There Are Many Models of Transitive Preference: A Tutorial Review and Current Perspective

  • Michel Regenwetter
  • Clintin P. Davis-Stober
Part of the Springer Optimization and Its Applications book series (SOIA, volume 21)

Transitivity of preference is a fundamental rationality axiom shared by nearly all normative, prescriptive, and descriptive models of preference or choice. There are many possible models of transitive preferences. We review a general class of such models and we summarize a recent critique of the empirical literature on (in)transitivity of preference. A key conceptual hurdle lies in the fact that transitivity is an algebraic/logical axiom, whereas experimental choice data are, by design, the outcomes of sampling processes. We discuss probabilistic specifications of transitivity that can be cast as (unions of) convex polytopes within the unit cube. Adding to the challenge, probabilistic specifications with inequality constraints (including the standard “weak stochastic transitivity” constraint on binary choice probabilities) fall victim to a “boundary problem” where the log-likelihood test statistic fails to have an asymptotic χ2-distribution. This invalidates many existing statistical analyses of empirical (in)transitive choice in the experimental literature. We summarize techniques to test models of transitive preference based on two key components: (1) we discuss probabilistic specifications in terms of convex polytopes, and (2) we provide the correct asymptotic distributions to test them. Furthermore, we demonstrate these techniques with examples on illustrative sample data.


Binary Relation Linear Order Binary Choice Random Utility Weak Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. J. Bickel and K. A. Doksum. Mathematical Statistics: Basic Ideas and Selected Topics, volume 1. Prentice-Hall, Upper Saddle River, NJ, 2001.Google Scholar
  2. 2.
    H. D. Block and J. Marschak. Random orderings and stochastic theories of responses. In I. Olkin, S. Ghurye, H. Hoeffding, W. Madow, and H. Mann, editors, Contributions to Probability and Statistics, pages 97–132. Stanford University Press, Stanford, CA, 1960.Google Scholar
  3. 3.
    U. Böckenholt. Thresholds and intransitivities in pairwise judgments: A multilevel analysis. Journal of Educational and Behavioral Statistics, 26:269–282, 2001.CrossRefGoogle Scholar
  4. 4.
    G. Bolotashvili, M. Kovalev, and E. Girlich. New facets of the linear ordering polytope. SIAM Journal on Discrete Mathematics, 12:326–336, 1999.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    M. Cohen and J.-C. Falmagne. Random scale representations of binary choice probabilities: A counterexample to a conjecture of Marschak. Unpublished manuscript, Department of Psychology, New York University, 1978.Google Scholar
  6. 6.
    M. Cohen and J.-C. Falmagne. Random utility representation of binary choice probabilities: A new class of necessary conditions. Journal of Mathematical Psychology, 34:88–94, 1990.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    M. Condorcet. Essai sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité des voix (Essai on the application of the probabilistic analysis of majority vote decisions). Imprimerie Royale, Paris, 1785.Google Scholar
  8. 8.
    C. P. Davis-Stober. Multinomial models under inequality constraints: Applications to measurement theory. Manuscript submitted, 2008.Google Scholar
  9. 9.
    R. Dittrich, R. Hatzinger, and W. Katzenbeisser. Modelling the effect of subject-specific covariates in paired comparison studies with an application to university rankings. Journal of the Royal Statistical Society: Series C, 47:511–525, 1998.MATHCrossRefGoogle Scholar
  10. 10.
    S. Fiorini. Determining the automorphism group of the linear ordering polytope. Discrete Applied Mathematics, 112:121–128, 2001.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    S. Fiorini. Polyhedral Combinatorics of Order Polytopes. PhD thesis, Université Libre de Bruxelles, 2001.Google Scholar
  12. 12.
    S. Fiorini and P. C. Fishburn. Weak order polytopes. Discrete Mathematics, 275:111–127, 2004.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    P. C. Fishburn. Intransitive indifference in preference theory. Journal of Mathematical Psychology, 7:207–228, 1970.CrossRefGoogle Scholar
  14. 14.
    P. C. Fishburn. Utility Theory for Decision Making. R. E. Krieger, Huntington, NY, 1979.Google Scholar
  15. 15.
    P. C. Fishburn. Interval Orders and Interval Graphs. Wiley, New York, 1985.MATHGoogle Scholar
  16. 16.
    P. C. Fishburn. Binary probabilities induced by rankings. SIAM Journal of Discrete Mathematics, 3:478–488, 1990.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    P. C. Fishburn. Induced binary probabilities and the linear ordering polytope: A status report. Mathematical Social Sciences, 23:67–80, 1992.MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    P. C. Fishburn and J.-C. Falmagne. Binary choice probabilities and rankings. Economic Letters, 31:113–117, 1989.CrossRefMathSciNetGoogle Scholar
  19. 19.
    I. Gilboa. A necessary but insufficient condition for the stochastic binary choice problem. Journal of Mathematical Psychology, 34:371–392, 1990.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    M. Grötschel, M. Jünger, and G. Reinelt. Facets of the linear ordering polytope. Mathematical Programming, 33:43–60, 1985.MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    B. Grünbaum. Convex Polytopes. Wiley, New York, 1967.MATHGoogle Scholar
  22. 22.
    D. Heyer and R. Niederée. Elements of a model-theoretic framework for probabilistic measurement. In E. E. Roskam, editor, Mathematical Psychology in Progress, pages 99–112. Springer, Berlin, 1989.Google Scholar
  23. 23.
    D. Heyer and R. Niederée. Generalizing the concept of binary choice systems induced by rankings: One way of probabilizing deterministic measurement structures. Mathematical Social Sciences, 23:31–44, 1992.MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    G. J. Iverson and J.-C. Falmagne. Statistical issues in measurement. Mathematical Social Sciences, 10:131–153, 1985.MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    D. Kahneman and A. Tversky. Prospect theory: An analysis of decision under risk. Econometrica, 47:263–291, 1979.MATHCrossRefGoogle Scholar
  26. 26.
    M. Koppen. Random utility representations of binary choice probabilities. In J.-P. Doignon and J.-C. Falmagne, editors, Mathematical Psychology: Current Developments, pages 181–201. Springer, New York, 1991.Google Scholar
  27. 27.
    M. Koppen. Random utility representation of binary choice probabilities: Critical graphs yielding critical necessary conditions. Journal of Mathematical Psychology, 39:21–39, 1995.MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    D. H. Krantz, R. D. Luce, P. Suppes, and A. Tversky. Foundations of Measurement, volume 1. Academic Press, San Diego, 1971.MATHGoogle Scholar
  29. 29.
    G. Loomes and R. Sugden. Incorporating a stochastic element into decision theories. European Economic Review, 39:641–648, 1995.CrossRefGoogle Scholar
  30. 30.
    R. D. Luce. Semiorders and a theory of utility discrimination. Econometrica, 26:178–191, 1956.CrossRefMathSciNetGoogle Scholar
  31. 31.
    R. D. Luce, D. H. Krantz, P. Suppes, and A. Tversky. Foundations of Measurement, volume 3. Academic Press, San Diego, 1990.MATHGoogle Scholar
  32. 32.
    R. D. Luce and P. Suppes. Preference, utility and subjective probability. In R. D. Luce, R. R. Bush, and E. Galanter, editors, Handbook of Mathematical Psychology, volume III, pages 249–410. Wiley, New York, 1965.Google Scholar
  33. 33.
    C. L. Mallows. Non-null ranking models I. Biometrika, 44:114–130, 1957.MATHMathSciNetGoogle Scholar
  34. 34.
    J. Marschak. Binary-choice constraints and random utility indicators. In K. J. Arrow, S. Karlin, and P. Suppes, editors, Proceedings of the First Stanford Symposium on Mathematical Methods in the Social Sciences, pages 312–329. Stanford University Press, Stanford, CA, 1960.Google Scholar
  35. 35.
    J. I. Myung, G. Karabatsos, and G. J. Iverson. A Bayesian approach to testing decision making axioms. Journal of Mathematical Psychology, 49:205–225, 2005.MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    R. Niederée and D. Heyer. Generalized random utility models and the representational theory of measurement: A conceptual link. In A. A. J. Marley, editor, Choice, Decision and Measurement: Essays in Honor of R. Duncan Luce, pages 155–189. Lawrence Erlbaum, Mahwah, NJ, 1997.Google Scholar
  37. 37.
    M. Regenwetter. Random utility representations of finite m-ary relations. Journal of Mathematical Psychology, 40:219–234, 1996.MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    M. Regenwetter and C. P. Davis-Stober. Random preference models of transitive preference. Manuscript in preparation, 2008.Google Scholar
  39. 39.
    M. Regenwetter, J. Dana, and C. P. Davis-Stober. Transitivity of preferences. Manuscript submitted, 2008.Google Scholar
  40. 40.
    M. Regenwetter and A. A. J. Marley. Random relations, random utilities, and random functions. Journal of Mathematical Psychology, 45:864–912, 2001.MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    F. S. Roberts. Measurement Theory. Addison-Wesley, London, 1979.MATHGoogle Scholar
  42. 42.
    T. Robertson, F. T. Wright, and R. L. Dykstra. Order Restricted Statistical Inference. Wiley, New York, 1988.MATHGoogle Scholar
  43. 43.
    L. J. Savage. The Foundations of Statistics. Wiley, New York, 1954.MATHGoogle Scholar
  44. 44.
    R. Suck. Geometric and combinatorial properties of the polytope of binary choice probabilities. Mathematical Social Sciences, 23:81–102, 1992.MATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    R. Suck. Probabilistic biclassification and random variable representations. Journal of Mathematical Psychology, 41:57–64, 1997.MATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    P. Suppes, D. H. Krantz, R. D. Luce, and A. Tversky. Foundations of Measurement, volume II. Academic Press, San Diego, 1989.MATHGoogle Scholar
  47. 47.
    The Royal Statistical Society datasets website. Last accessed January 2008.
  48. 48.
    I. Tsetlin, M. Regenwetter, and B. Grofman. The impartial culture maximizes the probability of majority cycles. Social Choice and Welfare, 21:387–398, 2003.MATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    J. von Neumann and O. Morgenstern. Theory of Games and Economic Behavior. Princeton University Press, Princeton, NJ, 1947.Google Scholar
  50. 50.
    G. M. Ziegler. Lectures on Polytopes. Springer-Verlag, Berlin, 1995.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Michel Regenwetter
    • 1
  • Clintin P. Davis-Stober
    • 2
  1. 1.Department of PsychologyUniversity of Illinois at Urbana-ChampaignChampaignUSA
  2. 2.Department of Political ScienceUniversity of Illinois at Urbana-ChampaignChampaignUSA

Personalised recommendations