutamate receptors in Parkinson’s disease. Neurobiol Dis 14: 404–416, 2003.PubMedGoogle Scholar
  36. 36.
    Cao, J., J.I. Viholainen, C. Dart, H.K. Warwick, M.L. Leyland, and M.J. Courtney. The PSD95-nNOS interface: a target for inhibition of excitotoxic p38 stress-activated protein kinase activation and cell death. J Cell Biol 168: 117–126, 2005.PubMedGoogle Scholar
  37. 37.
    Carleton, A., L.T. Petreanu, R. Lansford, A. Alvarez-Buylla, and P.M. Lledo. Becoming a new neuron in the adult olfactory bulb. Nat Neurosci 6: 507–518, 2003.PubMedGoogle Scholar
  38. 38.
    Casado, M., P. Isope, and P. Ascher. Involvement of presynaptic N-methyl-D-aspartate receptors in cerebellar long-term depression. Neuron 33: 123–130, 2002.PubMedGoogle Scholar
  39. 39.
    Charriaut-Marlangue, C., S. Otani, C. Creuzet, Y. Ben-Ari, and J. Loeb. Rapid activation of hippocampal casein kinase II during long-term potentiation. Proc Natl Acad Sci USA 88: 10232–10236, 1991.PubMedGoogle Scholar
  40. 40.
    Chatterton, J.E., M. Awobuluyi, L.S. Premkumar, H. Takahashi, M. Talantova, Y. Shin, J. Cui, S. Tu, K.A. Sevarino, N. Nakanishi, G. Tong, S.A. Lipton, and D. Zhang. Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature 415: 793–798, 2002.PubMedGoogle Scholar
  41. 41.
    Chavis, P., and G. Westbrook. Integrins mediate functional pre- and postsynaptic maturation at a hippocampal synapse. Nature 411: 317–321, 2001.PubMedGoogle Scholar
  42. 42.
    Chazot, P.L., and F.A. Stephenson. Biochemical evidence for the existence of a pool of unassembled C2 exon-containing NR1 subunits of the mammalian forebrain NMDA receptor. J Neurochem 68: 507–516, 1997.PubMedGoogle Scholar
  43. 43.
    Chen, L., and L.Y. Huang. Protein kinase C reduces Mg2+ block of NMDA-receptor channels as a mechanism of modulation. Nature 356: 521–523, 1992.PubMedGoogle Scholar
  44. 44.
    Chen, N., T. Luo, C. Wellington, M. Metzler, K. McCutcheon, M.R. Hayden, and L.A. Raymond. Subtype-specific enhancement of NMDA receptor currents by mutant huntingtin. J Neurochem 72: 1890–1898, 1999.PubMedGoogle Scholar
  45. 45.
    Chen, W., and A. Helenius. Role of ribosome and translocon complex during folding of influenza hemagglutinin in the endoplasmic reticulum of living cells. Mol Biol Cell 11: 765–772, 2000.PubMedGoogle Scholar
  46. 46.
    Cheng, C., D.M. Fass, and I.J. Reynolds. Emergence of excitotoxicity in cultured forebrain neurons coincides with larger glutamate-stimulated [Ca(2+)](i) increases and NMDA receptor mRNA levels. Brain Res 849: 97–108, 1999.PubMedGoogle Scholar
  47. 47.
    Choi, Y.B., L. Tenneti, D.A. Le, J. Ortiz, G. Bai, H.S. Chen, and S.A. Lipton. Molecular basis of NMDA receptor-coupled ion channel modulation by S-nitrosylation. Nat Neurosci 3: 15–21, 2000.PubMedGoogle Scholar
  48. 48.
    Christopherson, K.S., B.J. Hillier, W.A. Lim, and D.S. Bredt. PSD-95 assembles a ternary complex with the N-methyl-D-aspartic acid receptor and a bivalent neuronal NO synthase PDZ domain. J Biol Chem 274: 27467–27473, 1999.PubMedGoogle Scholar
  49. 49.
    Chung, H.J., Y.H. Huang, L.F. Lau, and R.L. Huganir. Regulation of the NMDA receptor complex and trafficking by activity-dependent phosphorylation of the NR2B subunit PDZ ligand. J Neurosci 24: 10248–10259, 2004.PubMedGoogle Scholar
  50. 50.
    Ciabarra, A.M., J.M. Sullivan, L.G. Gahn, G. Pecht, S. Heinemann, and K.A. Sevarino. Cloning and characterization of chi-1: a developmentally regulated member of a novel class of the ionotropic glutamate receptor family. J Neurosci 15: 6498–6508, 1995.PubMedGoogle Scholar
  51. 51.
    Cleary, J., J.M. Hittner, M. Semotuk, P. Mantyh, and E. O’Hare. Beta-amyloid(1–40) effects on behavior and memory. Brain Res 682: 69–74, 1995.PubMedGoogle Scholar
  52. 52.
    Colonnese, M.T., J.P. Zhao, and M. Constantine-Paton. NMDA receptor currents suppress synapse formation on sprouting axons in vivo. J Neurosci 25: 1291–1303, 2005.PubMedGoogle Scholar
  53. 53.
    Cottrell, J.R., E. Borok, T.L. Horvath, and E. Nedivi. CPG2: a brain- and synapsespecific protein that regulates the endocytosis of glutamate receptors. Neuron 44: 677–690, 2004.PubMedGoogle Scholar
  54. 54.
    Crump, F.T., K.S. Dillman, and A.M. Craig. cAMP-dependent protein kinase mediates activity-regulated synaptic targeting of NMDA receptors. J Neurosci 21: 5079–5088, 2001.PubMedGoogle Scholar
  55. 55.
    Cull-Candy, S., S. Brickley, and M. Farrant. NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol 11: 327–335, 2001.PubMedGoogle Scholar
  56. 56.
    Dalva, M.B., A.C. McClelland, and M.S. Kayser. Cell adhesion molecules: signalling functions at the synapse. Nat Rev Neurosci 8: 206–220, 2007.PubMedGoogle Scholar
  57. 57.
    Dalva, M.B., M.A. Takasu, M.Z. Lin, S.M. Shamah, L. Hu, N.W. Gale, and M.E. Greenberg. EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell 103: 945–956, 2000.PubMedGoogle Scholar
  58. 58.
    Das, S., Y.F. Sasaki, T. Rothe, L.S. Premkumar, M. Takasu, J.E. Crandall, P. Dikkes, D.A. Conner, P.V. Rayudu, W. Cheung, H.S. Chen, S.A. Lipton, and N. Nakanishi. Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A. Nature 393: 377–381, 1998.PubMedGoogle Scholar
  59. 59.
    Davey, F., M. Hill, J. Falk, N. Sans, and F. J. Gunn-Moore. Synapse associated protein 102 is a novel binding partner to the cytoplasmic terminus of neurone-glial related cell adhesion molecule. J Neurochem 94: 1243–1253, 2005.PubMedGoogle Scholar
  60. 60.
    Davies, C.A., D.M. Mann, P.Q. Sumpter, and P.O. Yates. A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer’s disease. J Neurol Sci 78: 151–164, 1987.PubMedGoogle Scholar
  61. 61.
    DeGiorgio, L.A., K.N. Konstantinov, S.C. Lee, J.A. Hardin, B.T. Volpe, and B. Diamond. A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus. Nat Med 7: 1189–1193, 2001.PubMedGoogle Scholar
  62. 62.
    Demyanenko, G.P., M. Schachner, E. Anton, R. Schmid, G. Feng, J. Sanes, and P.F. Maness. Close homolog of L1 modulates area-specific neuronal positioning and dendrite orientation in the cerebral cortex. Neuron 44: 423–437, 2004.PubMedGoogle Scholar
  63. 63.
    Derkach, V., A. Barria, and T.R. Soderling. Ca2+/calmodulin-kinase II enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Proc Natl Acad Sci USA 96: 3269–3274, 1999.PubMedGoogle Scholar
  64. 64.
    deSouza, S., and E.B. Ziff. AMPA receptors do the electric slide. Sci STKE2002: PE45, 2002.Google Scholar
  65. 65.
    DiFiglia, M. Excitotoxic injury of the neostriatum: a model for Huntington’s disease. Trends Neurosci 13: 286–289, 1990.PubMedGoogle Scholar
  66. 66.
    Dingledine, R., K. Borges, D. Bowie, and S.F. Traynelis. The glutamate receptor ion channels. Pharmacol Rev 51: 7–61, 1999.PubMedGoogle Scholar
  67. 67.
    Dosemeci, A., J.H. Tao-Cheng, L. Vinade, C.A. Winters, L. Pozzo-Miller, and T.S. Reese. Glutamate-induced transient modification of the postsynaptic density. Proc Natl Acad Sci USA 98: 10428–10432, 2001.PubMedGoogle Scholar
  68. 68.
    Dracheva, S., S.A. Marras, S.L. Elhakem, F.R. Kramer, K.L. Davis, and V. Haroutunian. N-methyl-D-aspartic acid receptor expression in the dorsolateral prefrontal cortex of elderly patients with schizophrenia. Am J Psychiatry 158: 1400–1410, 2001.PubMedGoogle Scholar
  69. 69.
    Du, Q., P.T. Stukenberg, and I.G. Macara. A mammalian partner of inscuteable binds NuMA and regulates mitotic spindle organization. Nat Cell Biol 3: 1069–1075, 2001.PubMedGoogle Scholar
  70. 70.
    Dudman, J.T., M.E. Eaton, A. Rajadhyaksha, W. Macias, M. Taher, A. Barczak, K. Kameyama, R. Huganir, and C. Konradi. Dopamine D1 receptors mediate CREB phosphorylation via phosphorylation of the NMDA receptor at Ser897-NR1. J Neurochem 87: 922–934, 2003.PubMedGoogle Scholar
  71. 71.
    Duguid, I.C., and T.G. Smart. Retrograde activation of presynaptic NMDA receptors enhances GABA release at cerebellar interneuron-Purkinje cell synapses. Nat Neurosci 7: 525–533, 2004.PubMedGoogle Scholar
  72. 72.
    Dunah, A.W., A.C. Sirianni, A.A. Fienberg, E. Bastia, M.A. Schwarzschild, and D.G. Standaert. Dopamine D1-dependent trafficking of striatal N-methyl-D-aspartate glutamate receptors requires Fyn protein tyrosine kinase but not DARPP-32. Mol Pharmacol 65: 121–129, 2004.PubMedGoogle Scholar
  73. 73.
    Dunah, A.W., and D.G. Standaert. Dopamine D1 receptor-dependent trafficking of striatal NMDA glutamate receptors to the postsynaptic membrane. J Neurosci 21: 5546–5558, 2001.PubMedGoogle Scholar
  74. 74.
    Dunah, A.W., Y. Wang, R.P. Yasuda, K. Kameyama, R.L. Huganir, B.B. Wolfe, and D.G. Standaert. Alterations in subunit expression, composition, and phosphorylation of striatal N-methyl-D-aspartate glutamate receptors in a rat 6-hydroxydopamine model of Parkinson’s disease. Mol Pharmacol 57: 342–352, 2000.PubMedGoogle Scholar
  75. 75.
    Dunah, A.W., R.P. Yasuda, Y.H. Wang, J. Luo, M. Davila-Garcia, M. Gbadegesin, S. Vicini, and B.B. Wolfe. Regional and ontogenic expression of the NMDA receptor subunit NR2D protein in rat brain using a subunit-specific antibody. J Neurochem 67: 2335–2345, 1996.PubMedGoogle Scholar
  76. 76.
    Durand, G.M., M.V. Bennett, and R.S. Zukin. Splice variants of the N-methyl-Daspartate receptor NR1 identify domains involved in regulation by polyamines and protein kinase C. Proc Natl Acad Sci USA 90: 6731–6735, 1993.PubMedGoogle Scholar
  77. 77.
    Durand, G.M., P. Gregor, X. Zheng, M.V. Bennett, G.R. Uhl, and R.S. Zukin. Cloning of an apparent splice variant of the rat N-methyl-D-aspartate receptor NMDAR1 with altered sensitivity to polyamines and activators of protein kinase C. Proc Natl Acad Sci USA 89: 9359–9363, 1992.PubMedGoogle Scholar
  78. 78.
    Ehlers, M.D. Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat Neurosci 6: 231–242, 2003.PubMedGoogle Scholar
  79. 79.
    Ehrlich, I., M. Klein, S. Rumpel, and R. Malinow. PSD-95 is required for activity-driven synapse stabilization. Proc Natl Acad Sci USA 104: 4176–4181, 2007.PubMedGoogle Scholar
  80. 80.
    Eisen, A., and M. Weber. Treatment of amyotrophic lateral sclerosis. Drugs Aging 14: 173–196, 1999.PubMedGoogle Scholar
  81. 81.
    El-Husseini, A.E., E. Schnell, D.M. Chetkovich, R.A. Nicoll, and D.S. Bredt. PSD-95 involvement in maturation of excitatory synapses. Science 290: 1364–1368, 2000.PubMedGoogle Scholar
  82. 82.
    Elias, G.M., L. Funke, V. Stein, S.G. Grant, D.S. Bredt, and R.A. Nicoll. Synapsespecific and developmentally regulated targeting of AMPA receptors by a family of MAGUK scaffolding proteins. Neuron 52: 307–320, 2006.PubMedGoogle Scholar
  83. 83.
    Ellgaard, L., and A. Helenius. ER quality control: towards an understanding at the molecular level. Curr Opin Cell Biol 13: 431–437, 2001.PubMedGoogle Scholar
  84. 84.
    Erisir, A., and J.L. Harris. Decline of the critical period of visual plasticity is concurrent with the reduction of NR2B subunit of the synaptic NMDA receptor in layer 4. J Neurosci 23: 5208–5218, 2003.PubMedGoogle Scholar
  85. 85.
    Fan, M.M., and L.A. Raymond. N-Methyl-D-aspartate (NMDA) receptor function and excitotoxicity in Huntington’s disease. Prog Neurobiol 81: 272–293, 2007.PubMedGoogle Scholar
  86. 86.
    Fiebiger, E., D. Tortorella, M.H. Jouvin, J.P. Kinet, and H.L. Ploegh. Cotranslational endoplasmic reticulum assembly of FcepsilonRI controls the formation of functional IgE-binding receptors. J Exp Med 201: 267–277, 2005.PubMedGoogle Scholar
  87. 87.
    Fong, D.K., A. Rao, F.T. Crump, and A.M. Craig. Rapid synaptic remodeling by protein kinase C: reciprocal translocation of NMDA receptors and calcium/calmodulindependent kinase II. J Neurosci 22: 2153–2164, 2002.PubMedGoogle Scholar
  88. 88.
    Forrest, D., M. Yuzaki, H.D. Soares, L. Ng, D.C. Luk, M. Sheng, C.L. Stewart, J.I. Morgan, J.A. Connor, and T. Curran. Targeted disruption of NMDA receptor 1 gene abolishes NMDA response and results in neonatal death. Neuron 13: 325–338, 1994.PubMedGoogle Scholar
  89. 89.
    Friedman, H.V., T. Bresler, C.C. Garner, and N.E. Ziv. Assembly of new individual excitatory synapses: time course and temporal order of synaptic molecule recruitment. Neuron 27: 57–69, 2000.PubMedGoogle Scholar
  90. 90.
    Fu, Z., S.M. Logan, and S. Vicini. Deletion of the NR2A subunit prevents developmental changes of NMDA-mEPSCs in cultured mouse cerebellar granule neurones. J Physiol 563: 867–881, 2005.PubMedGoogle Scholar
  91. 91.
    Fukaya, M., A. Kato, C. Lovett, S. Tonegawa, and M. Watanabe. Retention of NMDA receptor NR2 subunits in the lumen of endoplasmic reticulum in targeted NR1 knockout mice. Proc Natl Acad Sci USA 100: 4855–4860, 2003.PubMedGoogle Scholar
  92. 92.
    Furukawa, H., S.K. Singh, R. Mancusso, and E. Gouaux. Subunit arrangement and function in NMDA receptors. Nature 438: 185–192, 2005.PubMedGoogle Scholar
  93. 93.
    Furuyashiki, T., K. Fujisawa, A. Fujita, P. Madaule, S. Uchino, M. Mishina, H. Bito, and S. Narumiya. Citron, a Rho-target, interacts with PSD-95/SAP-90 at glutamatergic synapses in the thalamus. J Neurosci 19: 109–118, 1999.PubMedGoogle Scholar
  94. 94.
    Futai, K., M.J. Kim, T. Hashikawa, P. Scheiffele, M. Sheng, and Y. Hayashi. Retrograde modulation of presynaptic release probability through signaling mediated by PSD-95- neuroligin. Nat Neurosci 10: 186–195, 2007.PubMedGoogle Scholar
  95. 95.
    Fux, C.M., M. Krug, A. Dityatev, T. Schuster, and M. Schachner. NCAM180 and glutamate receptor subtypes in potentiated spine synapses: an immunogold electron microscopic study. Mol Cell Neurosci 24: 939–950, 2003.PubMedGoogle Scholar
  96. 96.
    Gao, X.M., K. Sakai, R.C. Roberts, R.R. Conley, B. Dean, and C.A. Tamminga. Ionotropic glutamate receptors and expression of N-methyl-D-aspartate receptor subunits in subregions of human hippocampus: effects of schizophrenia. Am J Psychiatry 157: 1141–1149, 2000.PubMedGoogle Scholar
  97. 97.
    Garcia, R.A., K. Vasudevan, and A. Buonanno. The neuregulin receptor ErbB-4 interacts with PDZ-containing proteins at neuronal synapses. Proc Natl Acad Sci USA 97: 3596–3601, 2000.PubMedGoogle Scholar
  98. 98.
    Gardoni, F., and M. Di Luca. New targets for pharmacological intervention in the glutamatergic synapse. Eur J Pharmacol 545: 2–10, 2006.PubMedGoogle Scholar
  99. 99.
    Gardoni, F., L.H. Schrama, D. van, J.J., W.H. Gispen, F. Cattabeni, and L. Di, M. AlphaCaMKII binding to the C-terminal tail of NMDA receptor subunit NR2A and its modulation by autophosphorylation. FEBS Lett 456: 394–398, 1999.PubMedGoogle Scholar
  100. 100.
    Gerber, G., I. Kangrga, P.D. Ryu, J.S. Larew, and M. Randic. Multiple effects of phorbol esters in the rat spinal dorsal horn. J Neurosci 9: 3606–3617, 1989.PubMedGoogle Scholar
  101. 101.
    Gerges, N.Z., D.S. Backos, C.N. Rupasinghe, M.R. Spaller, and J.A. Esteban. Dual role of the exocyst in AMPA receptor targeting and insertion into the postsynaptic membrane. EMBO J 25: 1623–1634, 2006.PubMedGoogle Scholar
  102. 102.
    Goto, Y., T. Niidome, A. Akaike, T. Kihara, and H. Sugimoto. Amyloid beta-peptide preconditioning reduces glutamate-induced neurotoxicity by promoting endocytosis of NMDA receptor. Biochem Biophys Res Commun 351: 259–265, 2006.PubMedGoogle Scholar
  103. 103.
    Frizelle, P.A., P.E. Chen, and D.J. Wyllie. Equilibrium constants for (R)-[(S)-1-(4-bromophenyl)- ethylamino]-(2,3-dioxo-1,2,3,4-tetrahydroquino xalin-5-yl)-methyl]-phosphonic acid (NVP-AAM077) acting at recombinant NR1/NR2A and NR1/NR2B N-methyl-Daspartate receptors: implications for studies of synaptic transmission. Mol Pharmacol 70: 1022–1032, 2006.PubMedGoogle Scholar
  104. 104.
    Groc, L., M. Heine, L. Cognet, K. Brickley, F.A. Stephenson, B. Lounis, and D. Choquet. Differential activity-dependent regulation of the lateral mobilities of AMPA and NMDA receptors. Nat Neurosci 7: 695–696, 2004.PubMedGoogle Scholar
  105. 105.
    Groc, L., M. Heine, S.L. Cousins, F.A. Stephenson, B. Lounis, L. Cognet, and D. Choquet. NMDA receptor surface mobility depends on NR2A-2B subunits. Proc Natl Acad Sci USA 103: 18769–18774, 2006.PubMedGoogle Scholar
  106. 106.
    Grosshans, D.R., D.A. Clayton, S.J. Coultrap, and M.D. Browning. LTP leads to rapid surface expression of NMDA but not AMPA receptors in adult rat CA1. Nat Neurosci 5: 27–33, 2002.PubMedGoogle Scholar
  107. 107.
    Grossman, S.D., L.J. Rosenberg, and J.R. Wrathall. Temporal-spatial pattern of acute neuronal and glial loss after spinal cord contusion. Exp Neurol 168: 273–282, 2001.PubMedGoogle Scholar
  108. 108.
    Grunwald, I.C., M. Korte, D. Wolfer, G.A. Wilkinson, K. Unsicker, H.P. Lipp, T. Bonhoeffer, and R. Klein. Kinase-independent requirement of EphB2 receptors in hippocampal synaptic plasticity. Neuron 32: 1027–1040, 2001.PubMedGoogle Scholar
  109. 109.
    Gu, Z., Q. Jiang, A.K. Fu, N.Y. Ip, and Z. Yan. Regulation of NMDA receptors by neuregulin signaling in prefrontal cortex. J Neurosci 25: 4974–4984, 2005.PubMedGoogle Scholar
  110. 110.
    Guillaud, L., M. Setou, and N. Hirokawa. KIF17 dynamics and regulation of NR2B trafficking in hippocampal neurons. J Neurosci 23: 131–140, 2003.PubMedGoogle Scholar
  111. 111.
    Hahn, C. G., H.Y. Wang, D.S. Cho, K. Talbot, R.E. Gur, W.H. Berrettini, K. Bakshi, J. Kamins, K.E. Borgmann-Winter, S.J. Siegel, R.J. Gallop, and S.E. Arnold. Altered neuregulin 1-erbB4 signaling contributes to NMDA receptor hypofunction in schizophrenia. Nat Med 12: 824–828, 2006.PubMedGoogle Scholar
  112. 112.
    Hallett, P.J., A.W. Dunah, P. Ravenscroft, S. Zhou, E. Bezard, A.R. Crossman, J.M. Brotchie, and D.G. Standaert. Alterations of striatal NMDA receptor subunits associated with the development of dyskinesia in the MPTP-lesioned primate model of Parkinson’s disease. Neuropharmacology 48: 503–516, 2005.PubMedGoogle Scholar
  113. 113.
    Hallett, P.J., and D.G. Standaert. Rationale for and use of NMDA receptor antagonists in Parkinson’s disease. Pharmacol Ther 102: 155–174, 2004.PubMedGoogle Scholar
  114. 114.
    Hantraye, P., D. Riche, M. Maziere, and O. Isacson. A primate model of Huntington’s disease: behavioral and anatomical studies of unilateral excitotoxic lesions of the caudate- putamen in the baboon. Exp Neurol 108: 91–104, 1990.PubMedGoogle Scholar
  115. 115.
    Hardingham, G.E., and H. Bading. The Yin and Yang of NMDA receptor signalling. Trends Neurosci 26: 81–89, 2003.PubMedGoogle Scholar
  116. 116.
    Hardingham, G.E., Y. Fukunaga, and H. Bading. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci 5: 405–414, 2002.PubMedGoogle Scholar
  117. 117.
    Harney, S.C., M. Rowan, and R. Anwyl. Long-term depression of NMDA receptormediated synaptic transmission is dependent on activation of metabotropic glutamate receptors and is altered to long-term potentiation by low intracellular calcium buffering. J Neurosci 26: 1128–1132, 2006.PubMedGoogle Scholar
  118. 118.
    Harper, P.S. The epidemiology of Huntington’s disease. Hum Genet 89: 365–376, 1992.PubMedGoogle Scholar
  119. 119.
    Hawkins, L.M., K. Prybylowski, K. Chang, C. Moussan, F.A. Stephenson, and R.J. Wenthold. Export from the endoplasmic reticulum of assembled N-methyl-D-aspartic acid receptors is controlled by a motif in the c terminus of the NR2 subunit. J Biol Chem 279: 28903–28910, 2004.PubMedGoogle Scholar
  120. 120.
    Henderson, J.T., J. Georgiou, Z. Jia, J. Robertson, S. Elowe, J.C. Roder, and T. Pawson. The receptor tyrosine kinase EphB2 regulates NMDA-dependent synaptic function. Neuron 32: 1041–1056, 2001.PubMedGoogle Scholar
  121. 121.
    Henkemeyer, M., O.S. Itkis, M. Ngo, P.W. Hickmott, and I.M. Ethell. Multiple EphB receptor tyrosine kinases shape dendritic spines in the hippocampus. J Cell Biol 163: 1313–1326, 2003.PubMedGoogle Scholar
  122. 122.
    Herin, G.A., and E. Aizenman. Amino terminal domain regulation of NMDA receptor function. Eur J Pharmacol500: 101–111, 2004.PubMedGoogle Scholar
  123. 123.
    Hering, H., C.C. Lin, and M. Sheng. Lipid rafts in the maintenance of synapses, dendritic spines, and surface AMPA receptor stability. J Neurosci 23: 3262–3271, 2003.PubMedGoogle Scholar
  124. 124.
    Hirai, H., J. Kirsch, B. Laube, H. Betz, and J. Kuhse. The glycine binding site of the Nmethyl- D-aspartate receptor subunit NR1: identification of novel determinants of coagonist potentiation in the extracellular M3-M4 loop region. Proc Natl Acad Sci USA 93: 6031–6036, 1996.PubMedGoogle Scholar
  125. 125.
    Hirao, K., Y. Hata, N. Ide, M. Takeuchi, M. Irie, I. Yao, M. Deguchi, A. Toyoda, T.C. Sudhof, and Y. Takai. A novel multiple PDZ domain-containing molecule interacting with N-methyl-D-aspartate receptors and neuronal cell adhesion proteins. J Biol Chem 273: 21105–21110, 1998.PubMedGoogle Scholar
  126. 126.
    Hsu, S.C., A.E. Ting, C.D. Hazuka, S. Davanger, J.W. Kenny, Y. Kee, and R.H. Scheller. The mammalian brain rsec6/8 complex. Neuron 17: 1209–1219, 1996.PubMedGoogle Scholar
  127. 127.
    Huh, K.H., and R.J. Wenthold. Turnover analysis of glutamate receptors identifies a rapidly degraded pool of the N-methyl-D-aspartate receptor subunit, NR1, in cultured cerebellar granule cells. J Biol Chem 274: 151–157, 1999.PubMedGoogle Scholar
  128. 128.
    Humeau, Y., H. Shaban, S. Bissiere, and A. Luthi. Presynaptic induction of heterosynaptic associative plasticity in the mammalian brain. Nature 426: 841–845, 2003.PubMedGoogle Scholar
  129. 129.
    Hynd, M.R., H.L. Scott, and P.R. Dodd. Glutamate(NMDA) receptor NR1 subunit mRNA expression in Alzheimer’s disease. J Neurochem 78: 175–182, 2001.PubMedGoogle Scholar
  130. 130.
    Hynd, M.R., H.L. Scott, and P.R. Dodd. Selective loss of NMDA receptor NR1 subunit isoforms in Alzheimer’s disease. J Neurochem 89: 240–247, 2004.PubMedGoogle Scholar
  131. 131.
    Hynd, M.R., H.L. Scott, and P.R. Dodd. Differential expression of N-methyl-Daspartate receptor NR2 isoforms in Alzheimer’s disease. J Neurochem 90: 913–919, 2004.PubMedGoogle Scholar
  132. 132.
    Hynd, M.R., H.L. Scott, and P.R. Dodd. Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochem Int 45: 583–595, 2004.PubMedGoogle Scholar
  133. 133.
    Isaac, J.T., R.A. Nicoll, and R.C. Malenka. Evidence for silent synapses: implications for the expression of LTP. Neuron 15: 427–434, 1995.PubMedGoogle Scholar
  134. 134.
    Isaacson, J.S., and G.J. Murphy. Glutamate-mediated extrasynaptic inhibition: direct coupling of NMDA receptors to Ca(2+)-activated K+ channels. Neuron 31: 1027–1034, 2001.PubMedGoogle Scholar
  135. 135.
    Ishii, T., K. Moriyoshi, H. Sugihara, K. Sakurada, H. Kadotani, M. Yokoi, C. Akazawa, R. Shigemoto, N. Mizuno, M. Masu, et al. Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits. J Biol Chem 268: 2836–2843, 1993.PubMedGoogle Scholar
  136. 136.
    Jarabek, B.R., R.P. Yasuda, and B.B. Wolfe. Regulation of proteins affecting NMDA receptor-induced excitotoxicity in a Huntington’s mouse model. Brain 127: 505–516, 2004.PubMedGoogle Scholar
  137. 137.
    Jason, G.W., O. Suchowersky, E.M. Pajurkova, L. Graham, M.L. Klimek, A.T. Garber, and D. Poirier-Heine. Cognitive manifestations of Huntington disease in relation to genetic structure and clinical onset. Arch Neurol 54: 1081–1088, 1997.PubMedGoogle Scholar
  138. 138.
    Jourdain, P., L.H. Bergersen, K. Bhaukaurally, P. Bezzi, M. Santello, M. Domercq, C. Matute, F. Tonello, V. Gundersen, and A. Volterra. Glutamate exocytosis from astrocytes controls synaptic strength. Nat Neurosci 10: 331–339, 2007.PubMedGoogle Scholar
  139. 139.
    Kadotani, H., T. Hirano, M. Masugi, K. Nakamura, K. Nakao, M. Katsuki, and S. Nakanishi. Motor discoordination results from combined gene disruption of the NMDA receptor NR2A and NR2C subunits, but not from single disruption of the NR2A or NR2C subunit. J Neurosci 16: 7859–7867, 1996.PubMedGoogle Scholar
  140. 140.
    Kamenetz, F., T. Tomita, H. Hsieh, G. Seabrook, D. Borchelt, T. Iwatsubo, S. Sisodia, and R. Malinow. APP processing and synaptic function. Neuron 37: 925–937, 2003.PubMedGoogle Scholar
  141. 141.
    Kanzaki, M., and J.E. Pessin. Insulin signaling: GLUT4 vesicles exit via the exocyst. Curr Biol 13: R574–R576, 2003.PubMedGoogle Scholar
  142. 142.
    Karavanova, I., K. Vasudevan, J. Cheng, and A. Buonanno. Novel regional and developmental NMDA receptor expression patterns uncovered in NR2C subunit-betagalactosidase knock-in mice. Mol Cell Neurosci 34: 468–480, 2007.PubMedGoogle Scholar
  143. 143.
    Kato, A., N. Rouach, R.A. Nicoll, and D.S. Bredt. Activity-dependent NMDA receptor degradation mediated by retrotranslocation and ubiquitination. Proc Natl Acad Sci USA 102: 5600–5605, 2005.PubMedGoogle Scholar
  144. 144.
    Kaul, M., and S.A. Lipton. Signaling pathways to neuronal damage and apoptosis in human immunodeficiency virus type 1-associated dementia: chemokine receptors, excitotoxicity, and beyond. J Neurovirol 10(Suppl 1): 97–101, 2004.Google Scholar
  145. 145.
    Kennedy, M.B., and P. Manzerra. Telling tails. Proc Natl Acad Sci USA 98: 12323–12324, 2001.PubMedGoogle Scholar
  146. 146.
    Kim, E., S. Naisbitt, Y.P. Hsueh, A. Rao, A. Rothschild, A.M. Craig, and M. Sheng. GKAP, a novel synaptic protein that interacts with the guanylate kinase-like domain of the PSD-95/SAP90 family of channel clustering molecules. J Cell Biol 136: 669–678, 1997.PubMedGoogle Scholar
  147. 147.
    Kim, E., and M. Sheng. PDZ domain proteins of synapses. Nat Rev Neurosci 5: 771–781, 2004.PubMedGoogle Scholar
  148. 148.
    Kim, J.H., D. Liao, L.F. Lau, and R.L. Huganir. SynGAP: a synaptic RasGAP that associates with the PSD-95/SAP90 protein family. Neuron 20: 683–691, 1998.PubMedGoogle Scholar
  149. 149.
    Kirkham, M., and R.G. Parton. Clathrin-independent endocytosis: new insights into caveolae and non-caveolar lipid raft carriers. Biochim Biophys Acta 1746: 349–363, 2005.PubMedGoogle Scholar
  150. 150.
    Kirson, E.D., C. Schirra, A. Konnerth, and Y. Yaari. Early postnatal switch in magnesium sensitivity of NMDA receptors in rat CA1 pyramidal cells. J Physiol 521(Pt 1): 99–111, 1999.Google Scholar
  151. 151.
    Kitamura, T., M. Mishina, and H. Sugiyama. Enhancement of neurogenesis by running wheel exercises is suppressed in mice lacking NMDA receptor epsilon 1 subunit. Neurosci Res 47: 55–63, 2003.PubMedGoogle Scholar
  152. 152.
    Kneussel, M. Postsynaptic scaffold proteins at non-synaptic sites. The role of postsynaptic scaffold proteins in motor-protein-receptor complexes. EMBO Rep 6: 22–27, 2005.PubMedGoogle Scholar
  153. 153.
    Ko, J., S. Kim, H.S. Chung, K. Kim, K. Han, H. Kim, H. Jun, B.K. Kaang, and E. Kim. SALM synaptic cell adhesion-like molecules regulate the differentiation of excitatory synapses. Neuron 50: 233–245, 2006.PubMedGoogle Scholar
  154. 154.
    Kohr, G. NMDA receptor function: subunit composition versus spatial distribution. Cell Tissue Res 326: 439–446, 2006.PubMedGoogle Scholar
  155. 155.
    Komuro, H., and P. Rakic. Modulation of neuronal migration by NMDA receptors. Science 260: 95–97, 1993.PubMedGoogle Scholar
  156. 156.
    Kornau, H.C., L.T. Schenker, M.B. Kennedy, and P.H. Seeburg. Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269: 1737–1740, 1995.PubMedGoogle Scholar
  157. 157.
    Kowal, C., L.A. Degiorgio, J.Y. Lee, M.A. Edgar, P.T. Huerta, B.T. Volpe, and B. Diamond. Human lupus autoantibodies against NMDA receptors mediate cognitive impairment. Proc Natl Acad Sci USA 103: 19854–19859, 2006.PubMedGoogle Scholar
  158. 158.
    Kristiansen, L.V., and J.H. Meador-Woodruff. Abnormal striatal expression of transcripts encoding NMDA interacting PSD proteins in schizophrenia, bipolar disorder and major depression. Schizophr Res 78: 87–93, 2005.PubMedGoogle Scholar
  159. 159.
    Kumada, T., and H. Komuro. Completion of neuronal migration regulated by loss of Ca(2+) transients. Proc Natl Acad Sci USA 101: 8479–8484, 2004.PubMedGoogle Scholar
  160. 160.
    Kuppenbender, K.D., D.G. Standaert, T.J. Feuerstein, J.B.J. Penney, A.B. Young, and G.B. Landwehrmeyer. Expression of NMDA receptor subunit mRNAs in neurochemically identified projection and interneurons in the human striatum. J Comp Neurol 419: 407–421, 2000.PubMedGoogle Scholar
  161. 161.
    Kurschner, C., P.G. Mermelstein, W.T. Holden, and D.J. Surmeier. CIPP, a novel multivalent PDZ domain protein, selectively interacts with Kir4.0 family members, NMDA receptor subunits, neurexins, and neuroligins. Mol Cell Neurosci 11: 161–172, 1998.PubMedGoogle Scholar
  162. 162.
    Kuryatov, A., B. Laube, H. Betz, and J. Kuhse. Mutational analysis of the glycinebinding site of the NMDA receptor: structural similarity with bacterial amino acidbinding proteins. Neuron 12: 1291–1300, 1994.PubMedGoogle Scholar
  163. 163.
    Kusumi, A., and K. Suzuki. Toward understanding the dynamics of membrane-raftbased molecular interactions. Biochim Biophys Acta 1746: 234–251, 2005.PubMedGoogle Scholar
  164. 164.
    Kwon, O.B., M. Longart, D. Vullhorst, D.A. Hoffman, and A. Buonanno. Neuregulin-1 reverses long-term potentiation at CA1 hippocampal synapses. J Neurosci 25: 9378–9383, 2005.PubMedGoogle Scholar
  165. 165.
    Lacor, P.N., M.C. Buniel, P.W. Furlow, A.S. Clemente, P.T. Velasco, M. Wood, K.L. Viola, and W.L. Klein. Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci 27: 796–807, 2007.PubMedGoogle Scholar
  166. 166.
    Lambert, M.P., A.K. Barlow, B.A. Chromy, C. Edwards, R. Freed, M. Liosatos, T.E. Morgan, I. Rozovsky, B. Trommer, K.L. Viola, P. Wals, C. Zhang, C.E. Finch, G.A. Krafft, and W.L. Klein. Diffusible, nonfibrillar ligands derived from Abeta1–42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 95: 6448–6453, 1998.PubMedGoogle Scholar
  167. 167.
    Lan, J.Y., V.A. Skeberdis, T. Jover, S.Y. Grooms, Y. Lin, R.C. Araneda, X. Zheng, M.V. Bennett, and R.S. Zukin. Protein kinase C modulates NMDA receptor trafficking and gating. Nat Neurosci 4: 382–390, 2001.PubMedGoogle Scholar
  168. 168.
    Landles, C., and G.P. Bates. Huntingtin and the molecular pathogenesis of Huntington’s disease. Fourth in molecular medicine review series. EMBO Rep 5: 958–963, 2004.PubMedGoogle Scholar
  169. 169.
    Landwehrmeyer, G.B., D.G. Standaert, C.M. Testa, J.B.J. Penney, and A.B. Young. NMDA receptor subunit mRNA expression by projection neurons and interneurons in rat striatum. J Neurosci 15: 5297–5307, 1995.PubMedGoogle Scholar
  170. 170.
    Lau, C.G., and R.S. Zukin. NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat Rev Neurosci 8: 413–426, 2007.PubMedGoogle Scholar
  171. 171.
    Lau, L.F., A. Mammen, M.D. Ehlers, S. Kindler, W.J. Chung, C.C. Garner, and R.L. Huganir. Interaction of the N-methyl-D-aspartate receptor complex with a novel synapse- associated protein, SAP102. J Biol Chem 271: 21622–21628, 1996.PubMedGoogle Scholar
  172. 172.
    Laube, B., H. Hirai, M. Sturgess, H. Betz, and J. Kuhse. Molecular determinants of agonist discrimination by NMDA receptor subunits: analysis of the glutamate binding site on the NR2B subunit. Neuron 18: 493–503, 1997.PubMedGoogle Scholar
  173. 173.
    Laurie, D.J., I. Bartke, R. Schoepfer, K. Naujoks, and P.H. Seeburg. Regional, developmental and interspecies expression of the four NMDAR2 subunits, examined using monoclonal antibodies. Brain Res Mol Brain Res 51: 23–32, 1997.PubMedGoogle Scholar
  174. 174.
    Laurie, D.J., J. Putzke, W. Zieglgansberger, P.H. Seeburg, and T.R. Tolle. The distribution of splice variants of the NMDAR1 subunit mRNA in adult rat brain. Brain Res Mol Brain Res 32: 94–108, 1995.PubMedGoogle Scholar
  175. 175.
    Laurie, D.J., and P.H. Seeburg. Regional and developmental heterogeneity in splicing of the rat brain NMDAR1 mRNA. J Neurosci 14: 3180–3194, 1994.PubMedGoogle Scholar
  176. 176.
    Lavezzari, G., J. McCallum, C.M. Dewey, and K.W. Roche. Subunit-specific regulation of NMDA receptor endocytosis. J Neurosci 24: 6383–6391, 2004.PubMedGoogle Scholar
  177. 177.
    Lawrence, A.D., B.J. Sahakian, J.R. Hodges, A.E. Rosser, K.W. Lange, and T.W. Robbins. Executive and mnemonic functions in early Huntington’s disease. Brain 119: 1633–1645, 1996.PubMedGoogle Scholar
  178. 178.
    Leavitt, B.R., J.M. van Raamsdonk, J. Shehadeh, H. Fernandes, Z. Murphy, R.K. Graham, C.L. Wellington, L.A. Raymond, and M.R. Hayden. Wild-type huntingtin protects neurons from excitotoxicity. J Neurochem 96: 1121–1129, 2006.PubMedGoogle Scholar
  179. 179.
    Lei, S., E. Czerwinska, W. Czerwinski, M.P. Walsh, and J.F. MacDonald. Regulation of NMDA receptor activity by F-actin and myosin light chain kinase. J Neurosci 21: 8464–8472, 2001.PubMedGoogle Scholar
  180. 180.
    Leonard, A.S., I.A. Lim, D.E. Hemsworth, M.C. Horne, and J.W. Hell. Calcium/ calmodulin-dependent protein kinase II is associated with the N-methyl-Daspartate receptor. Proc Natl Acad Sci USA 96: 3239–3244, 1999.PubMedGoogle Scholar
  181. 181.
    Levine, M.S., C. Cepeda, M.A. Hickey, S.M. Fleming, and M.F. Chesselet. Genetic mouse models of Huntington’s and Parkinson’s diseases: illuminating but imperfect. Trends Neurosci 27: 691–697, 2004.PubMedGoogle Scholar
  182. 182.
    Levinson, J.N., N. Chery, K. Huang, T.P. Wong, K. Gerrow, R. Kang, O. Prange, Y.T. Wang, and A. El-Husseini. Neuroligins mediate excitatory and inhibitory synapse formation: involvement of PSD-95 and neurexin-1beta in neuroligin-induced synaptic specificity. J Biol Chem 280: 17312–17319, 2005.PubMedGoogle Scholar
  183. 183.
    Li, B., N. Chen, T. Luo, Y. Otsu, T.H. Murphy, and L.A. Raymond. Differential regulation of synaptic and extra-synaptic NMDA receptors. Nat Neurosci 5: 833–834, 2002.PubMedGoogle Scholar
  184. 184.
    Li, B.S., M.K. Sun, L. Zhang, S. Takahashi, W. Ma, L. Vinade, A.B. Kulkarni, R.O. Brady, and H.C. Pant. Regulation of NMDA receptors by cyclin-dependent kinase-5. Proc Natl Acad Sci USA 98: 12742–12747, 2001.PubMedGoogle Scholar
  185. 185.
    Li, L., M. Fan, C.D. Icton, N. Chen, B.R. Leavitt, M.R. Hayden, T.H. Murphy, and L.A. Raymond. Role of NR2B-type NMDA receptors in selective neurodegeneration in Huntington disease. Neurobiol Aging 24: 1113–1121, 2003.PubMedGoogle Scholar
  186. 186.
    Li, Z., and M. Sheng. Some assembly required: the development of neuronal synapses. Nat Rev Mol Cell Biol 4: 833–841, 2003.PubMedGoogle Scholar
  187. 187.
    Lieberman, D.N., and I. Mody. Casein kinase-II regulates NMDA channel function in hippocampal neurons. Nat Neurosci 2: 125–132, 1999.PubMedGoogle Scholar
  188. 188.
    Lien, C.C., Y. Mu, M. Vargas-Caballero, and M.M. Poo. Visual stimuli-induced LTD of GABAergic synapses mediated by presynaptic NMDA receptors. Nat Neurosci 9: 372–380, 2006.PubMedGoogle Scholar
  189. 189.
    Lillemeier, B.F., J.R. Pfeiffer, Z. Surviladze, B.S. Wilson, and M.M. Davis. Plasma membrane-associated proteins are clustered into islands attached to the cytoskeleton. Proc Natl Acad Sci USA 103: 18992–18997, 2006.PubMedGoogle Scholar
  190. 190.
    Lin, B., A.C. Arai, G. Lynch, and C.M. Gall. Integrins regulate NMDA receptormediated synaptic currents. J Neurophysiol 89: 2874–2878, 2003.PubMedGoogle Scholar
  191. 191.
    Lin, S.Y., and M. Constantine-Paton. Suppression of sprouting: an early function of NMDA receptors in the absence of AMPA/kainate receptor activity. J Neurosci 18: 3725–3737, 1998.PubMedGoogle Scholar
  192. 192.
    Lipton, S.A. The molecular basis of memantine action in Alzheimer’s disease and other neurologic disorders: low-affinity, uncompetitive antagonism. Curr Alzheimer Res 2: 155–165, 2005.PubMedGoogle Scholar
  193. 193.
    Liu, L., T.P. Wong, M.F. Pozza, K. Lingenhoehl, Y. Wang, M. Sheng, Y.P. Auberson, and Y.T. Wang. Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science 304: 1021–1024, 2004.PubMedGoogle Scholar
  194. 194.
    Liu, X.B., K.D. Murray, and E.G. Jones. Switching of NMDA receptor 2A and 2B subunits at thalamic and cortical synapses during early postnatal development. J Neurosci 24: 8885–8895, 2004.PubMedGoogle Scholar
  195. 195.
    Loschmann, P.A., C. De Groote, L. Smith, U. Wullner, G. Fischer, J.A. Kemp, P. Jenner, and T. Klockgether. Antiparkinsonian activity of Ro 25–6981, a NR2B subunit specific NMDA receptor antagonist, in animal models of Parkinson’s disease. Exp Neurol 187: 86–93, 2004.PubMedGoogle Scholar
  196. 196.
    Losi, G., K. Prybylowski, Z. Fu, J. Luo, R.J. Wenthold, and S. Vicini. PSD-95 regulates NMDA receptors in developing cerebellar granule neurons of the rat. J Physiol 548: 21–29, 2003.PubMedGoogle Scholar
  197. 197.
    LoTurco, J.J., M.G. Blanton, and A.R. Kriegstein. Initial expression and endogenous activation of NMDA channels in early neocortical development. J Neurosci 11: 792–799, 1991.PubMedGoogle Scholar
  198. 198.
    Low, C.M., F. Zheng, P. Lyuboslavsky, and S.F. Traynelis. Molecular determinants of coordinated proton and zinc inhibition of N-methyl-D-aspartate NR1/NR2A receptors. Proc Natl Acad Sci USA 97: 11062–11067, 2000.PubMedGoogle Scholar
  199. 199.
    Luby, E.D., B.D. Cohen, G. Rosenbaum, J.S. Gottlieb, and R. Kelley. Study of a new schizophrenomimetic drug; sernyl. AMA Arch Neurol Psychiatry 81: 363–369, 1959.PubMedGoogle Scholar
  200. 200.
    Luthi-Carter, R., B.L. Apostol, A.W. Dunah, M.M. DeJohn, L.A. Farrell, G.P. Bates, A.B. Young, D.G. Standaert, L.M. Thompson, and J.H. Cha. Complex alteration of NMDA receptors in transgenic Huntington’s disease mouse brain: analysis of mRNA and protein expression, plasma membrane association, interacting proteins, and phosphorylation. Neurobiol Dis 14: 624–636, 2003.PubMedGoogle Scholar
  201. 201.
    Lynch, D.R., and R.P. Guttmann. Excitotoxicity: perspectives based on N-methyl-Daspartate receptor subtypes. J Pharmacol Exp Ther 300: 717–723, 2002.PubMedGoogle Scholar
  202. 202.
    MacDonald, J.F., S.A. Kotecha, W.Y. Lu, and M.F. Jackson. Convergence of PKCdependent kinase signal cascades on NMDA receptors. Curr Drug Targets 2: 299–312, 2001.PubMedGoogle Scholar
  203. 203.
    Mameli, M., M. Carta, L.D. Partridge, and C.F. Valenzuela. Neurosteroid-induced plasticity of immature synapses via retrograde modulation of presynaptic NMDA receptors. J Neurosci 25: 2285–2294, 2005.PubMedGoogle Scholar
  204. 204.
    Manent, J.B., M. Demarque, I. Jorquera, C. Pellegrino, Y. Ben-Ari, L. Aniksztejn, and A. Represa. A noncanonical release of GABA and glutamate modulates neuronal migration. J Neurosci 25: 4755–4765, 2005.PubMedGoogle Scholar
  205. 205.
    Manent, J.B., I. Jorquera, Y. Ben-Ari, L. Aniksztejn, and A. Represa. Glutamate acting on AMPA but not NMDA receptors modulates the migration of hippocampal interneurons. J Neurosci 26: 5901–5909, 2006.PubMedGoogle Scholar
  206. 206.
    Matsuda, K., M. Fletcher, Y. Kamiya, and M. Yuzaki. Specific assembly with the NMDA receptor 3B subunit controls surface expression and calcium permeability of NMDA receptors. J Neurosci 23: 10064–10073, 2003.PubMedGoogle Scholar
  207. 207.
    McCullumsmith, R.E., L.V. Kristiansen, M. Beneyto, E. Scarr, B. Dean, and J. H. Meador-Woodruff. Decreased NR1, NR2A, and SAP102 transcript expression in the hippocampus in bipolar disorder. Brain Res 1127: 108–118, 2007.PubMedGoogle Scholar
  208. 208.
    McGee, A.W., J.R. Topinka, K. Hashimoto, R.S. Petralia, S. Kakizawa, F.W. Kauer, A. Aguilera-Moreno, R.J. Wenthold, M. Kano, and D.S. Bredt. PSD-93 knock-out mice reveal that neuronal MAGUKs are not required for development or function of parallel fiber synapses in cerebellum. J Neurosci 21: 3085–3091, 2001.PubMedGoogle Scholar
  209. 209.
    McIlhinney, R.A., B. Le Bourdelles, E. Molnar, N. Tricaud, P. Streit, and P.J. Whiting. Assembly intracellular targeting and cell surface expression of the human N-methyl-Daspartate receptor subunits NR1a and NR2A in transfected cells. Neuropharmacology 37: 1355–1367, 1998.PubMedGoogle Scholar
  210. 210.
    McIlhinney, R.A., E. Philipps, B. Le Bourdelles, S. Grimwood, K. Wafford, S. Sandhu, and P. Whiting. Assembly of N-methyl-D-aspartate (NMDA) receptors. Biochem Soc Trans 31: 865–868, 2003.PubMedGoogle Scholar
  211. 211.
    McKinney, R.A., A. Luthi, C.E. Bandtlow, B.H. Gahwiler, and S.M. Thompson. Selective glutamate receptor antagonists can induce or prevent axonal sprouting in rat hippocampal slice cultures. Proc Natl Acad Sci USA 96: 11631–11636, 1999.PubMedGoogle Scholar
  212. 212.
    Meador-Woodruff, J.H., and D.J. Healy. Glutamate receptor expression in schizophrenic brain. Brain Res Brain Res Rev 31: 288–294, 2000.PubMedGoogle Scholar
  213. 213.
    Meddows, E., B. Le Bourdelles, S. Grimwood, K. Wafford, S. Sandhu, P. Whiting, and R.A. McIlhinney. Identification of molecular determinants that are important in the assembly of N-methyl-D-aspartate receptors. J Biol Chem 276: 18795–18803, 2001.PubMedGoogle Scholar
  214. 214.
    Medina, I. Extrasynaptic NMDA receptors reshape gene ranks. Sci STKE 2007: pe23, 2007.Google Scholar
  215. 215.
    Mehta, S.Q., P.R. Hiesinger, S. Beronja, R.G. Zhai, K.L. Schulze, P. Verstreken, Y. Cao, Y. Zhou, U. Tepass, M.C. Crair, and H.J. Bellen. Mutations in Drosophila sec15 reveal a function in neuronal targeting for a subset of exocyst components. Neuron 46: 219–232, 2005.PubMedGoogle Scholar
  216. 216.
    Menegoz, M., L.F. Lau, D. Herve, R.L. Huganir, and J.A. Girault. Tyrosine phosphorylation of NMDA receptor in rat striatum: effects of 6-OH-dopamine lesions. Neuroreport 7: 125–128, 1995.PubMedGoogle Scholar
  217. 217.
    Meoni, P., B.H. Bunnemann, A.E. Kingsbury, D.G. Trist, and N.G. Bowery. NMDA NR1 subunit mRNA and glutamate NMDA-sensitive binding are differentially affected in the striatum and pre-frontal cortex of Parkinson’s disease patients. Neuropharmacology 38: 625–633, 1999.PubMedGoogle Scholar
  218. 218.
    Migaud, M., P. Charlesworth, M. Dempster, L.C. Webster, A.M. Watabe, M. Makhinson, Y. He, M.F. Ramsay, R.G. Morris, J.H. Morrison, T.J. O’Dell, and S.G. Grant. Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein. Nature 396: 433–439, 1998.PubMedGoogle Scholar
  219. 219.
    Mishizen-Eberz, A.J., R.A. Rissman, T.L. Carter, M.D. Ikonomovic, B.B. Wolfe, and D.M. Armstrong. Biochemical and molecular studies of NMDA receptor subunits NR1/2A/2B in hippocampal subregions throughout progression of Alzheimer’s disease pathology. Neurobiol Dis 15: 80–92, 2004.PubMedGoogle Scholar
  220. 220.
    Miskevich, F., W. Lu, S.Y. Lin, and M. Constantine-Paton. Interaction between metabotropic and NMDA subtypes of glutamate receptors in sprout suppression at young synapses. J Neurosci 22: 226–238, 2002.PubMedGoogle Scholar
  221. 221.
    Misra, C., and E.B. Ziff. EphB2 gets a GRIP on the dendritic arbor. Nat Neurosci 8: 848–850, 2005.PubMedGoogle Scholar
  222. 222.
    Miyamoto, Y., K. Yamada, Y. Noda, H. Mori, M. Mishina, and T. Nabeshima. Lower sensitivity to stress and altered monoaminergic neuronal function in mice lacking the NMDA receptor epsilon 4 subunit. J Neurosci 22: 2335–2342, 2002.PubMedGoogle Scholar
  223. 223.
    Mohn, A.R., R.R. Gainetdinov, M.G. Caron, and B.H. Koller. Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 98: 427–436, 1999.PubMedGoogle Scholar
  224. 224.
    Mok, H., H. Shin, S. Kim, J.R. Lee, J. Yoon, and E. Kim. Association of the kinesin superfamily motor protein KIF1Balpha with postsynaptic density-95 (PSD-95), synapseassociated protein-97, and synaptic scaffolding molecule PSD-95/discs large/zona occludens- 1 proteins. J Neurosci 22: 5253–5258, 2002.PubMedGoogle Scholar
  225. 225.
    Montgomery, J.M., and D.V. Madison. State-dependent heterogeneity in synaptic depression between pyramidal cell pairs. Neuron 33: 765–777, 2002.PubMedGoogle Scholar
  226. 226.
    Monyer, H., N. Burnashev, D.J. Laurie, B. Sakmann, and P.H. Seeburg. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12: 529–540, 1994.PubMedGoogle Scholar
  227. 227.
    Moya, F., and M. Valdeolmillos. Polarized increase of calcium and nucleokinesis in tangentially migrating neurons. Cereb Cortex 14: 610–618, 2004.PubMedGoogle Scholar
  228. 228.
    Mu, Y., T. Otsuka, A.C. Horton, D.B. Scott, and M.D. Ehlers. Activity-dependent mRNA splicing controls ER export and synaptic delivery of NMDA receptors. Neuron 40: 581–594, 2003.PubMedGoogle Scholar
  229. 229.
    Mueller, H.T., and J.H. Meador-Woodruff. NR3A NMDA receptor subunit mRNA expression in schizophrenia, depression and bipolar disorder. Schizophr Res 71: 361–370, 2004.PubMedGoogle Scholar
  230. 230.
    Naisbitt, S., E. Kim, J.C. Tu, B. Xiao, C. Sala, J. Valtschanoff, R.J. Weinberg, P.F. Worley, and M. Sheng. Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron 23: 569–582, 1999.PubMedGoogle Scholar
  231. 231.
    Nakazawa, T., S. Komai, T. Tezuka, C. Hisatsune, H. Umemori, K. Semba, M. Mishina, T. Manabe, and T. Yamamoto. Characterization of Fyn-mediated tyrosine phosphorylation sites on GluR epsilon 2 (NR2B) subunit of the N-methyl-D-aspartate receptor. J Biol Chem 276: 693–699, 2001.PubMedGoogle Scholar
  232. 232.
    Nash, J.E., S.H. Fox, B. Henry, M.P. Hill, D. Peggs, S. McGuire, Y. Maneuf, C. Hille, J.M. Brotchie, and A.R. Crossman. Antiparkinsonian actions of ifenprodil in the MPTP-lesioned marmoset model of Parkinson’s disease. Exp Neurol 165: 136–142, 2000.PubMedGoogle Scholar
  233. 233.
    Neyton, J., and P. Paoletti. Relating NMDA receptor function to receptor subunit composition: limitations of the pharmacological approach. J Neurosci 26: 1331–1333, 2006.PubMedGoogle Scholar
  234. 234.
    Nichols, B.J., and J. Lippincott-Schwartz. Endocytosis without clathrin coats. Trends Cell Biol 11: 406–412, 2001.PubMedGoogle Scholar
  235. 235.
    Niethammer, M., E. Kim, and M. Sheng. Interaction between the C terminus of NMDA receptor subunits and multiple members of the PSD-95 family of membrane-associated guanylate kinases. J Neurosci 16: 2157–2163, 1996.PubMedGoogle Scholar
  236. 236.
    Nishimura, W., I. Yao, J. Iida, N. Tanaka, and Y. Hata. Interaction of synaptic scaffolding molecule and Beta -catenin. J Neurosci 22: 757–765, 2002.PubMedGoogle Scholar
  237. 237.
    Nong, Y., Y.Q. Huang, and M.W. Salter. NMDA receptors are movin’ in. Curr Opin Neurobiol 14: 353–361, 2004.PubMedGoogle Scholar
  238. 238.
    O’Connor, J.J., M.J. Rowan, and R. Anwyl. Long-lasting enhancement of NMDA receptor-mediated synaptic transmission by metabotropic glutamate receptor activation. Nature 367: 557–559, 1994.PubMedGoogle Scholar
  239. 239.
    Obrietan, K., and K.R. Hoyt. CRE-mediated transcription is increased in Huntington’s disease transgenic mice. J Neurosci 24: 791–796, 2004.PubMedGoogle Scholar
  240. 240.
    Oh, J.D., D.S. Russell, C.L. Vaughan, and T.N. Chase. Enhanced tyrosine phosphorylation of striatal NMDA receptor subunits: effect of dopaminergic denervation and LDOPA administration. Brain Res 813: 150–159, 1998.PubMedGoogle Scholar
  241. 241.
    Oh, J.D., C.L. Vaughan, and T.N. Chase. Effect of dopamine denervation and dopamine agonist administration on serine phosphorylation of striatal NMDA receptor subunits. Brain Res 821: 433–442, 1999.PubMedGoogle Scholar
  242. 242.
    Ohtakara, K., M. Nishizawa, I. Izawa, Y. Hata, S. Matsushima, W. Taki, H. Inada, Y. Takai, and M. Inagaki. Densin-180, a synaptic protein, links to PSD-95 through its direct interaction with MAGUIN-1. Genes Cells 7: 1149–1160, 2002.PubMedGoogle Scholar
  243. 243.
    Okabe, S., C. Collin, J.M. Auerbach, N. Meiri, J. Bengzon, M.B. Kennedy, M. Segal, and R.D. McKay. Hippocampal synaptic plasticity in mice overexpressing an embryonic subunit of the NMDA receptor. J Neurosci 18: 4177–4188, 1998.PubMedGoogle Scholar
  244. 244.
    Okabe, S., A. Miwa, and H. Okado. Alternative splicing of the C-terminal domain regulates cell surface expression of the NMDA receptor NR1 subunit. J Neurosci 19: 7781–7792, 1999.PubMedGoogle Scholar
  245. 245.
    Oshima, S., M. Fukaya, N. Masabumi, T. Shirakawa, H. Oguchi, and M. Watanabe. Early onset of NMDA receptor GluR epsilon 1 (NR2A) expression and its abundant postsynaptic localization in developing motoneurons of the mouse hypoglossal nucleus. Neurosci Res 43: 239–250, 2002.PubMedGoogle Scholar
  246. 246.
    Ozaki, M., M. Sasner, R. Yano, H.S. Lu, and A. Buonanno. Neuregulin-beta induces expression of an NMDA-receptor subunit. Nature 390: 691–694, 1997.PubMedGoogle Scholar
  247. 247.
    Pak, D.T., S. Yang, S. Rudolph-Correia, E. Kim, and M. Sheng. Regulation of dendritic spine morphology by SPAR, a PSD-95-associated RapGAP. Neuron 31: 289–303, 2001.PubMedGoogle Scholar
  248. 248.
    Passafaro, M., V. Piech, and M. Sheng. Subunit-specific temporal and spatial patterns of AMPA receptor exocytosis in hippocampal neurons. Nat Neurosci 4: 917–926, 2001.PubMedGoogle Scholar
  249. 249.
    Paulsen, J.S., R.E. Ready, J.M. Hamilton, M.S. Mega, and J.L. Cummings. Neuropsychiatric aspects of Huntington’s disease. J Neurol Neurosurg Psychiatry 71: 310–314, 2001.PubMedGoogle Scholar
  250. 250.
    Pavlov, I., R. Riekki, and T. Taira. Synergistic action of GABA-A and NMDA receptors in the induction of long-term depression in glutamatergic synapses in the newborn rat hippocampus. Eur J Neurosci 20: 3019–3026, 2004.PubMedGoogle Scholar
  251. 251.
    Pearce, I.A., M.A. Cambray-Deakin, and R.D. Burgoyne. Glutamate acting on NMDA receptors stimulates neurite outgrowth from cerebellar granule cells. FEBS Lett 223: 143–147, 1987.PubMedGoogle Scholar
  252. 252.
    Perez-Otano, I., and M.D. Ehlers. Learning from NMDA receptor trafficking: clues to the development and maturation of glutamatergic synapses. Neurosignals 13: 175–189, 2004.PubMedGoogle Scholar
  253. 253.
    Perez-Otano, I., R. Lujan, S.J. Tavalin, M. Plomann, J. Modregger, X.B. Liu, E.G. Jones, S.F. Heinemann, D.C. Lo, and M.D. Ehlers. Endocytosis and synaptic removal of NR3A-containing NMDA receptors by PACSIN1/syndapin1. Nat Neurosci 9: 611–621, 2006.PubMedGoogle Scholar
  254. 254.
    Perez-Otano, I., C.T. Schulteis, A. Contractor, S.A. Lipton, J.S. Trimmer, N.J. Sucher, and S.F. Heinemann. Assembly with the NR1 subunit is required for surface expression of NR3A-containing NMDA receptors. J Neurosci 21: 1228–1237, 2001.PubMedGoogle Scholar
  255. 255.
    Perez-Otano, I., and M.D. Ehlers. Homeostatic plasticity and NMDA receptor trafficking. Trends Neurosci 28: 229–238, 2005.PubMedGoogle Scholar
  256. 256.
    Perin-Dureau, F., J. Rachline, J. Neyton, and P. Paoletti. Mapping the binding site of the neuroprotectant ifenprodil on NMDA receptors. J Neurosci 22: 5955–5965, 2002.PubMedGoogle Scholar
  257. 257.
    Petralia, R.S., N. Sans, Y.X. Wang, and R.J. Wenthold. Ontogeny of postsynaptic density proteins at glutamatergic synapses. Mol Cell Neurosci 29: 436–452, 2005.PubMedGoogle Scholar
  258. 258.
    Petralia, R.S., Y.X. Wang, and R.J. Wenthold. Internalization at glutamatergic synapses during development. Eur J Neurosci 18: 3207–3217, 2003.PubMedGoogle Scholar
  259. 259.
    Petralia, R.S., L.A. Dunbar, Y.-X. Wang, and R.J. Wenthold. Morphological correlates of glutamate receptor trafficking to synapses. Soc Neurosci Abstr 843.2, 2004.Google Scholar
  260. 260.
    Petralia, R.S., L.A. Dunbar, Y.-X. Wang, and R.J. Wenthold. Specific endosomal associations during the trafficking of synaptic glutamate receptors. Soc Neurosci Abs 949.1, 2005.Google Scholar
  261. 261.
    Petralia, R.S., J.A. Esteban, Y.X. Wang, J.G. Partridge, H.M. Zhao, R.J. Wenthold, and R. Malinow. Selective acquisition of AMPA receptors over postnatal development suggests a molecular basis for silent synapses. Nat Neurosci 2: 31–36, 1999.PubMedGoogle Scholar
  262. 262.
    Petralia, R.S., Y.X. Wang, and R.J. Wenthold. NMDA receptors and PSD-95 are found in attachment plaques in cerebellar granular layer glomeruli. Eur J Neurosci 15: 583–587, 2002.PubMedGoogle Scholar
  263. 263.
    Philpot, B.D., A.K. Sekhar, H.Z. Shouval, and M.F. Bear. Visual experience and deprivation bidirectionally modify the composition and function of NMDA receptors in visual cortex. Neuron 29: 157–169, 2001.PubMedGoogle Scholar
  264. 264.
    Philpot, B.D., K.K. Cho, and M.F. Bear. Obligatory Role of NR2A for Metaplasticity in Visual Cortex. Neuron 53: 495–502, 2007.PubMedGoogle Scholar
  265. 265.
    Picconi, B., F. Gardoni, D. Centonze, D. Mauceri, M.A. Cenci, G. Bernardi, P. Calabresi, and M. Di Luca. Abnormal Ca2+-calmodulin-dependent protein kinase II function mediates synaptic and motor deficits in experimental parkinsonism. J Neurosci 24: 5283–5291, 2004.PubMedGoogle Scholar
  266. 266.
    Polo-Parada, L., C.M. Bose, F. Plattner, and L.T. Landmesser. Distinct roles of different neural cell adhesion molecule (NCAM) isoforms in synaptic maturation revealed by analysis of NCAM 180 kDa isoform-deficient mice. J Neurosci 24: 1852–1864, 2004.PubMedGoogle Scholar
  267. 267.
    Prybylowski, K., K. Chang, N. Sans, L. Kan, S. Vicini, and R.J. Wenthold. The synaptic localization of NR2B-containing NMDA receptors is controlled by interactions with PDZ proteins and AP-2. Neuron 47: 845–857, 2005.PubMedGoogle Scholar
  268. 268.
    Prybylowski, K., Z. Fu, G. Losi, L.M. Hawkins, J. Luo, K. Chang, R.J. Wenthold, and S. Vicini. Relationship between availability of NMDA receptor subunits and their expression at the synapse. J Neurosci 22: 8902–8910, 2002.PubMedGoogle Scholar
  269. 269.
    Prybylowski, K.L., and B.B. Wolfe. Developmental differences in alternative splicing of the NR1 protein in rat cortex and cerebellum. Brain Res Dev Brain Res 123: 143–150, 2000.PubMedGoogle Scholar
  270. 270.
    Quinlan, E.M., D. Lebel, I. Brosh, and E. Barkai. A molecular mechanism for stabilization of learning-induced synaptic modifications. Neuron 41: 185–192, 2004.PubMedGoogle Scholar
  271. 271.
    Quinlan, E.M., D.H. Olstein, and M.F. Bear. Bidirectional, experience-dependent regulation of N-methyl-D-aspartate receptor subunit composition in the rat visual cortex during postnatal development. Proc Natl Acad Sci USA 96: 12876–12880, 1999.PubMedGoogle Scholar
  272. 272.
    Quinlan, E.M., B.D. Philpot, R.L. Huganir, and M.F. Bear. Rapid, experiencedependent expression of synaptic NMDA receptors in visual cortex in vivo. Nat Neurosci 2: 352–357, 1999.PubMedGoogle Scholar
  273. 273.
    Racz, B., T.A. Blanpied, M.D. Ehlers, and R.J. Weinberg. Lateral organization of endocytic machinery in dendritic spines. Nat Neurosci 7: 917–918, 2004.PubMedGoogle Scholar
  274. 274.
    Rajan, I., and H.T. Cline. Glutamate receptor activity is required for normal development of tectal cell dendrites in vivo. J Neurosci 18: 7836–7846, 1998.PubMedGoogle Scholar
  275. 275.
    Rampon, C., Y.P. Tang, J. Goodhouse, E. Shimizu, M. Kyin, and J.Z. Tsien. Enrichment induces structural changes and recovery from nonspatial memory deficits in CA1 NMDAR1-knockout mice. Nat Neurosci 3: 238–244, 2000.PubMedGoogle Scholar
  276. 276.
    Rao, A., E. Kim, M. Sheng, and A.M. Craig. Heterogeneity in the molecular composition of excitatory postsynaptic sites during development of hippocampal neurons in culture. J Neurosci 18: 1217–1229, 1998.PubMedGoogle Scholar
  277. 277.
    Rashid, N.A., and M.A. Cambray-Deakin. N-methyl-D-aspartate effects on the growth, morphology and cytoskeleton of individual neurons in vitro. Brain Res Dev Brain Res 67: 301–308, 1992.PubMedGoogle Scholar
  278. 278.
    Regalado, M.P., R.T. Terry-Lorenzo, C.L. Waites, C.C. Garner, and R.C. Malenka. Transsynaptic signaling by postsynaptic synapse-associated protein 97. J Neurosci 26: 2343–2357, 2006.PubMedGoogle Scholar
  279. 279.
    Roche, K.W., S. Standley, J. McCallum, L. Dune, C., M.D. Ehlers, and R.J. Wenthold. Molecular determinants of NMDA receptor internalization. Nat Neurosci 4: 794–802, 2001.PubMedGoogle Scholar
  280. 280.
    Rumbaugh, G., K. Prybylowski, J.F. Wang, and S. Vicini. Exon 5 and spermine regulate deactivation of NMDA receptor subtypes. J Neurophysiol 83: 1300–1306, 2000.PubMedGoogle Scholar
  281. 281.
    Rumbaugh, G., and S. Vicini. Distinct synaptic and extrasynaptic NMDA receptors in developing cerebellar granule neurons. J Neurosci 19: 10603–10610, 1999.PubMedGoogle Scholar
  282. 282.
    Ruthazer, E.S., C.J. Akerman, and H.T. Cline. Control of axon branch dynamics by correlated activity in vivo. Science 301: 66–70, 2003.PubMedGoogle Scholar
  283. 283.
    Salter, M.W., and L.V. Kalia. Src kinases: a hub for NMDA receptor regulation. Nat Rev Neurosci 5: 317–328, 2004. Molecular Properties and Cell Biology of the NMDAPubMedGoogle Scholar
  284. 284.
    Sampo, B., S. Kaech, S. Kunz, and G. Banker. Two distinct mechanisms target membrane proteins to the axonal surface. Neuron 37: 611–624, 2003.PubMedGoogle Scholar
  285. 285.
    Sans, N., K. Prybylowski, R.S. Petralia, K. Chang, Y.X. Wang, C. Racca, S. Vicini, and R.J. Wenthold. NMDA receptor trafficking through an interaction between PDZ proteins and the exocyst complex. Nat Cell Biol 5: 520–530, 2003.PubMedGoogle Scholar
  286. 286.
    Sans, N., P.Y. Wang, Q. Du, R.S. Petralia, Y.X. Wang, S. Nakka, J.B. Blumer, I.G. Macara, and R.J. Wenthold. mPins modulates PSD-95 and SAP102 trafficking and influences NMDA receptor surface expression. Nat Cell Biol 7: 1179–1190, 2005.PubMedGoogle Scholar
  287. 287.
    Sans, N., R.S. Petralia, Y.X. Wang, J. Blahos, 2nd, J.W. Hell, and R.J. Wenthold. A developmental change in NMDA receptor-associated proteins at hippocampal synapses. J Neurosci 20: 1260–1271, 2000.PubMedGoogle Scholar
  288. 288.
    Sattler, R., and M. Tymianski. Molecular mechanisms of calcium-dependent excitotoxicity. J Mol Med 78: 3–13, 2000.PubMedGoogle Scholar
  289. 289.
    Scarpini, E., P. Scheltens, and H. Feldman. Treatment of Alzheimer’s disease: current status and new perspectives. Lancet Neurol 2: 539–547, 2003.PubMedGoogle Scholar
  290. 290.
    Schnell, E., M. Sizemore, S. Karimzadegan, L. Chen, D.S. Bredt, and R.A. Nicoll. Direct interactions between PSD-95 and stargazin control synaptic AMPA receptor number. Proc Natl Acad Sci USA 99: 13902–13907, 2002.PubMedGoogle Scholar
  291. 291.
    Schorge, S., and D. Colquhoun. Studies of NMDA receptor function and stoichiometry with truncated and tandem subunits. J Neurosci 23: 1151–1158, 2003.PubMedGoogle Scholar
  292. 292.
    Schwarcz, R., and C. Kohler. Differential vulnerability of central neurons of the rat to quinolinic acid. Neurosci Lett 38: 85–90, 1983.PubMedGoogle Scholar
  293. 293.
    Scott, D.B., T.A. Blanpied, and M.D. Ehlers. Coordinated PKA and PKC phoshorylation suppresses RXR-mediated ER retention and regulates the surface delivery of NMDA receptors. Neuropharmacology 45: 755–767, 2003.PubMedGoogle Scholar
  294. 294.
    Scott, D.B., I. Michailidis, Y. Mu, D. Logothetis, and M.D. Ehlers. Endocytosis and degradative sorting of NMDA receptors by conserved membrane-proximal signals. J Neurosci 24: 7096–7109, 2004.PubMedGoogle Scholar
  295. 295.
    Scott, D.B., T.A. Blanpied, G.T. Swanson, C. Zhang, and M.D. Ehlers. An NMDA receptor ER retention signal regulated by phosphorylation and alternative splicing. J Neurosci 21: 3063–3072, 2001.PubMedGoogle Scholar
  296. 296.
    Selkoe, D.J. Alzheimer’s disease is a synaptic failure. Science 298: 789–791, 2002.PubMedGoogle Scholar
  297. 297.
    Setou, M., T. Nakagawa, D.H. Seog, and N. Hirokawa. Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. Science 288: 1796–1802, 2000.PubMedGoogle Scholar
  298. 298.
    Shankar, G. M., B.L. Bloodgood, M. Townsend, D.M. Walsh, D.J. Selkoe, and B.L. Sabatini. Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci 27: 2866–2875, 2007.PubMedGoogle Scholar
  299. 299.
    Shen, K., and T. Meyer. Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. Science 284: 162–166, 1999.PubMedGoogle Scholar
  300. 300.
    Sheng, M., J. Cummings, L.A. Roldan, Y.N. Jan, and L.Y. Jan. Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature 368: 144–147, 1994.PubMedGoogle Scholar
  301. 301.
    Shrestha, B.R., O.V. Vitolo, P. Joshi, T. Lordkipanidze, M. Shelanski, and A. Dunaevsky. Amyloid beta peptide adversely affects spine number and motility in hippocampal neurons. Mol Cell Neurosci 33: 274–282, 2006.PubMedGoogle Scholar
  302. 302.
    Sigismund, S., T. Woelk, C. Puri, E. Maspero, C. Tacchetti, P. Transidico, F. Di, P. P., and S. Polo. Clathrin-independent endocytosis of ubiquitinated cargos. Proc Natl Acad Sci USA 102: 2760–2765, 2005.PubMedGoogle Scholar
  303. 303.
    Simonian, S.X., and A.E. Herbison. Differing, spatially restricted roles of ionotropic glutamate receptors in regulating the migration of gnrh neurons during embryogenesis. J Neurosci 21: 934–943, 2001.PubMedGoogle Scholar
  304. 304.
    Sjostrom, P.J., G.G. Turrigiano, and S.B. Nelson. Neocortical LTD via coincident activation of presynaptic NMDA and cannabinoid receptors. Neuron 39: 641–654, 2003.PubMedGoogle Scholar
  305. 305.
    Skeberdis, V.A., V. Chevaleyre, C.G. Lau, J.H. Goldberg, D.L. Pettit, S.O. Suadicani, Y. Lin, M.V. Bennett, R. Yuste, P.E. Castillo, and R.S. Zukin. Protein kinase A regulates calcium permeability of NMDA receptors. Nat Neurosci 9: 501–510, 2006.PubMedGoogle Scholar
  306. 306.
    Small, D.H., S.S. Mok, and J.C. Bornstein. Alzheimer’s disease and Abeta toxicity: from top to bottom. Nat Rev Neurosci 2: 595–598, 2001.PubMedGoogle Scholar
  307. 307.
    Snyder, E.M., B.D. Philpot, K.M. Huber, X. Dong, J.R. Fallon, and M.F. Bear. Internalization of ionotropic glutamate receptors in response to mGluR activation. Nat Neurosci 4: 1079–1085, 2001.PubMedGoogle Scholar
  308. 308.
    Snyder, E.M., Y. Nong, C.G. Almeida, S. Paul, T. Moran, E.Y. Choi, A.C. Nairn, M.W. Salter, P.J. Lombroso, G.K. Gouras, and P. Greengard. Regulation of NMDA receptor trafficking by amyloid-beta. Nat Neurosci 8: 1051–1058, 2005.PubMedGoogle Scholar
  309. 309.
    Song, C., Y. Zhang, C.G. Parsons, and Y.F. Liu. Expression of polyglutamineexpanded huntingtin induces tyrosine phosphorylation of N-methyl-D-aspartate receptors. J Biol Chem 278: 33364–33369, 2003.PubMedGoogle Scholar
  310. 310.
    Soriano, F. X., S. Papadia, F. Hofmann, N.R. Hardingham, H. Bading, and G.E. Hardingham. Preconditioning doses of NMDA promote neuroprotection by enhancing neuronal excitability. J Neurosci 26: 4509–4518, 2006.PubMedGoogle Scholar
  311. 311.
    Spacek, J., and K.M. Harris. Three-dimensional organization of smooth endoplasmic reticulum in hippocampal CA1 dendrites and dendritic spines of the immature and mature rat. J Neurosci 17: 190–203, 1997.PubMedGoogle Scholar
  312. 312.
    Sprengel, R., B. Suchanek, C. Amico, R. Brusa, N. Burnashev, A. Rozov, O. Hvalby, V. Jensen, O. Paulsen, P. Andersen, J.J. Kim, R.F. Thompson, W. Sun, L.C. Webster, S.G. Grant, J. Eilers, A. Konnerth, J. Li, J.O. McNamara, and P.H. Seeburg. Importance of the intracellular domain of NR2 subunits for NMDA receptor function in vivo. Cell 92: 279–289, 1998.PubMedGoogle Scholar
  313. 313.
    Stahl, S.M. Beyond the dopamine hypothesis to the NMDA glutamate receptor hypofunction hypothesis of schizophrenia. CNS Spectr 12: 265–268, 2007.PubMedGoogle Scholar
  314. 314.
    Standley, S., K.W. Roche, J. McCallum, N. Sans, and R.J. Wenthold. PDZ domain suppression of an ER retention signal in NMDA receptor NR1 splice variants. Neuron 28: 887–898, 2000.PubMedGoogle Scholar
  315. 315.
    Starling, A.J., V.M. Andre, C. Cepeda, M. de Lima, S.H. Chandler, and M.S. Levine. Alterations in N-methyl-D-aspartate receptor sensitivity and magnesium blockade occur early in development in the R6/2 mouse model of Huntington’s disease. J Neurosci Res 82: 377–386, 2005.PubMedGoogle Scholar
  316. 316.
    Stefansson, H., E. Sigurdsson, V. Steinthorsdottir, S. Bjornsdottir, T. Sigmundsson, S. Ghosh, J. Brynjolfsson, S. Gunnarsdottir, O. Ivarsson, T.T. Chou, O. Hjaltason, B. Birgisdottir, H. Jonsson, V.G. Gudnadottir, E. Gudmundsdottir, A. Bjornsson, B. Ingvarsson, A. Ingason, S. Sigfusson, H. Hardardottir, R.P. Harvey, D. Lai, M. Zhou, D. Brunner, V. Mutel, A. Gonzalo, G. Lemke, J. Sainz, G. Johannesson, T. Andresson, D. Gudbjartsson, A. Manolescu, M.L. Frigge, M.E. Gurney, A. Kong, J.R. Gulcher, H. Petursson, and K. Stefansson. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 71: 877–892, 2002.PubMedGoogle Scholar
  317. 317.
    Steigerwald, F., T.W. Schulz, L.T. Schenker, M.B. Kennedy, P.H. Seeburg, and G. Kohr. C-Terminal truncation of NR2A subunits impairs synaptic but not extrasynaptic localization of NMDA receptors. J Neurosci 20: 4573–4581, 2000.PubMedGoogle Scholar
  318. 318.
    Stern-Bach, Y., B. Bettler, M. Hartley, P.O. Sheppard, P.J. O’Hara, and S.F. Heinemann. Agonist selectivity of glutamate receptors is specified by two domains structurally related to bacterial amino acid-binding proteins. Neuron 13: 1345–1357, 1994.PubMedGoogle Scholar
  319. 319.
    Stocca, G., and S. Vicini. Increased contribution of NR2A subunit to synaptic NMDA receptors in developing rat cortical neurons. J Physiol 507: 13–24, 1998.PubMedGoogle Scholar
  320. 320.
    Strack, S., and R.J. Colbran. Autophosphorylation-dependent targeting of calcium/ calmodulin-dependent protein kinase II by the NR2B subunit of the N-methyl-Daspartate receptor. J Biol Chem 273: 20689–20692, 1998.PubMedGoogle Scholar
  321. 321.
    Sucher, N.J., S. Akbarian, C.L. Chi, C.L. Leclerc, M. Awobuluyi, D.L. Deitcher, M.K. Wu, J.P. Yuan, E.G. Jones, and S.A. Lipton. Developmental and regional expression pattern of a novel NMDA receptor-like subunit (NMDAR-L) in the rodent brain. J Neurosci 15: 6509–6520, 1995.PubMedGoogle Scholar
  322. 322.
    Sun, Y., A. Savanenin, P.H. Reddy, and Y.F. Liu. Polyglutamine-expanded huntingtin promotes sensitization of N-methyl-D-aspartate receptors via post-synaptic density 95. J Biol Chem 276: 24713–24718, 2001.PubMedGoogle Scholar
  323. 323.
    Sytnyk, V., I. Leshchyns’ka, M. Delling, G. Dityateva, A. Dityatev, and M. Schachner. Neural cell adhesion molecule promotes accumulation of TGN organelles at sites of neuron- to-neuron contacts. J Cell Biol 159: 649–661, 2002.PubMedGoogle Scholar
  324. 324.
    Takahashi, T., D. Feldmeyer, N. Suzuki, K. Onodera, S.G. Cull-Candy, K. Sakimura, and M. Mishina. Functional correlation of NMDA receptor epsilon subunits expression with the properties of single-channel and synaptic currents in the developing cerebellum. J Neurosci 16: 4376–4382, 1996.PubMedGoogle Scholar
  325. 325.
    Takasu, M.A., M.B. Dalva, R.E. Zigmond, and M.E. Greenberg. Modulation of NMDA receptor-dependent calcium influx and gene expression through EphB receptors. Science 295: 491–495, 2002.PubMedGoogle Scholar
  326. 326.
    Tang, Y.P., E. Shimizu, G.R. Dube, C. Rampon, G.A. Kerchner, M. Zhuo, G. Liu, and J.Z. Tsien. Genetic enhancement of learning and memory in mice. Nature 401: 63–69, 1999.PubMedGoogle Scholar
  327. 327.
    Thomas, C.G., A.J. Miller, and G.L. Westbrook. Synaptic and extrasynaptic NMDA receptor NR2 subunits in cultured hippocampal neurons. J Neurophysiol 95: 1727–1734, 2006.PubMedGoogle Scholar
  328. 328.
    Thompson, C.L., D.L. Drewery, H.D. Atkins, F.A. Stephenson, and P.L. Chazot. Immunohistochemical localization of N-methyl-D-aspartate receptor subunits in the adult murine hippocampal formation: evidence for a unique role of the NR2D subunit. Brain Res Mol Brain Res 102: 55–61, 2002.PubMedGoogle Scholar
  329. 329.
    Tingley, W.G., M.D. Ehlers, K. Kameyama, C. Doherty, J.B. Ptak, C.T. Riley, and R.L. Huganir. Characterization of protein kinase A and protein kinase C phosphorylation of the N-methyl-D-aspartate receptor NR1 subunit using phosphorylation site-specific antibodies. J Biol Chem 272: 5157–5166, 1997.PubMedGoogle Scholar
  330. 330.
    Tolias, K.F., J.B. Bikoff, A. Burette, S. Paradis, D. Harrar, S. Tavazoie, R.J. Weinberg, and M.E. Greenberg. The Rac1-GEF Tiam1 couples the NMDA receptor to the activitydependent development of dendritic arbors and spines. Neuron 45: 525–538, 2005.PubMedGoogle Scholar
  331. 331.
    Tolias, K.F., J.B. Bikoff, C.G. Kane, C.S. Tolias, L. Hu, and M.E. Greenberg. The Rac1 guanine nucleotide exchange factor Tiam1 mediates EphB receptor-dependent dendritic spine development. Proc Natl Acad Sci USA 104: 7265–7270, 2007.PubMedGoogle Scholar
  332. 332.
    Tomita, S., L. Chen, Y. Kawasaki, R.S. Petralia, R.J. Wenthold, R.A. Nicoll, and D.S. Bredt. Functional studies and distribution define a family of transmembrane AMPA receptor regulatory proteins. J Cell Biol 161: 805–816, 2003.PubMedGoogle Scholar
  333. 333.
    Tovar, K.R., and G.L. Westbrook. The incorporation of NMDA receptors with a distinct subunit composition at nascent hippocampal synapses in vitro. J Neurosci 19: 4180–4188, 1999.PubMedGoogle Scholar
  334. 334.
    Tovar, K.R., and G.L. Westbrook. Mobile NMDA receptors at hippocampal synapses. Neuron 34: 255–264, 2002.PubMedGoogle Scholar
  335. 335.
    Townsend, M., J.P. Cleary, T. Mehta, J. Hofmeister, S. Lesne, E. O’Hare, D.M. Walsh, and D.J. Selkoe. Orally available compound prevents deficits in memory caused by the Alzheimer amyloid-beta oligomers. Ann Neurol 60: 668–676, 2006.PubMedGoogle Scholar
  336. 336.
    Townsend, M., A. Yoshii, M. Mishina, and M. Constantine-Paton. Developmental loss of miniature N-methyl-D-aspartate receptor currents in NR2A knockout mice. Proc Natl Acad Sci USA 100: 1340–1345, 2003.PubMedGoogle Scholar
  337. 337.
    Traynelis, S.F., M. Hartley, and S.F. Heinemann. Control of proton sensitivity of the NMDA receptor by RNA splicing and polyamines. Science 268: 873–876, 1995.PubMedGoogle Scholar
  338. 338.
    Triller, A., and D. Choquet. Surface trafficking of receptors between synaptic and extrasynaptic membranes: and yet they do move!. Trends Neurosci 28: 133–139, 2005.PubMedGoogle Scholar
  339. 339.
    Tu, J.C., B. Xiao, S. Naisbitt, J.P. Yuan, R.S. Petralia, P. Brakeman, A. Doan, V.K. Aakalu, A.A. Lanahan, M. Sheng, and P.F. Worley. Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins. Neuron 23: 583–592, 1999.PubMedGoogle Scholar
  340. 340.
    Turrigiano, G.G., K.R. Leslie, N.S. Desai, L.C. Rutherford, and S.B. Nelson. Activity- dependent scaling of quantal amplitude in neocortical neurons. Nature 391: 892–896, 1998.PubMedGoogle Scholar
  341. 341.
    Tymianski, M., M.P. Charlton, P.L. Carlen, and C.H. Tator. Source specificity of early calcium neurotoxicity in cultured embryonic spinal neurons. J Neurosci 13: 2085–2104, 1993.PubMedGoogle Scholar
  342. 342.
    Tyzio, R., A. Represa, I. Jorquera, Y. Ben-Ari, H. Gozlan, and L. Aniksztejn. The establishment of GABAergic and glutamatergic synapses on CA1 pyramidal neurons is sequential and correlates with the development of the apical dendrite. J Neurosci 19: 10372–10382, 1999.PubMedGoogle Scholar
  343. 343.
    Uitti, R.J., A.H. Rajput, J.E. Ahlskog, K.P. Offord, D.R. Schroeder, M.M. Ho, M. Prasad, A. Rajput, and P. Basran. Amantadine treatment is an independent predictor of improved survival in Parkinson’s disease. Neurology 46: 1551–1556, 1996.PubMedGoogle Scholar
  344. 344.
    Van de Ven, T.J., H.M. VanDongen, and A.M. VanDongen. The nonkinase phorbol ester receptor alpha 1-chimerin binds the NMDA receptor NR2A subunit and regulates dendritic spine density. J Neurosci 25: 9488–9496, 2005.PubMedGoogle Scholar
  345. 345.
    van Zundert, B., A. Yoshii, and M. Constantine-Paton. Receptor compartmentalization and trafficking at glutamate synapses: a developmental proposal. Trends Neurosci 27: 428–437, 2004.PubMedGoogle Scholar
  346. 346.
    Vanhoutte, P., and H. Bading. Opposing roles of synaptic and extrasynaptic NMDA receptors in neuronal calcium signalling and BDNF gene regulation. Curr Opin Neurobiol 13: 366–371, 2003.PubMedGoogle Scholar
  347. 347.
    Vicini, S., J.F. Wang, J.H. Li, W.J. Zhu, Y.H. Wang, J.H. Luo, B.B. Wolfe, and D.R. Grayson. Functional and pharmacological differences between recombinant Nmethyl- D-aspartate receptors. J Neurophysiol 79: 555–566, 1998.PubMedGoogle Scholar
  348. 348.
    Vissel, B., J.J. Krupp, S.F. Heinemann, and G.L. Westbrook. A use-dependent tyrosine dephosphorylation of NMDA receptors is independent of ion flux. Nat Neurosci 4: 587–596, 2001.PubMedGoogle Scholar
  349. 349.
    Vonsattel, J.P., and M. DiFiglia. Huntington disease. J Neuropathol Exp Neurol 57: 369–384, 1998.PubMedGoogle Scholar
  350. 350.
    Wafford, K.A., M. Kathoria, C.J. Bain, G. Marshall, B. Le Bourdelles, J.A. Kemp, and P.J. Whiting. Identification of amino acids in the N-methyl-D-aspartate receptor NR1 subunit that contribute to the glycine binding site. Mol Pharmacol 47: 374–380, 1995.PubMedGoogle Scholar
  351. 351.
    Walsh, D.M., and D.J. Selkoe. Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron 44: 181–193, 2004.PubMedGoogle Scholar
  352. 352.
    Waltereit, R., and M. Weller. Signaling from cAMP/PKA to MAPK and synaptic plasticity. Mol Neurobiol 27: 99–106, 2003.PubMedGoogle Scholar
  353. 353.
    Wang, C.Y., K. Chang, R.S. Petralia, Y.X. Wang, G.K. Seabold, and R.J. Wenthold. A novel family of adhesion-like molecules that interacts with the NMDA receptor. J Neurosci 26: 2174–2183, 2006.PubMedGoogle Scholar
  354. 354.
    Wang, C.X., and A. Shuaib. NMDA/NR2B selective antagonists in the treatment of ischemic brain injury. Curr Drug Targets CNS Neurol Disord 4: 143–151, 2005.PubMedGoogle Scholar
  355. 355.
    Wang, J., S. Liu, Y. Fu, J.H. Wang, and Y. Lu. Cdk5 activation induces hippocampal CA1 cell death by directly phosphorylating NMDA receptors. Nat Neurosci 6: 1039–1047, 2003.PubMedGoogle Scholar
  356. 356.
    Wang, J.K., and V. Thukral. Presynaptic NMDA receptors display physiological characteristics of homomeric complexes of NR1 subunits that contain the exon 5 insert in the N-terminal domain. J Neurochem 66: 865–868, 1996.PubMedGoogle Scholar
  357. 357.
    Wang, Y.T., and M.W. Salter. Regulation of NMDA receptors by tyrosine kinases and phosphatases. Nature 369: 233–235, 1994.PubMedGoogle Scholar
  358. 358.
    Washbourne, P., J.E. Bennett, and A.K. McAllister. Rapid recruitment of NMDA receptor transport packets to nascent synapses. Nat Neurosci 5: 751–759, 2002.PubMedGoogle Scholar
  359. 359.
    Washbourne, P., X.B. Liu, E.G. Jones, and A.K. McAllister. Cycling of NMDA receptors during trafficking in neurons before synapse formation. J Neurosci 24: 8253–8264, 2004.PubMedGoogle Scholar
  360. 360.
    Watanabe, M., Y. Inoue, K. Sakimura, and M. Mishina. Developmental changes in distribution of NMDA receptor channel subunit mRNAs. Neuroreport 3: 1138–1140, 1992.PubMedGoogle Scholar
  361. 361.
    Wei, F., G.D. Wang, G.A. Kerchner, S.J. Kim, H.M. Xu, Z.F. Chen, and M. Zhuo. Genetic enhancement of inflammatory pain by forebrain NR2B overexpression. Nat Neurosci 4: 164–169, 2001.PubMedGoogle Scholar
  362. 362.
    Weissman, A.M. Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2: 169–178, 2001.PubMedGoogle Scholar
  363. 363.
    Weitlauf, C., Y. Honse, Y.P. Auberson, M. Mishina, D.M. Lovinger, and D.G. Winder. Activation of NR2A-containing NMDA receptors is not obligatory for NMDA receptordependent long-term potentiation. J Neurosci 25: 8386–8390, 2005.PubMedGoogle Scholar
  364. 364.
    Wenthold, R.J., K. Prybylowski, S. Standley, N. Sans, and R.S. Petralia. Trafficking of NMDA receptors. Annu Rev Pharmacol Toxicol 43: 335–358, 2003.PubMedGoogle Scholar
  365. 365.
    Wenzel, A., D. Benke, H. Mohler, and J.M. Fritschy. N-methyl-D-aspartate receptors containing the NR2D subunit in the retina are selectively expressed in rod bipolar cells. Neuroscience 78: 1105–1112, 1997.PubMedGoogle Scholar
  366. 366.
    Westphal, R.S., S.J. Tavalin, J.W. Lin, N.M. Alto, I.D. Fraser, L.K. Langeberg, M. Sheng, and J.D. Scott. Regulation of NMDA receptors by an associated phosphatasekinase signaling complex. Science 285: 93–96, 1999.PubMedGoogle Scholar
  367. 367.
    Willard, F.S., R.J. Kimple, and D.P. Siderovski. Return of the GDI: the GoLoco motif in cell division. Annu Rev Biochem 73: 925–951, 2004.PubMedGoogle Scholar
  368. 368.
    Wong, R.W., M. Setou, J. Teng, Y. Takei, and N. Hirokawa. Overexpression of motor protein KIF17 enhances spatial and working memory in transgenic mice. Proc Natl Acad Sci USA 99: 14500–14505, 2002.PubMedGoogle Scholar
  369. 369.
    Woo, N.H., H.K. Teng, C.J. Siao, C. Chiaruttini, P.T. Pang, T.A. Milner, B.L. Hempstead, and B. Lu. Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nat Neurosci 8: 1069–1077, 2005.PubMedGoogle Scholar
  370. 370.
    Woo, T.U., J.P. Walsh, and F.M. Benes. Density of glutamic acid decarboxylase 67 messenger RNA-containing neurons that express the N-methyl-D-aspartate receptor subunit NR2A in the anterior cingulate cortex in schizophrenia and bipolar disorder. Arch Gen Psychiatry 61: 649–657, 2004.PubMedGoogle Scholar
  371. 371.
    Wu, H. Y., E.Y. Yuen, Y.F. Lu, M. Matsushita, H. Matsui, Z. Yan, and K. Tomizawa. Regulation of N-methyl-D-aspartate receptors by calpain in cortical neurons. J Biol Chem 280: 21588–21593, 2005.PubMedGoogle Scholar
  372. 372.
    Wyszynski, M., J. Lin, A. Rao, E. Nigh, A.H. Beggs, A.M. Craig, and M. Sheng. Competitive binding of alpha-actinin and calmodulin to the NMDA receptor. Nature 385: 439–442, 1997.PubMedGoogle Scholar
  373. 373.
    Xia, H., Z.D. Hornby, and R.C. Malenka. An ER retention signal explains differences in surface expression of NMDA and AMPA receptor subunits. Neuropharmacology 41: 714–723, 2001.PubMedGoogle Scholar
  374. 374.
    Xiong, Z.G., R. Raouf, W.Y. Lu, L.Y. Wang, B.A. Orser, E.M. Dudek, M.D. Browning, and J.F. MacDonald. Regulation of N-methyl-D-aspartate receptor function by constitutively active protein kinase C. Mol Pharmacol 54: 1055–1063, 1998.PubMedGoogle Scholar
  375. 375.
    Yang, J., G.L. Woodhall, and R.S. Jones. Tonic facilitation of glutamate release by presynaptic NR2B-containing NMDA receptors is increased in the entorhinal cortex of chronically epileptic rats. J Neurosci 26: 406–410, 2006.PubMedGoogle Scholar
  376. 376.
    Yang, W., C. Zheng, Q. Song, X. Yang, S. Qiu, C. Liu, Z. Chen, S. Duan, and J. Luo. A three amino acid tail following the TM4 region of the N-methyl-D-aspartate receptor (NR) 2 subunits is sufficient to overcome endoplasmic reticulum retention of NR1-1a subunit. J Biol Chem 282: 9269–9278, 2007.PubMedGoogle Scholar
  377. 377.
    Yao, I., Y. Hata, N. Ide, K. Hirao, M. Deguchi, H. Nishioka, A. Mizoguchi, and Y. Takai. MAGUIN, a novel neuronal membrane-associated guanylate kinase-interacting protein. J Biol Chem 274: 11889–11896, 1999.PubMedGoogle Scholar
  378. 378.
    Yeaman, C., K.K. Grindstaff, J.R. Wright, and W.J. Nelson. Sec6/8 complexes on trans-Golgi network and plasma membrane regulate late stages of exocytosis in mammalian cells. J Cell Biol 155: 593–604, 2001.PubMedGoogle Scholar
  379. 379.
    Yi, Z., R.S. Petralia, K. Prybylowski, N. Sans, Y.-X. Wang, and R.J. Wenthold. GIPC, a single PDZ domain-containing protein, interacts with the NMDA receptor and regulates its surface expression. Soc Neurosci Abs 31.14, 2006.Google Scholar
  380. 380.
    Yi, Z., R.S. Petralia, N. Sans, and W. RJ. NMDA receptors interact with GIPC. Soc Neurosci Abs 487.10, 2005.Google Scholar
  381. 381.
    Yoshii, A., M.H. Sheng, and M. Constantine-Paton. Eye opening induces a rapid dendritic localization of PSD-95 in central visual neurons. Proc Natl Acad Sci USA 100: 1334–1339, 2003.PubMedGoogle Scholar
  382. 382.
    Young, A.B., J.T. Greenamyre, Z. Hollingsworth, R. Albin, C. D’Amato, I. Shoulson, and J.B. Penney. NMDA receptor losses in putamen from patients with Huntington’s disease. Science 241: 981–983, 1988.PubMedGoogle Scholar
  383. 383.
    Yuen, E.Y., Q. Jiang, J. Feng, and Z. Yan. Microtubule regulation of N-methyl-Daspartate receptor channels in neurons. J Biol Chem 280: 29420–29427, 2005.PubMedGoogle Scholar
  384. 384.
    Zarate, C.A., J. Quiroz, J. Payne, and H.K. Manji. Modulators of the glutamatergic system: implications for the development of improved therapeutics in mood disorders. Psychopharmacol Bull 36: 35–83, 2002.PubMedGoogle Scholar
  385. 385.
    Zarate, C.A.J., J.B. Singh, P.J. Carlson, N.E. Brutsche, R. Ameli, D.A. Luckenbaugh, D.S. Charney, and H.K. Manji. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63: 856–864, 2006.PubMedGoogle Scholar
  386. 386.
    Zeron, M.M., N. Chen, A. Moshaver, A.T. Lee, C.L. Wellington, M.R. Hayden, and L.A. Raymond. Mutant huntingtin enhances excitotoxic cell death. Mol Cell Neurosci 17: 41–53, 2001.PubMedGoogle Scholar
  387. 387.
    Zeron, M.M., O. Hansson, N. Chen, C.L. Wellington, B.R. Leavitt, P. Brundin, M.R. Hayden, and L.A. Raymond. Increased sensitivity to N-methyl-D-aspartate receptormediated excitotoxicity in a mouse model of Huntington’s disease. Neuron 33: 849–860, 2002.PubMedGoogle Scholar
  388. 388.
    Zhang, S.J., M.N. Steijaert, D. Lau, G. Schutz, C. Delucinge-Vivier, P. Descombes, and H. Bading. Decoding NMDA Receptor Signaling: identification of Genomic Programs Specifying Neuronal Survival and Death. Neuron 53: 549–562, 2007.PubMedGoogle Scholar
  389. 389.
    Zhang, W., L. Vazquez, M. Apperson, and M.B. Kennedy. Citron binds to PSD-95 at glutamatergic synapses on inhibitory neurons in the hippocampus. J Neurosci 19: 96–108, 1999.PubMedGoogle Scholar
  390. 390.
    Zheng, X., L. Zhang, A.P. Wang, M.V. Bennett, and R.S. Zukin. Protein kinase C potentiation of N-methyl-D-aspartate receptor activity is not mediated by phosphorylation of N-methyl-D-aspartate receptor subunits. Proc Natl Acad Sci USA 96: 15262–15267, 1999.Google Scholar
  391. 391.
    Ziv, N.E., and C.C. Garner. Cellular and molecular mechanisms of presynaptic assembly. Nat Rev Neurosci 5: 385–399, 2004.PubMedGoogle Scholar
  392. 392.
    Zukin, R.S., and M.V. Bennett. Alternatively spliced isoforms of the NMDARI receptor subunit. Trends Neurosci 18: 306–313, 1995.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Robert J. Wenthold
    • 1
  • Rana A. Al-Hallaq
    • 1
  • Catherine Croft Swanwick
    • 1
  • Ronald S. Petralia
    • 1
  1. 1.Laboratory of Neurochemistry, National Institute on Deafness and Other Communication DisordersNational Institutes of HealthBethesdaUSA

Personalised recommendations