Skip to main content

Contact Chemoreception and Its Role in Zooplankton Mate Recognition

  • Chapter
  • First Online:
Chemical Communication in Crustaceans

Abstract

Physical constraints cause small aquatic animals like copepods, rotifers, and cladocerans to experience their environment much differently than humans. One solution to sending and receiving signals in a vast, well-mixed environment is to bind the signal to the body surface, requiring receivers to use contact chemoreception for detection. Contact signals permit zooplankters to use large, information-rich molecules like glycoproteins as signals, whereas excreting such chemicals would be energetically costly. Lectin-binding experiments have demonstrated the role of surface glycoproteins in rotifer and copepod mate recognition. Female surface glycoproteins provide males with information about sex, age, species identity, and female anatomy. Mate-guarding in harpacticoid copepods was investigated by binding lectins to surface glycoproteins of females. Male decisions about mate guarding and spermatophore placement are typically determined by a series of stroking behaviors where males probe the body surface of females for chemical cues. Protein receptors on male antennules recognize specific carbohydrate moieties of female surface glycoproteins to identify appropriate partners for guarding and mating. Monoclonal antibody affinity chromatography was used to purify surface glycoproteins from female Tigriopus japonicus. A 70-kDa protein was eluted from the column and a partial amino acid sequence was determined using mass spectrometry. This protein has significant similarity to α2-macroglobulin, a large protease inhibitor found in high concentrations in vertebrate blood and the hemolymph of invertebrates. α2-Macroglobulin was most highly expressed in late copepodid stage (CV) females, the developmental stage most avidly guarded by males. Based on these observations, a model of the molecular mechanism of T. japonicus mate recognition has been developed. Mate recognition in copepods is compared to other malacostracans, cladocerans, insects, and rotifers. Future research should emphasize identification of signal compounds responsible for mate recognition and life cycle regulation. These critical molecules will be pivotal for understanding the evolutionary dynamics of aquatic invertebrates, including the development of reproductive isolation, speciation, and the rich biodiversity of cryptic species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bandilla M, Hakalahti-Sirén T, Valtonen ET (2008) Patterns of host switching in the fish ectoparasite Argulus coregoni. Behav Ecol Sociobiol 62:975–982

    Article  Google Scholar 

  • Blades PI, Youngbluth MJ (1979) Mating behavior of Labidocera aestiva (Copepoda, Calanoida). Mar Biol 51:339–355

    Article  Google Scholar 

  • Brewer MC (1998) Mating behaviours of Daphnia pulicaria, a cyclic parthenogen: comparisons with copepods. Philos Trans R Soc B 353:805–815

    Article  Google Scholar 

  • Bushmann PJ, Atema J (2000) Chemically mediated mate location and evaluation in the lobster, Homarus americanus. J Chem Ecol 26:883–899

    Article  CAS  Google Scholar 

  • Capone A, Rosati F, Focarelli R (1999) A 140-kDa glycopeptide from the sperm ligand of the vitelline coat of the freshwater bivalve Unio elongatulus, only contains o-linked oligosaccharide chains and mediates sperm-egg interaction. Mol Reprod Dev 54:203–207

    Article  CAS  PubMed  Google Scholar 

  • Caskey JL, Hasenstein KH, Bauer RT (2009a) Studies on contact sex pheromones of the caridean shrimp Palaemonetes pugio: I. Cuticular hydrocarbons associated with mate recognition. Invertebr Reprod Dev 53:93–103

    CAS  Google Scholar 

  • Caskey JL, Watson GM, Bauer RT (2009b) Studies on contact sex pheromones of the caridean shrimp Palaemonetes pugio: II. The role of glucosamine in mate recognition. Invertebr Reprod Dev 53:105–116

    CAS  Google Scholar 

  • Civetta A, Singh RS (1998) Sex-related genes, directional sexual selection, and speciation. Mol Biol Evol 15:901–909

    CAS  PubMed  Google Scholar 

  • Dusenbery DB (1992) Sensory ecology. How organisms acquire and respond to information. W.H. Freeman, New York

    Google Scholar 

  • Dusenbery DB (2009) Living at micro scale. Harvard University Press, Cambridge

    Google Scholar 

  • Dusenbery DB, Snell TW (1995) A critical body size for use of pheromones in mate location. J Chem Ecol 21:427–438

    Article  CAS  Google Scholar 

  • Etges WJ, Ahrens MA (2001) Premating isolation is determined by larval-rearing substrates in cactophilic Drosophila mojavensis. V. Deep geographic variation in epicuticular hydrocarbons among isolated populations. Am Nat 158:585–598

    Article  CAS  PubMed  Google Scholar 

  • Ferveur J-F (2005) Cuticular hydrocarbons: their evolution and roles in Drosophila pheromonal communication. Behav Genet 35:279–295

    Article  PubMed  Google Scholar 

  • Focarelli R, Rosati F (1995) The 220-kDa vitelline coat glycoprotein mediates sperm binding in the polarized egg of Unio elongatulus through O-linked oligosaccharides. Dev Biol 171:606–614

    Article  CAS  PubMed  Google Scholar 

  • Frey MA, Lonsdale DJ, Snell TW (1998) The influence of contact chemical signals on mate recognition in a harpacticoid copepod. Philos Trans R Soc B 353:745–752

    Article  CAS  Google Scholar 

  • Glabe CG, Clark D (1991) The sequence of the Arbacia punctulata Bindin cDNA and implications for the structural basis of species-specific sperm adhesion and fertilization. Dev Biol 143:282–288

    Article  CAS  PubMed  Google Scholar 

  • Glas PS, Green JD, Lynn JW (1996) Morphological evidence for a chitin-like glycoprotein in penaeid hatching envelopes. Biol Bull 191:374–384

    Article  CAS  Google Scholar 

  • Gómez D, Dupré E (2002) Monosacáridos terminales presentes en las cubiertas ovocitarias del camarón de roca Rhynchocinetes typus. Invest Mar 30:69–74

    Google Scholar 

  • Hellberg ME, Moy GW, Vacquier VD (2000) Positive selection and propeptide repeats promote rapid interspecific divergence of a gastropod sperm protein. Mol Biol Evol 17:458–466

    CAS  PubMed  Google Scholar 

  • Herborg L-M, Bentley MG, Clare AS, Last KS (2006) Mating behaviour and chemical communication in the invasive Chinese mitten crab Eriocheir sinensis. J Exp Mar Biol Ecol 329:1–10

    Article  CAS  Google Scholar 

  • Katona SA (1973) Evidence for sex pheromones in planktonic copepods. Limnol Oceanogr 18:574–583

    Article  Google Scholar 

  • Kelly LS, Snell TW (1998) Role of surface glycoproteins in mate-guarding of the marine harpacticoid Tigriopus japonicus. Mar Biol 130:605–612

    Article  CAS  Google Scholar 

  • Kelly LS, Snell TW, Lonsdale DJ (1998) Chemical communication during mating of the harpacticoid Tigriopus japonicus. Philos Trans R Soc B 353:737–744

    Article  CAS  Google Scholar 

  • Kiørboe T (2007) Mate finding, mating, and population dynamics in a planktonic copepod Oithona davisae: there are too few males. Limnol Oceanogr 52:1511–1522

    Google Scholar 

  • Knowlton N (1993) Sibling species in the sea. Annu Rev Ecol Syst 24:189–216

    Article  Google Scholar 

  • Knowlton N (2000) Molecular genetic analysis of species boundaries in the sea. Hydrobiologia 420:73–90

    Article  CAS  Google Scholar 

  • Kubanek J, Snell TW (2008) Quorum sensing in rotifers. In: Bassler BL, Winans SC (eds) Chemical communication among microbes. ASM, Washington, pp 453–461

    Google Scholar 

  • Kumari SS, Skinner DM (1993) Proteins of crustacean exoskeleton II: immunological evidence for their relatedness to cuticular proteins of two insects. J Exp Zool 265:195–210

    Article  CAS  Google Scholar 

  • Lonsdale DJ, Snell TW, Frey MA (1996) Lectin binding to surface glycoproteins on Coullana spp. (Copepoda, Harpacticoida) can inhibit mate guarding. Mar Behav Physiol 27:277–286

    Article  Google Scholar 

  • Lonsdale DJ, Frey MA, Snell TW (1998) The role of chemical signals in copepod reproduction. J Mar Syst 15:1–12

    Article  Google Scholar 

  • Lürling M, Scheffer M (2007) Info-disruption: pollution and the transfer of chemical information among organisms. Trends Ecol Evol 22:374–379

    Article  PubMed  Google Scholar 

  • Marcial HS, Hagiwara A, Snell TW (2003) Estrogenic compounds affect development of harpacticoid copepod Tigriopus japonicus. Environ Toxicol Chem 22:3025–3030

    Article  CAS  PubMed  Google Scholar 

  • Markow TA (1991) Sexual isolation among populations of Drosophila mojavensis. Evolution 45:1525–1529

    Article  Google Scholar 

  • Mauchline J (1977) The integumental sensilla and glands of pelagic Crustacea. J Mar Biol Assoc UK 57:973–994

    Article  Google Scholar 

  • Metz EC, Palumbi SR (1996) Positive selection and sequence rearrangements generate extensive polymorphism in the gamete recognition protein bindin. Mol Biol Evol 13:397–406

    CAS  PubMed  Google Scholar 

  • Miller D, Ax RL (1990) Carbohydrates and fertilization in animals. Mol Reprod Dev 26:184–198

    Article  CAS  PubMed  Google Scholar 

  • Miyake A, Beyer J (1974) Blepharmone: a conjugation-inducing glycoprotein in the ciliate Blepharisma. Science 185:621–623

    Article  CAS  PubMed  Google Scholar 

  • Palumbi SR (1992) Marine speciation on a small planet. Trends Ecol Evol 7:114–118

    Article  Google Scholar 

  • Peñalva-Arana DC, Lynch M, Robertson HM (2009) The chemoreceptor genes of the waterflea Daphnia pulex: many Grs but no Ors. BMC Evol Biol 9:79. doi:10.1186/1471-2148-9-79

    Article  PubMed  Google Scholar 

  • Rittschof D (1990) Peptide-mediated behaviors in marine organisms: evidence for a common theme. J Chem Ecol 16:261–272

    Article  CAS  Google Scholar 

  • Rittschof D, Cohen JH (2004) Crustacean peptide and peptide-like pheromones and kairomones. Peptides 25:1503–1516

    Article  CAS  PubMed  Google Scholar 

  • Sharon N, Lis H (1989) Lectins as cell recognition molecules. Science 246:227–234

    Article  CAS  PubMed  Google Scholar 

  • Snell TW (1998) Chemical ecology of rotifers. Hydrobiologia 387(388):267–276

    Article  Google Scholar 

  • Snell TW, Carmona MJ (1994) Surface glycoproteins in copepods: potential signals for mate recognition. Hydrobiologia 292(293):255–264

    Google Scholar 

  • Snell TW, Garman BL (1986) Encounter probabilities between male and female rotifers. J Exp Mar Biol Ecol 97:221–230

    Article  Google Scholar 

  • Snell TW, Hoff FH (1987) Fertilization and male fertility in the rotifer Brachionus plicatilis. Hydrobiologia 147:329–334

    Article  Google Scholar 

  • Snell TW, Joaquim-Justo C (2007) Workshop on rotifers in ecotoxicology. Hydrobiologia 593:227–232

    Article  Google Scholar 

  • Snell TW, Nacionales MA (1990) Sex pheromones and mate recognition in rotifers. Comp Biochem Physiol 97A:211–216

    Article  CAS  Google Scholar 

  • Snell TW, Stelzer CP (2005) Removal of surface glycoproteins and transfer among Brachionus species. Hydrobiologia 546:267–274

    Article  CAS  Google Scholar 

  • Snell TW, Rico-Martinez R, Kelly LN, Battle TE (1995) Identification of a sex pheromone from a rotifer. Mar Biol 123:347–353

    Article  CAS  Google Scholar 

  • Snell TW, Kubanek J, Carter W, Payne AB, Kim J, Hicks MK, Stelzer CP (2006) A protein signal triggers sexual reproduction in Brachionus plicatilis (Rotifera). Mar Biol 149:763–773

    Article  CAS  Google Scholar 

  • Snell TW, Kim J, Zelaya E, Resop R (2007) Mate choice and sexual conflict in Brachionus plicatilis (Rotifera). Hydrobiologia 593:151–157

    Article  Google Scholar 

  • Swanson WJ, Vacquier VD (1995) Extraordinary divergence and positive Darwinian selection in a fusagenic protein coating the acrosomal process of abalone spermatozoa. Proc Natl Acad Sci USA 92:4957–4961

    Article  CAS  PubMed  Google Scholar 

  • Swanson WJ, Vacquier VD (2002a) The rapid evolution of reproductive proteins. Nat Genet 3:137–144

    CAS  Google Scholar 

  • Swanson WJ, Vacquier VD (2002b) Reproductive protein evolution. Annu Rev Ecol Syst 33:161–179

    Article  Google Scholar 

  • Ting JH, Snell TW (2003) Purification and sequencing of a mate recognition protein from the copepod Tigriopus japonicus. Mar Biol 143:1–8

    Article  CAS  Google Scholar 

  • Ting JH, Kelly LS, Snell TW (2000) A surface glycoprotein in the marine copepod Tigriopus japonicus elicits male mate guarding. Mar Biol 137:31–37

    Article  CAS  Google Scholar 

  • Titelman J, Varpe O, Eliassen S, Fiksen O (2007) Copepod mating: chance or choice? J Plankton Res 29:1023–1030

    Article  Google Scholar 

  • Vacquier VD (1998) Evolution of gamete recognition proteins. Science 281:1995–1998

    Article  CAS  PubMed  Google Scholar 

  • Vacquier VD, Swanson WJ, Hellberg ME (1995) What have we learned about sea urchin sperm bindin? Dev Growth Differ 37:1–10

    Article  CAS  Google Scholar 

  • Van Damme K, Dumont HJ (2006) Sex in a cyclical parthenogen: mating behaviour of Chydorus sphaericus (Crustacea; Branchiopoda; Anomopoda). Freshwater Biol 51:2334–2346

    Article  Google Scholar 

  • Wallace RL, Snell TW (2001) Rotifera. In: Thorp JH, Covich AP (eds) Ecology and systematics of North American freshwater invertebrates. Academic, New York, pp 195–254

    Chapter  Google Scholar 

  • Wallace RL, Snell TW, Ricci C, Nogrady T (2006) Rotifera: Volume 1: Biology, ecology and systematics, Backhuys, Leiden

    Google Scholar 

  • Wiese L (1965) On sexual agglutination and mating type substances (gamones) in isogamous heterophallic Chlamydamondes. I. Evidence of the identity of the gamone with the surface components responsible for sexual flagellar content. J Phycol 1:46–54

    Article  Google Scholar 

  • Wikramanayake AH, Clark W Jr (1994) Two extracellular matrices from oocytes of the marine shrimp Sicyonia ingentis that independently mediate only primary or secondary sperm binding. Dev Growth Differ 36:89–101

    Article  Google Scholar 

  • Willis JH (1999) Cuticular proteins in insects and crustaceans. Am Zool 39:600–609

    CAS  Google Scholar 

  • Winsor GL, Innes DJ (2002) Sexual reproduction in Daphnia pulex (Crustacea: Cladocera): observations on male mating behavior and avoidance of inbreeding. Freshwater Biol 47:441–450

    Article  Google Scholar 

  • Zhang D, Lin J (2006) Mate recognition in a simultaneous hermaphroditic shrimp, Lysmata wurdemanni (Caridea: Hippolytidae). Anim Behav 71:1191–1196

    Article  Google Scholar 

  • Zhang D, Lin J, Harley M, Hardege JD (2009) Characterization of a sex pheromone in a simultaneous hermaphroditic shrimp, Lysmata wurdemanni. Mar Biol 157:1–6

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Science Foundation grants BE/GenEn MCB-0412674 to TWS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry Snell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Snell, T. (2010). Contact Chemoreception and Its Role in Zooplankton Mate Recognition. In: Breithaupt, T., Thiel, M. (eds) Chemical Communication in Crustaceans. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77101-4_23

Download citation

Publish with us

Policies and ethics