Skip to main content

Risk-Averse Portfolio Optimization via Stochastic Dominance Constraints

  • Chapter
Handbook of Quantitative Finance and Risk Management

Abstract

We consider the problem of constructing a portfolio of finitely many assets whose return rates are described by a discrete joint distribution. We present a new approach to portfolio selection based on stochastic dominance. The portfolio return rate in the new model is required to stochastically dominate a random benchmark. We formulate optimality conditions and duality relations for these models and construct equivalent optimization models with utility functions. Two different formulations of the stochastic dominance constraint: primal and inverse, lead to two dual problems that involve von Neuman–Morgenstern utility functions for the primal formulation and rank dependent (or dual) utility functions for the inverse formulation. The utility functions play the roles of Lagrange multipliers associated with the dominance constraints. In this way our model provides a link between the expected utility theory and the rank dependent utility theory. We also compare our approach to models using value at risk and conditional value at risk constraints. A numerical example illustrates the new approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 869.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Dentcheva, D. 2005. Optimization models with probabilistic constraints. in Probabilistic and randomized methods for design under uncertainty, G. Calafiore and F. Dabbene (Eds.). Springer, London, pp. 49–97.

    Google Scholar 

  • Dentcheva, D. and A. Ruszczyński. 2003a. “Optimization under linear stochastic dominance.” Comptes Rendus de l’Academie Bulgare des Sciences 56(6), 6–11.

    Google Scholar 

  • Dentcheva, D. and A. Ruszczyński. 2003b. “Optimization under nonlinear stochastic dominance.” Comptes Rendus de l’Academie Bulgare des Sciences 56(7), 19–25.

    Google Scholar 

  • Dentcheva, D. and A. Ruszczyński. 2003c. “Optimization with stochastic dominance constraints.” SIAM Journal on Optimization 14, 548–566.

    Article  Google Scholar 

  • Dentcheva, D. and A. Ruszczyński. 2004a. “Optimality and duality theory for stochastic optimization problems with nonlinear dominance constraints.” Mathematical Programming 99, 329–350.

    Article  Google Scholar 

  • Dentcheva, D. and A. Ruszczyński. 2004b. “Convexification of stochastic ordering constraints.” Comptes Rendus de l’Academie Bulgare des Sciences 57(3), 5–10.

    Google Scholar 

  • Dentcheva, D. and A. Ruszczyński. 2004c. “Semi-infinite probabilistic optimization: first order stochastic dominance constraints.” Optimization 53, 583–601.

    Article  Google Scholar 

  • Dentcheva, D. and A. Ruszczyński. 2006a. “Portfolio optimization with stochastic dominance constraints.” Journal of Banking and Finance 30/2, 433–451.

    Google Scholar 

  • Dentcheva, D. and A. Ruszczyński. 2006b. “Inverse stochastic dominance constraints and rank dependent expected utility theory.” Mathematical Programming 108, 297–311.

    Article  Google Scholar 

  • Dentcheva, D. and A. Ruszczyński. 2008. “Duality between coherent risk measures and stochastic dominance constraints in risk-averse optimization.” Pacific Journal of Optimization 4, 433–446.

    Google Scholar 

  • Dentcheva, D. and A. Ruszczyński. 2010. Inverse cutting plane methods for optimization problems with second order stochastic dominance constraints, Optimization in press.

    Google Scholar 

  • Elton, E. J., M. J. Gruber, S. J. Brown, and W. N. Goetzmann. 2006. Modern portfolio theory and investment analysis, Wiley, New York.

    Google Scholar 

  • Fishburn, P. C.1964. Decision and value theory, Wiley, New York.

    Google Scholar 

  • Fishburn, P.C. 1970. Utility theory for decision making, Wiley, New York.

    Google Scholar 

  • Gastwirth, J. L. 1971. “A general definition of the Lorenz curve.” Econometrica 39, 1037–1039.

    Article  Google Scholar 

  • Hadar, J. and W. Russell. 1969. “Rules for ordering uncertain prospects.” The American Economic Review 59, 25–34.

    Google Scholar 

  • Hanoch, G. and H. Levy, 1969. “The efficiency analysis of choices involving risk.” Review of Economic Studies 36, 335–346.

    Article  Google Scholar 

  • Hardy, G. H., J. E. Littlewood and G. Polya. 1934. Inequalities, Cambridge University Press, Cambridge, MA.

    Google Scholar 

  • Konno, H. and H. Yamazaki. 1991. “Mean-absolute deviation portfolio optimization model and its application to Tokyo stock market.” Management Science 37, 519–531.

    Article  Google Scholar 

  • Lehmann, E. 1955. “Ordered families of distributions.” Annals of Mathematical Statistics 26, 399–419.

    Article  Google Scholar 

  • Levy, H. 2006. Stochastic dominance: investment decision making under uncertainty, 2nd ed., Springer, New York.

    Google Scholar 

  • Lorenz, M. O. 1905. “Methods of measuring concentration of wealth.” Journal of the American Statistical Association 9, 209–219.

    Article  Google Scholar 

  • Markowitz, H. M. 1952. “Portfolio selection.” Journal of Finance 7, 77–91.

    Google Scholar 

  • Markowitz, H. M. 1959. Portfolio selection, Wiley, New York.

    Google Scholar 

  • Markowitz, H. M. 1987. Mean-variance analysis in portfolio choice and capital markets, Blackwell, Oxford.

    Google Scholar 

  • Mosler, K. and M. Scarsini (Eds.). 1991. Stochastic orders and decision under risk, Institute of Mathematical Statistics, Hayward, California.

    Google Scholar 

  • Muliere, P. and M. Scarsini, 1989. “A note on stochastic dominance and inequality measures.” Journal of Economic Theory 49, 314–323.

    Article  Google Scholar 

  • Müller, A. and D. Stoyan. 2002. Comparison methods for stochastic models and risks, Wiley, Chichester.

    Google Scholar 

  • Ogryczak, W. and A. Ruszczyński. 1999. “From stochastic dominance to mean-risk models: semideviations as risk measures.” European Journal of Operational Research 116, 33–50.

    Article  Google Scholar 

  • Ogryczak, W. and A. Ruszczyński. 2001. “On consistency of stochastic dominance and mean-semideviation models.” Mathematical Programming 89, 217–232.

    Article  Google Scholar 

  • Ogryczak, W. and A. Ruszczyński. 2002. “Dual stochastic dominance and related mean-risk models.” SIAM Journal on Optimization 13, 60–78.

    Article  Google Scholar 

  • Prékopa, A. 2003. Probabilistic programming. in Stochastic Programming, Ruszczyński, A. and A. Shapiro. (Eds.). Elsevier, Amsterdam, pp. 257–352.

    Google Scholar 

  • Quiggin, J. 1982. “A theory of anticipated utility.” Journal of Economic Behavior and Organization 3, 225–243.

    Article  Google Scholar 

  • Quiggin, J. 1993. Generalized expected utility theory – the rank-dependent expected utility model, Kluwer, Dordrecht.

    Book  Google Scholar 

  • Quirk, J.P and R. Saposnik. 1962. “Admissibility and measurable utility functions.” Review of Economic Studies 29, 140–146.

    Article  Google Scholar 

  • Rockafellar, R. T. and S. Uryasev. 2000. “Optimization of conditional value-at-risk.” Journal of Risk 2, 21–41.

    Google Scholar 

  • Rothschild, M. and J. E. Stiglitz. 1969. “Increasing risk: I. A definition.” Journal of Economic Theory 2, 225–243.

    Google Scholar 

  • Ruszczyński, A. and R.J. Vanderbei. 2003. “Frontiers of stochastically nondominated portfolios.” Econometrica 71, 1287–1297.

    Article  Google Scholar 

  • von Neumann, J. and O. Morgenstern. 1944. Theory of games and economic behavior, Princeton University Press, Princeton.

    Google Scholar 

  • Wang, S. S., V. R. Yong, and H.H. Panjer. 1997. “Axiomatic characterization of insurance prices.” Insurance Mathematics and Economics 21, 173–183.

    Article  Google Scholar 

  • Wang, S. S. and V. R. Yong. 1998. “Ordering risks: expected utility versus Yaari’s dual theory of risk.” Insurance Mathematics and Economics 22, 145–161.

    Article  Google Scholar 

  • Whitmore, G. A. and M. C. Findlay. (Eds.). 1978. Stochastic dominance: an approach to decision-making under risk, D.C.Heath, Lexington, MA.

    Google Scholar 

  • Yaari, M. E. 1987. “The dual theory of choice under risk.” Econometrica 55, 95–115.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Ruszczyński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dentcheva, D., Ruszczyński, A. (2010). Risk-Averse Portfolio Optimization via Stochastic Dominance Constraints. In: Lee, CF., Lee, A.C., Lee, J. (eds) Handbook of Quantitative Finance and Risk Management. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-77117-5_15

Download citation

Publish with us

Policies and ethics