Chemosensory Sensilla in Crustaceans

  • Eric Hallberg
  • Malin Skog


Crustaceans, like most other animals, have two types of chemosensory organs. In crustaceans these organs consist of sensilla that differ structurally as well as functionally. Unimodal olfactory sensilla are usually considered as more long-range and bimodal chemo- and mechanosensory sensilla as short-range or contact chemosensory sensilla. All chemosensory sensilla are characterized by the presence of ciliated bipolar sensory cells. The bimodal sensilla are unevenly distributed over the entire body, with dense arrays on the mouthparts and walking legs. These sensilla contain both chemosensory and mechanosensory cells. The chemosensory cells contain one transformed cilium (dendritic outer segment) each. Bimodal sensilla have a relatively densely arranged cuticle and also feature an apical pore. The most common unimodal olfactory sensilla in crustaceans are the aesthetascs, which vary in structure, number, and distribution. Another type of unimodal olfactory organ is the male-specific sensilla, found basally on the first antenna in some isopods, mysids, and amphipods. Excluding these groups, sexual dimorphism of the olfactory organs is not as pronounced in crustaceans as in some insects. The chemosensory cells of both aesthetascs and male-specific sensilla have two transformed cilia each, thus differing from gustatory chemosensory cells which have only one. Further, the cuticle of aesthetascs and male-specific sensilla is “spongy,” possibly functioning as a molecular sieve. Crustaceans molt in order to grow, and there are two known patterns of molting of the chemosensory sensilla: the first retains the chemosensory ability through maintained contact between the old and the new sensillum (the “mysid-type” of molt) and the second where there is no such contact and thus possibly no chemosensory ability (the “isopod-type”). Previous studies have mostly described the general morphology of the chemosensory sensilla, which is well-known in crustaceans. Future studies should focus on the function of these sensilla in an ecological and behavioral context.


Sexual Dimorphism Sensory Cell Chemosensory Cell Olfactory Sensilla Apical Pore 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank NFR, Formas and the Royal Physiographic Society in Lund for supporting this research. Rolf Elofsson and Ali Steinbrecht have been inspiring and most helpful during the years. The long and fruitful cooperation with Rita Wallén, a most competent and enthusiastic technician in the field of electron microscopy, is deeply acknowledged.


  1. Ache BW (1982) Chemoreception and thermoreception. In: Atwood HL, Sandeman DC (eds) The biology of Crustacea, Vol. 3. Academic Press, New York, pp 369–398Google Scholar
  2. Altner H, Prillinger L (1980) Ultrastructure of invertebrate chemo-, thermo-, and hygroreceptors and its functional significance. Int Rev Cytol 67:69–139CrossRefGoogle Scholar
  3. Altner I, Hatt H, Altner H (1983) Structural properties of bimodal chemo- and mechanosensitive setae on the pereiopod chelae of the crayfish, Austropotamobius torrentium. Cell Tiss Res 228:357–374CrossRefGoogle Scholar
  4. Andersson A (1975) The ultrastructure of the presumed chemo receptor aesthetasc of a cypridid ostracod. Zool Script 4:151–158CrossRefGoogle Scholar
  5. Atema J (1985) Chemoreception in the sea: adaptations of chemoreceptors and behaviour to aquatic stimulus conditions. In: Laverack MS (ed) Society of experimental biology symposium 39: physiological adaptations of marine animals. Cambridge University Press, Cambridge, pp 387–423Google Scholar
  6. Balss H (1944) Decapoda. In: Bronns HG (ed) Klassen und Ordnungen des Tierreichs (Band 5, Abteilung 1, Buch 7). Leipzig: Akademische Verlagsgesellschaft Geest & Portig Kg, pp 321–480. (Reference to Leydig (1870) pp 363–364)Google Scholar
  7. Bauer RT (1981) Grooming behavior and morphology in the decapod Crustacea. J Crust Biol 1:153–173CrossRefGoogle Scholar
  8. Beltz BS, Kordas K, Lee MM, Long JB, Benton JL, Sandeman DC (2003) Ecological, evolutionary, and functional correlates of sensilla number and glomerular density in the olgfactory system of decapod crustaceans. J Comp Neurol 455:260–269CrossRefPubMedGoogle Scholar
  9. Bertin A, Cézilly F (2003) Sexual selection, antennae length and the mating advantage of large males in Asellus aquaticus. J Evol Biol 16:491–500CrossRefPubMedGoogle Scholar
  10. Cate HS, Derby CD (2001) Morphology and distrbution of setae on the antennules of the Caribbean spiny lobster Panulirus argus reveal new types of bimodal chemo-mechanosensilla. Cell Tissue Res 304:439–454CrossRefPubMedGoogle Scholar
  11. Cate HS, Derby CD (2002) Ultrastructure and physiology of the hooded sensillum, a bimodal chemo-mechanosensillum of lobsters. J Comp Neurol 442:293–307CrossRefPubMedGoogle Scholar
  12. Clutter RI (1969) The microdistribution and social behaviour of some pelagic mysid shrimps. J Exp Mar Biol Ecol 3:125–155CrossRefGoogle Scholar
  13. Derby CD (1982) Structure and function of cuticular sensilla of the lobster Homarus americanus. J Crust Biol 2:1–21CrossRefGoogle Scholar
  14. Derby CD, Cate HS, Gentilcore LR (1997) Perireception in olfaction: Molecular mass sieving by aesthetasc sensillar cuticle determines odorant access to receptor sites in the Caribbean spiny lobster Panulirus argus. J Exp Biol 200:2073–2081PubMedGoogle Scholar
  15. Derby CD, Cate HS, Steullet P, Harrison PJH (2003) Comparison of turnover in the olfactory organ of early juvenile stage and adult Caribbean spiny lobsters. Arthr Struct Dev 31:297–311CrossRefGoogle Scholar
  16. Dittrich B (1988) Studies on the life cycle and reproduction of the parasitic amphipod Hyperia galba in the North Sea. Helgoländ. Meeresuntersuch 42:79–98CrossRefGoogle Scholar
  17. Doflein F (1910) Lebensgewohnheiten und Anpassungen bei decapoden Krebsen. Festschrift Richard Hertwig zum 60. Geburtstag. Band 3:215–292Google Scholar
  18. Ekerholm M, Hallberg E (2005) Primer and short-range releaser pheromone properties of premoult female urine from the shore crab, Carcinus maenas. J Chem Ecol 31:1845–1864CrossRefPubMedGoogle Scholar
  19. Felgenhauer BE, Abele LG, Felder DL (1992) Remipedia. In: Harrison FW, Humes AG (eds) Microscopic anatomy of invertebrates 9. Wiley-Liss, New York, pp 225–247Google Scholar
  20. Fontaine MT, Passelecq E, Bauchau AG (1982) Structures chemoréceptrices des antennules du crabe Carcinus maenas (L.) (Decapoda, Brachyura). Crustaceana 43:271–283CrossRefGoogle Scholar
  21. Garm A, Hallberg E, Høeg JT (2003) Role of maxilla 2 and its setae during feeding in the shrimp Palaemon adspersus (Crustacea: Decapoda). Biol Bull 204:126–137CrossRefPubMedGoogle Scholar
  22. Ghiradella H, Case J, Cronshaw J (1968) Structure of aesthetascs in selected marine and terrestrial decapods: chemoreceptor morphology and environment. Am Zool 8:603–621PubMedGoogle Scholar
  23. Gleeson RA, Aldric HC, White JF, Trapido-Rosenthal HG, Carr WES (1993) Ionic and elemental analyses of olfactory sensillar lymph in the spiny lobster, Panulirus argus. Comp Biochem Physiol 105A:29–34CrossRefGoogle Scholar
  24. Grünert U, Ache BW (1988) Ultrastructure of the aesthetasc (olfactory) sensilla of the spiny lobster, Panulirus argus. Cell Tiss Res 251:95–103CrossRefGoogle Scholar
  25. Guse GW (1983) Ultrastructure, development, and moulting of the aesthetascs of Neomysis integer and Idotea baltica (Crustacea, Malacostraca). Zoomorphol 103:121–133CrossRefGoogle Scholar
  26. Hallberg E, Chaigneau J (2004) The non-visual sense organs. In: Forest J, von Vaupel Klein JC (eds) Treatise on zoology – anatomy, taxonomy, biology. The crustacea, revised and updated from the Traité de Zoologie. Brill, Leiden, pp 301–386Google Scholar
  27. Hallberg E, Hansson BS (1999) Arthropod sensilla: morphology and phylogenetic considerations. Micr Res Tech 47:428–439CrossRefGoogle Scholar
  28. Hallberg E, Johansson KUI, Elofsson R (1992) The aesthetasc concept: structural variations of putative olfactory receptor cell complexes in Crustacea. Microsc Res Tech 22:325–335CrossRefPubMedGoogle Scholar
  29. Hallberg E, Johansson KUI, Wallén R (1997) Olfactory sensilla in crustaceans: Morphology, sexual dimorphism, and distribution patterns. Int J Insect Morphol Embryol 26:173–180CrossRefGoogle Scholar
  30. Heimann P (1984) Fine structure and moulting of aesthetasc sense organs on the antennules of the isopod, Asellus aquaticus (Crustacea). Cell Tiss Res 235:117–128CrossRefGoogle Scholar
  31. Johansson KUI, Hallberg E (1992) Male-specific structures in the olfactory system of mysids (Mysidacea: Crustacea). Cell Tiss Res 268:359–368CrossRefGoogle Scholar
  32. Johansson KUI, Gefors L, Wallen R, Hallberg E (1996) Structure and distribution patterns of aesthetascs and male-specific sensilla in Lophogaster typicus (Mysidacea). J Crust Biol 16:45–53CrossRefGoogle Scholar
  33. Kaji T, Tsukagoshi A (2008) Origin of the novel chemoreceptor aesthetasc “Y” in Ostracoda: morphogenetic thresholds and evolutionary innovation. Evol Dev 10:228–240CrossRefPubMedGoogle Scholar
  34. Laverack MS (1968) On the receptors of marine invertebrates. Oceanogr Mar Biol Annu Rev 6:249–324Google Scholar
  35. Laverack MS (1988) The diversity of chemoreceptors. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animal. Springer, Heidelberg, pp 287–312Google Scholar
  36. Laverack MS, Ardill DJ (1965) The innervation of the aesthetasc hairs of Panulirus argus. Quart J Micr Sci 106:45–60Google Scholar
  37. Lefebvre F, Limousin M, Caubet Y (2000) Sexual dimorphism in the antennae of terrestrial isopods: a result of male contests or scramble competition? Can J Zool 78:1987–1993CrossRefGoogle Scholar
  38. Lowry JK (1986) The callynophore, a eucaridean/peracaridean sensory organ prevalent among the Amphipoda (Crustacea). Zool Script 15:333–349CrossRefGoogle Scholar
  39. Marcus K (1911) Über Geruchsorgane bei decapoden Krebsen aus der Gruppe der Galatheiden. Zeitschr Wiss Zool 97:511–545Google Scholar
  40. Sandeman RE, Sandeman DC (1996) Pre-and postembryonic development, growth and turnover of olfactory receptor neurons in crayfish antennules. J Exp Biol 199:2409–2418PubMedGoogle Scholar
  41. Schmidt M, Gnatzy W (1984) Are the funnel-canal organs the ‘campaniform sensilla’ of the shore crab, Carcinus maenas (Decapoda, Crustacea)? II. Ultrastructure. Cell Tiss Res 237:81–93CrossRefGoogle Scholar
  42. Schmitt BC, Ache BA (1979) Olfaction: responses of a decapod are enhanced by flicking. Science 205:204–206CrossRefPubMedGoogle Scholar
  43. Seelinger G (1983) Response characteristics and specificity of chemoreceptors in Hemilepistus reaumuri (Crustacea, Isopoda). J Comp Physiol 152:219–229CrossRefGoogle Scholar
  44. Skog M (2009a) Intersexual differences in European lobster (Homarus gammarus): recognition mechanisms and agonistic behaviours. Behaviour 146:1071–1091CrossRefGoogle Scholar
  45. Skog M (2009b) Male but not female olfaction is crucial for intermolt mating in European lobsters (Homarus gammarus L.). Chem Senses 34:159–169CrossRefPubMedGoogle Scholar
  46. Skog M, Chandrapavan A, Hallberg E, Breithaupt T (2009) Maintenance of dominance is mediated by urinary chemicals in male European lobsters, Homarus gammarus. Mar Freshw Behav Physiol 42:119–133CrossRefGoogle Scholar
  47. Snow PJ (1973) The antennular activities of the hermit crab, Pagurus alaskensis. J Exp Biol 58:745–765Google Scholar
  48. Spencer M, Linberg KA (1986) Ultrastructure of aesthetasc innervation and external morphology of the lateral antennule setae of the spiny lobster Panulirus interruptus (Randall). Cell Tiss Res 245:69–80CrossRefGoogle Scholar
  49. Stensmyr MC, Erland S, Hallberg E, Wallén R, Greenaway P, Hansson BS (2005) Insect-like olfactory adaptations in the terrestrial giant robber crab. Curr Biol 15:116–121CrossRefPubMedGoogle Scholar
  50. Tierney AJ, Thompson CS, Dunham DW (1986) Fine structure of aesthetasc chemoreceptors in the crayfish Orconectes propinquus. Can J Zool 64:392–399CrossRefGoogle Scholar
  51. Wilson GD, Hessler RR (1974) Some unusual Paraselloidea (Isopoda, Asellota) from the deep benthos of the Atlantic. Crustaceana 27:47–67CrossRefGoogle Scholar
  52. Zacharuk RY (1985) Antennae and sensilla. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemsitry and pharmacology, vol 6. Pergamon Press, Oxford, pp 1–69Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of BiologyLund University ZoologihusetHS 17 Sölvegatan 35Sweden

Personalised recommendations