The Neural and Behavioral Basis of Chemical Communication in Terrestrial Crustaceans

  • Bill S. Hansson
  • Steffen Harzsch
  • Markus Knaden
  • Marcus Stensmyr


Within Crustacea, representatives of at least five major taxa have succeeded in the transition from an aquatic to a fully terrestrial lifestyle: Isopoda, Amphipoda, Astacida, Anomura, and Brachyura. Land-living crustaceans are fascinating animals that during a very limited time period at an evolutionary time scale have adapted to a number of diverse terrestrial habitats in which they have become highly successful, and in some case the predominant life forms. Living on land raises new questions regarding the evolution of chemical communication because a transition from sea to land means that molecules need to be detected in gas phase instead of in water solution. The odor stimulus also changes from mainly hydrophilic molecules in aqueous solution to mainly hydrophobic in the gaseous phase. Behavioral studies have provided evidence that some land-living crustaceans, namely terrestrial hermit crabs (Anomura, Coenobitidae) have achieved high efficiency in detecting food from a distance and in responding to airborne odors, in short, that they have evolved an excellent sense of distance olfaction. How do crustaceans on land solve the tasks of odor detection and odor information processing and how have the new selection pressures reshaped the sense of smell? In the present contribution, we review the current knowledge on morphological aspects of the olfactory system of terrestrial crustaceans focusing on representatives of the Anomura and Isopoda. Terrestrial members of the latter taxon have greatly reduced first antennae and seem to have given up their deutocerebral olfactory pathway. Instead, they have shifted gustatory abilities to the second antennae and the tritocerebrum but it remains to be shown if these animals evolved an effective system of aerial olfaction. Within the Anomura, however, terrestrial hermit crabs (Coenobitidae) have greatly inflated those parts of the brain that are responsible for primary olfactory processing, the olfactory lobes. Electro-antennographic detection studies with the well developed first antennae of the giant robber crab Birgus latro demonstrated the capacity of this organ to detect volatile chemical information. These experiments point to an olfactory system as sensitive as the most sensitive general odor detecting olfactory sensory neurons found in insects and that therefore is well suited to explore the terrestrial olfactory landscape. We also summarize ongoing efforts to explore olfactory-guided behavior of the giant robber crab on Christmas Island, Indian Ocean. We conclude that comparative studies between fully aquatic crustaceans and closely related terrestrial taxa provide a powerful means of investigating the evolution of chemosensory adaptations in these two environments. Future studies must address three main aspects: the behavior towards active odors (both pheromones and other semiochemicals) has to be clearly shown and quantified, the chemical identity of key odor cues and the source of these compounds have to be established, and the sensory base of detection and information processing in the chemical senses need to be further studied.


Olfactory System Hermit Crab Olfactory Sensory Neuron Olfactory Lobe Hemiellipsoid Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The writing of this chapter was supported by the Max Planck Society. We gratefully acknowledge the cooperation of the CI branch of National Parks, Australia in our studies of the robber crab. We cordially thank Dr. Hans Pohl (Phyletisches Museum Jena, Friedrich-Schiller-Universität Jena), PD Dr. Wieland Hertel, Institut für Allgemeine Zoologie und Tierphysiologie, Friedrich-Schiller-Universität Jena) and Dr. Carsten H.G. Müller (Universität Rostock) for contributing images. Swetlana Laubrecht kindly assisted compiling the reference list, and Verena Rieger with the immunohistochemical experiments with the isopods.


  1. Beltz BS, Kordas K, Lee MM, Long JB, Benton JL, Sandeman DC (2003) Ecological, evolutionary, and functional correlates of sensilla number and glomerular density in the olfactory system of decapod crustaceans. J Comp Neurol 455:260–269CrossRefPubMedGoogle Scholar
  2. Bliss DE, Mantel LH (1968) Adaptations of crustaceans to land: a summary and analysis of new findings. Am Zool 8:673–685Google Scholar
  3. Burggren WW, McMahon BR (1988) Biology of the land crabs. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  4. Drew MM, Harzsch S, Stensmyr M, Erland S, Hansson BS (2010) A review of the biology and ecology of the Robber Crab, Birgus latro (Linnaeus, 1758) (Anomura: Coenobitidae). Zool Anz 249:45–67CrossRefGoogle Scholar
  5. Friend JA, Richardson AMM (1986) Biology of terrestrial amphipods. Annu Rev Entomol 31:25–48CrossRefGoogle Scholar
  6. Ghiradella H, Case J, Cronshow J (1968a) Fine structure of the aesthetesc hairs of Coenobita compressus Edwards. J Morphol 124:361–385CrossRefPubMedGoogle Scholar
  7. Ghiradella H, Cronshow J, Case J (1968b) Fine structure of the aestetasc hairs of Pagurus hirsutiusculus in the light and electron microscope. Protoplasma 66:1–20CrossRefGoogle Scholar
  8. Greenaway P (1988) Ion and water balance. In: Burggren WW, McMahon BR (eds) Biology of the land crabs. Cambridge University Press, Cambridge, pp 211–248CrossRefGoogle Scholar
  9. Greenaway P (1999) Physiological diversity and the colonization of land. In: Schram FR, von Vaupel Klein JC (eds) Proceedings of the fourth international crustacean congress. Brill Academic Publishers, Amsterdam, pp 823–842Google Scholar
  10. Greenaway P (2003) Terrestrial adaptations in Anomura (Crustacea: Decapoda). Mem Mus Vic 60:13–26Google Scholar
  11. Grubb P (1971) Ecology of terrestrial decapod crustaceans on Aldabra. Philos Trans R Soc Lond Ser B 260:411–416CrossRefGoogle Scholar
  12. Hansson BS, Ochieng SA, Grosmaitre X, Anton S, Njagi PGN (1996) Physiological responses and central nervous projections of antennal olfactory receptor neurons in the adult desert locust, Schistocerca gregaria (Orthoptera: Acrididae). J Comp Physiol A 179:157–167CrossRefGoogle Scholar
  13. Hansson BS, Larsson ML, Leal WS (1999) Green leaf volatile detecting olfactory receptor neurones display very high sensitivity and specificity in a scarab beetle. Physiol Entomol 24:121–126CrossRefGoogle Scholar
  14. Hanström B (1947) The brain, the sense organs, and the incretory organs in the head in the Crustacea Malacostraca. K Fysiogr Sällsk Handl 48:1–45Google Scholar
  15. Harms JW (1932) Die Realisation von Genen und die consecutive adaptation. II. Birgus latro L. als Landkrebs und seine Beziehungen zu den Coenobiten. Z Wiss Zool 140:167–290Google Scholar
  16. Harms JW (1937) Lebenslauf und Stammesgeschichte des Birgus latro L. von den Weihnachtsinseln. Zeitschr Naturwiss Jena 75:1–34Google Scholar
  17. Hartnoll RG (1988) Evolution, systematics, and geographical distribution. In: Burggren WW, McMahon BR (eds) Biology of the land crabs. Cambridge University Press, Cambridge, pp 6–54CrossRefGoogle Scholar
  18. Harzsch S, Hansson BS (2008) Brain architecture in the terrestrial hermit crab Coenobita clypeatus (Anomura, Coenobitidae), a crustacean with a good aerial sense of smell. BMC Neurosci 9:58CrossRefPubMedGoogle Scholar
  19. Harzsch S, Stensmyr M, Hansson BS (2007) Transition from sea to land: adaptations of the central olfactory pathway in the giant robber crab. In: Poster, 7th Göttingen meeting of the German Neuroscience Society, 29.3.-1.4.2007. Online abstracts:
  20. Harzsch S, Sandeman D, Chaigneau J (in press) Morphology and development of the central nervous system. In: Forest J, von Vaupel Klein JC (eds) Treatise on zoology – crustacea. Koninklijke Brill Academic Publishers, LeidenGoogle Scholar
  21. Hering W (1981) Zur chemischen Ökologie der tunesischen Wüstenassel Hemilepistus reaumuri. Unpublished PhD thesis. Ruprecht-Karl-University of Heidelberg, HeidelbergGoogle Scholar
  22. Hoese B (1989) Morphological and comparative studies on the second antennae of terrestrial isopods. Monitore Zool Ital (NS) Monogr 4:127–152Google Scholar
  23. Kacem-Lachkar H (2000) Contribution to the study of the nervous system, the accessory glands, and the neurosecretory cells of Hemilepistus reaumuri (Audoin, 1826) (Isopoda, Oniscidea). Crustaceana 73:933–948CrossRefGoogle Scholar
  24. Kaestner A (1993) Lehrbuch der Speziellen Zoologie. In: Gruner HE, Moritz M, Dunger W (eds) Wirbellose Tiere; 4. Teil: Arthropoda (ohne Insecta). Gustav Fischer Verlag, Jena, pp 1–1279Google Scholar
  25. Linsenmair KE (1987) Kin recognition in subsocial arthropods, in particular in the desert isopod Hemilepistus reaumuri. In: Fletcher D, Michener C (eds) Kin recognition in animals. Wiley, Chichester, pp 121–207Google Scholar
  26. Linsenmair KE (2007) Sociobiology of terrestrial isopods. In: Duffy JE, Thiel M (eds) Evolutionary ecology of social and sexual systems – crustaceans as model organisms. Oxford University Press, Oxford, pp 339–364Google Scholar
  27. Morritt D, Spicer JI (1998) The physiological ecology of talitrid amphipods: an update. Can J Zool 76:1965–1982CrossRefGoogle Scholar
  28. Ochieng SA, Hallberg E, Hansson BS (1998) Fine structure and distribution of antennal sensilla of the desert locust, Schistocerca gregaria (Orthoptera: Acrididae). Cell Tissue Res 291:525–536CrossRefPubMedGoogle Scholar
  29. Paul DH (2003) Neurobiology of the Anomura: Paguroidea, Galathoidea and Hippoidea. Mem Mus Vic 60:3–11Google Scholar
  30. Powers LW, Bliss DE (1983) Terrestrial adaptations. In: Verneberg FJ, Vernberg WB (eds) The biology of Crustacea Vol. 8: environmental adaptations. Academic, New York, pp 272–333Google Scholar
  31. Richardson AMM (2007) Behavioral ecology of semiterrestrial crayfish. In: Duffy JE, Thiel M (eds) Evolutionary ecology of social and sexual systems: crustaceans as model organisms. Oxford University Press, New York, pp 319–338CrossRefGoogle Scholar
  32. Richardson AMM, Swain R (2000) Terrestrial evolution in Crustacea: the talitrid amphipod model. Crustac Issues 12:807–816Google Scholar
  33. Richter S, Scholtz G (2001) Phylogenetic analyses of the Malacostraca (Crustacea). J Zool Systemat Res 39:113–136CrossRefGoogle Scholar
  34. Rittschof D, Cohen JH (2004) Crustacean peptide and peptide-like pheromones and kairomones. Peptides 25:1503–1516CrossRefPubMedGoogle Scholar
  35. Rittschof D, Sutherland JP (1986) Field studies on chemically mediated behavior in land hermit crabs: volatile and nonvolatile odors. J Chem Ecol 12:1273–1284CrossRefGoogle Scholar
  36. Rumpf, H. 1986. Freilanduntersuchungen zur Ethologie, Ökologie und Populationsbiologie des Palmendiebes, Birgus latro L. (Paguridae, Crustacea, Decapoda), auf Christmas Island (Indischer Ozean). Inaugural-Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften im Fachbereich Biologie der Mathematisch-Naturwissenschaftlichen Fakultät der Westfälischen Wilhems-Universität zu Münster, pp 1–122Google Scholar
  37. Ryan EP (1966) Pheromone: evidence in a decapod crustacean. Science 151(3708):340–341CrossRefPubMedGoogle Scholar
  38. Sandeman DC, Sandeman RE, Derby C, Schmidt M (1992) Morphology of the brain of crayfish, crabs, and spiny lobsters: a common nomenclature for homologous structures. Biol Bull 183:304–326CrossRefGoogle Scholar
  39. Sandeman DC, Scholtz G, Sandeman RE (1993) Brain evolution in decapod Crustacea. J Exp Zool 265:112–133CrossRefGoogle Scholar
  40. Schmitz EH (1989) Anatomy of the central nervous system of Armadillidium vulgare (Latreille) (Isopoda). J Crust Biol 9:217–227CrossRefGoogle Scholar
  41. Schneider DZ (1957) Elektrophysiologische Untersuchungen von Chemo- und Mechanorezeptoren der Antenne des Seidenspinners Bombyx mori. Z Vgl Physiol 40:8–41CrossRefGoogle Scholar
  42. Scholtz G, Richter S (1995) Phylogenetic systematics of the repatantian Decapoda (Crustacea, Malacostraca). Zool J Linn Soc 113:289–328CrossRefGoogle Scholar
  43. Seelinger G (1977) Der Antennenendzapfen der tunesischen Wüstenassel Hemilepistus reaumuri, ein kompleyes Sinnesorgan (Crustacea, Isopoda). J Comp Physiol 113:95–103CrossRefGoogle Scholar
  44. Seelinger G (1983) Response characteristics and specificity of chemoreceptors in Hemilepistus reaumuri (Crustacea, Isopoda). J Comp Physiol 152:219–229CrossRefGoogle Scholar
  45. Stensmyr M, Erland S, Hallberg E, Wallén R, Greenaway P, Hansson B (2005) Insect-like olfactory adaptations in the terrestrial giant robber crab. Curr Biol 15:116–121CrossRefPubMedGoogle Scholar
  46. Thacker RW (1994) Volatile shell-investigation cues of land hermit crabs: effect of shell fit, detection of cues from other hermit crab species, and cue isolation. J Chem Ecol 20:1457–1481CrossRefGoogle Scholar
  47. Thacker RW (1996) Food choices of land hermit crabs (Coenobita compressus H. Milne Edwards) depend on past experience. J Exp Mar Biol Ecol 199:179–191CrossRefGoogle Scholar
  48. Thacker RW (1998) Avoidance of recently eaten foods by land hermit crabs, Coenobita compressus. Anim Behav 33:485–496CrossRefGoogle Scholar
  49. Vannini M, Chelazzi G (1981) Orientation of Coenobita rugosus (Crustacea: Anomura): a field study on Aldabra. Mar Biol 64:135–140CrossRefGoogle Scholar
  50. Vannini M, Ferretti J (1997) Chemoreception in two species of terrestrial hermit crabs (Decapoda: Coenobitidae). J Crust Biol 17:33–37CrossRefGoogle Scholar
  51. Wägele JW (1989) Evolution und phylogenetisches System der Isopoda. Zoologica 47:1–262Google Scholar
  52. Wägele JW, Holland B, Dreyer H, Hackethal B (2003) Searching factors causing implausible non-monophyly: ssu rDNA phylogeny of Isopoda Asellota (Crustacea: Peracarida) and faster evolution in marine than in freshwater habitats. Mol Phylogenet Evol 28:536–551CrossRefPubMedGoogle Scholar
  53. Walker G (1935) The central nervous system of Oniscus (Isopoda). J Comp Neurol 62:197–237CrossRefGoogle Scholar
  54. Warburg MR (1968) Behavioral adaptations of terrestrial isopods. Am Zool 8:545–559Google Scholar
  55. Wetzer R (2002) Mitochondrial genes and isopod phylogeny (Peracarida: Isopoda). J Crust Biol 22:1–14CrossRefGoogle Scholar
  56. Wirkner CS, Richter S (2003) The circulatory system in Phreatoicidea: implications for the isopod ground pattern and peracarid phylogeny. Arthropod Struct Dev 32:337–347CrossRefPubMedGoogle Scholar
  57. Wyatt TD (2003) Pheromones and animal behaviour: communication by smell and taste. Cambridge University Press, Cambridge, 391ppCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Bill S. Hansson
    • 1
  • Steffen Harzsch
  • Markus Knaden
  • Marcus Stensmyr
  1. 1.Department of Evolutionary NeuroethologyMax Planck Institute for Chemical EcologyJenaGermany

Personalised recommendations