Skip to main content

Chemical Communication in Crustaceans: Research Challenges for the Twenty-First Century

  • Chapter
  • First Online:
Chemical Communication in Crustaceans

Abstract

Chemical signals play an important role during various life stages of crustaceans. Settling of larvae, parent–offspring communication, mate finding, mate choice, aggressive contests, and dominance hierarchies are all mediated by chemical signals. Enormous advances have been made on understanding the function of chemical signals in crustaceans and we are on the doorstep of major advances in chemical characterization of pheromones. In many species urine is the carrier of chemical signals. Crustaceans control release and transfer direction of urine, but it is unknown whether crustacean senders can manipulate the composition of urineborne pheromones. Chemicals contained in the urine effectively convey information about conspecific properties such as sex, sexual receptivity, species identity, health status, motivation to fight, dominance, individual identity, and molt stage. In larger species (shrimp, crabs, lobsters, crayfish) signal delivery is often aided by self-generated fanning currents that flush chemicals towards receivers, which themselves might actively pull water towards their sensory structures. Antennal flicking also supports molecule exchange at the receptor level. Contact pheromones play a role in sex recognition in several crustacean taxa and in settlement of barnacles. Large crustacean species show little or no sexual dimorphism in receptor structures, but in smaller taxa, e.g. peracarids and copepods, males often have larger antennae than females. Whether differences in sexual roles have also resulted in sex-specific brain centers is not known at present. While pheromones play an important role in mate finding and species recognition, there are numerous examples from peracarids and copepods where males pursue or even form precopulatory pairs with females of closely related congeners. Differentiation of chemicals often appears to be insufficient to guarantee reproductive isolation. In many freshwater and coastal habitats, pollutants may also disrupt chemical communication in crustaceans, but the specific mechanisms of interference are not well understood. The chemical characterization of crustacean pheromones is viewed as a major step in improving our understanding of chemical communication. Knowing the chemical nature of pheromones in freshwater species will boost research on aquatic crustaceans. Interdisciplinary work between chemists (metabolomics), behavioral ecologists (bioassays), neurobiologists (chemoreception), and molecular biologists (genomics) promises to produce significant advances in our understanding of crustacean chemical communication during the coming decade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agosta WC (1992) Chemical communication – the language of pheromones. Scientific American Library, New York

    Google Scholar 

  • Ameyaw-Akumfi C, Hazlett B (1975) Sex recognition in the crayfish Procambarus clarkii. Science 190:1225–1226

    Article  CAS  PubMed  Google Scholar 

  • Asai N, Fusetani N, Matsunaga S, Sasaki J (2000) Sex pheromones of the hair crab Erimacrus isenbeckii. Part 1: isolation and structures of novel ceramides. Tetrahedron 56:9895–9899

    Article  CAS  Google Scholar 

  • Atema J, Engstrom DG (1971) Sex pheromone in the lobster, Homarus americanus. Nature 232:261–263

    Article  CAS  PubMed  Google Scholar 

  • Atema J, Steinbach MA (2007) Chemical communication and social behavior of the lobster Homarus americanus and other decapod Crustacea. In: Duffy JE, Thiel M (eds) Evolutionary ecology of social and sexual systems – crustaceans as model organisms. Oxford University Press, New York, pp 115–144

    Chapter  Google Scholar 

  • Bargmann CI (2006) Comparative chemosensation from receptors to ecology. Nature 444:295–301

    Article  CAS  PubMed  Google Scholar 

  • Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K, Ingram KK, Das I (2006) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22:148–155

    Article  PubMed  Google Scholar 

  • Borowsky B (1989) The effects of residential tubes on reproductive behaviors in Microdeutopus gryllotalpa (Costa) (Crustacea: Amphipoda). J Exp Mar Biol Ecol 128:117–125

    Article  Google Scholar 

  • Bradbury JW, Vehrencamp SL (1998) Principles of animal communication. Sinauer Associates, Sunderland

    Google Scholar 

  • Breithaupt T (2001) Fan organs of crayfish enhance chemical information flow. Biol Bull 200:150–154

    Article  CAS  PubMed  Google Scholar 

  • Bryant BP, Atema J (1987) Diet manipulation affects social behavior of catfish: importance of body odor. J Chem Ecol 13:1645–1661

    Article  Google Scholar 

  • Bublitz R, Sainte-Marie B, Newcomb-Hodgetts C, Fletcher N, Smith M, Hardege JD (2008) Interspecific activity of sex pheromone of the European shore crab (Carcinus maenas). Behaviour 145:1465–1478

    Article  Google Scholar 

  • Caskey JL, Watson GM, Bauer RT (2009) Studies on contact pheromones of the caridean shrimp Palaemonetes pugio: II. The role of glucosamine in mate recognition. Invertebr Reprod Dev 53:105–116

    CAS  Google Scholar 

  • Catania KC (2006) Underwater “sniffing” by semi-aquatic animals. Nature 444:1024–1025

    Article  CAS  PubMed  Google Scholar 

  • Cheer AYL, Koehl MAR (1987) Paddles and rakes: fluid flow through bristled appendages of small organisms. J Theor Biol 129:17–39

    Article  Google Scholar 

  • Clark NL, Gasper J, Sekino M, Springer SA, Aquadro CF, Swanson WJ (2009) Coevolution of interacting fertilization proteins. PLoS Genet 5(7):e1000570

    Article  PubMed  Google Scholar 

  • Clayton D (2008) Singing and dancing in the ghost crab Ocypode platytarsus (Crustacea, Decapoda, Ocypodidae). J Nat Hist 42:141–155

    Article  Google Scholar 

  • Dahl E, Emanuelsson H, von Mecklenburg C (1970) Pheromone transport and reception in an amphipod. Science 170:739–740

    Article  CAS  PubMed  Google Scholar 

  • Denissenko P, Lukaschuk S, Breithaupt T (2007) The flow generated by an active olfactory system of the red swamp crayfish. J Exp Biol 210:4083–4091

    Article  CAS  PubMed  Google Scholar 

  • Dixon CJ, Ahyong ST, Schram FR (2003) A new hypothesis of decapod phylogeny. Crustaceana 76:935–975

    Article  Google Scholar 

  • Dreanno C, Kirby RR, Clare AS (2007) Involvement of the barnacle settlement-inducing protein complex (SIPC) in species recognition at settlement. J Exp Mar Biol Ecol 351:276–282

    Article  Google Scholar 

  • Freitag J, Krieger J, Strotmann J, Breer H (1995) Two classes of olfactory receptors in Xenopus laevis. Neuron 15:1383–1392

    Article  CAS  PubMed  Google Scholar 

  • Goetze E (2008) Heterospecific mating and partial prezygotic reproductive isolation in the planktonic marine copepods Centropages typicus and Centropages hamatus. Limnol Oceanogr 53:33–45

    Article  Google Scholar 

  • Hargeby A, Erlandsson J (2006) Is size-assortative mating important for rapid pigment differentiation in a freshwater isopod? J Evol Biol 19:1911–1919

    Article  CAS  PubMed  Google Scholar 

  • Holdich DM (1984) The cuticular surface of woodlice: a search for receptors. Symp Zool Soc Lond 53:9–48

    Google Scholar 

  • Hurst JL (2005) Scent marking and social communication. In: McGregor PK (ed) Animal communication networks. Cambridge University Press, Cambridge, pp 219–243

    Chapter  Google Scholar 

  • Ingvarsdóttir A, Birkett MA, Duce I, Mordue W, Pickett JA, Wadhams LJ, Mordue (Luntz) AJ (2002) Role of semiochemicals in mate location by parasitic sea louse, Lepeophtheirus salmonis. J Chem Ecol 28:2107–2117

    Article  PubMed  Google Scholar 

  • Johansson KUI, Hallberg E (1992) Male-specific structures in the olfactory system of mysids (Mysidacea; Crustacea). Cell Tissue Res 268:359–368

    Article  Google Scholar 

  • Johnson NS, Li W (2010) Understanding behavioral responses of fish to pheromones in natural freshwater environments. J Comp Physiol A. 196:701–711

    Google Scholar 

  • Kamio M, Matsunaga S, Fusetani N (2000) Studies on sex pheromones of the helmet crab, Telmessus cheiragonus. 1. An assay based on precopulatory mate-guarding. Zool Sci 6:731–733

    Article  Google Scholar 

  • Kamio M, Matsunaga S, Fusetani N (2002) Copulation pheromone in the crab Telmessus cheiragonus (Brachyura: Decapoda). Mar Ecol Prog Ser 234:183–190

    Article  Google Scholar 

  • Koehl MAR (2001) Fluid dynamics of animal appendages that capture molecules: Arthropod olfactory antennae. In: Fauci L, Gueron S (eds) Computational modeling in biological fluid dynamics. Springer, New York, pp 97–116

    Google Scholar 

  • Kolding S (1986) Interspecific competition for mates and habitat selection in five species of Gammarus (Amphipoda: Crustacea). Mar Biol 91:491–495

    Article  Google Scholar 

  • Lee JK, Strausfeld NJ (1990) Structure, distribution and number of surface sensilla and their receptor cells on the olfactory appendage of the male moth Manduca sexta. J Neurocytol 19:519–538

    Article  CAS  PubMed  Google Scholar 

  • Loudon C, Koehl MAR (2000) Sniffing by a silkworm moth: wing fanning enhances air penetration through and pheromone interception by antennae. J Exp Biol 203:2977–2990

    CAS  PubMed  Google Scholar 

  • Lürling M, Scheffer M (2007) Info-disruption: pollution and the transfer of chemical information between organisms. Trends Ecol Evol 22:374–379

    Article  PubMed  Google Scholar 

  • Mead F, Gabouriaut D (1977) Chevauchée nuptiale et accouplement chez l’isopode terrestre Helleria brevicornis Ebner (Tylidae). Analyse des facteurs qui contrólent ces deux phases du comportement sexuel. Behaviour 63:262–280

    Article  Google Scholar 

  • Moore P, Fields DM, Jen Y (1999) Physical constraints of chemoreception in foraging copepods. Limnol Oceanogr 44:166–177

    Article  Google Scholar 

  • Mordue (Luntz) AJ, Birkett MA (2009) A review of host finding behaviour in the parasitic sea louse, Lepeophtheirus salmonis (Caligidae: Copepoda). J Fish Dis 32:3–13

    Article  CAS  Google Scholar 

  • Painter SD, Clough B, Garden RW, Sweedler JV, Nagle GT (1998) Characterization of Aplysia attractin, the first water-borne peptide pheromone in invertebrates. Biol Bull 194:120–131

    Article  CAS  PubMed  Google Scholar 

  • Peñalva-Arana DC, Lynch M, Robertson HM (2009) The chemoreceptor genes of the waterflea Daphnia pulex: many Grs but no Ors. BMC Evol Biol 9:79. doi:10.1186/1471-2148-9-79

    Article  PubMed  Google Scholar 

  • Phelan PL (1997) Evolution of mate-signalling in moths: phylogenetic considerations and prediction from the asymmetric tracking hypothesis. In: Choe JC, Crespi BJ (eds) The evolution of mating systems in insects and Arachnids. Cambridge University Press, Cambridge, pp 240–256

    Chapter  Google Scholar 

  • Poore AGB, Hill NA, Sotka EE (2008) Phylogenetic and geographic variation in host breadth and composition by herbivorous amphipods in the family Ampithoidae. Evolution 62:21–38

    PubMed  Google Scholar 

  • Ratchford SG, Eggleston DB (1998) Size- and scale-dependent chemical attraction contribute to an ontogenetic shift in sociality. Anim Behav 56:1027–1034

    Article  PubMed  Google Scholar 

  • Ravi Ram K, Wolfner MF (2007) Seminal influences: Drosophila Acps and the molecular interplay between males and females during reproduction. Integr Comp Biol 47:427–445

    Article  Google Scholar 

  • Rittschof D, Cohen JH (2004) Crustacean peptide and peptide-like pheromones and kairomones. Peptides 25:1503–1516

    Article  CAS  PubMed  Google Scholar 

  • Roberts JA, Uetz GW (2004) Species-specificity of chemical signals: Silk source affects discrimination in a wolf spider (Araneae: Lycosidae). Insect Behav 17:477–491

    Article  Google Scholar 

  • Roberts JA, Uetz GW (2005) Discrimination of female reproductive state from chemical cues in silk by males of the wolf spider, Schizocosa ocreata (Araneae, Lycosidae). Anim Behav 70:217–223

    Article  CAS  PubMed  Google Scholar 

  • Roper TJ, Conradt J, Butler JE, Ostler CJ, Schmid TK (1993) Territorial marking with faeces in badgers (Meles meles): a comparison of boundary and hinterland latrine use. Behaviour 127:289–307

    Article  CAS  PubMed  Google Scholar 

  • Ryan EP (1966) Pheromone: evidence in a decapod crustacean. Science 151:340–341

    Article  CAS  PubMed  Google Scholar 

  • Seelinger G (1983) Response characteristics and specificity of chemoreceptors in Hemilepistus reaumuri (Crustacea, Isopoda). J Comp Physiol A 152:219–229

    Article  CAS  Google Scholar 

  • Smajda C, Butlin RK (2009) On the scent of speciation: the chemosensory system and its role in premating isolation. Heredity 102:77–97

    Article  Google Scholar 

  • Sorensen PW, Stacey NE (2004) Brief review of fish pheromones and discussion of their possible uses in the control of non-indigenous teleost fishes. N Z J Mar Freshwater Res 38:399–417

    Article  CAS  Google Scholar 

  • Stanhope MJ, Connelly MM, Hartwick B (1992) Evolution of a crustacean chemical communication channel: behavioral and ecological genetic evidence for a habitat-modified, race-specific pheromone. J Chem Ecol 18:1871–1887

    Article  CAS  Google Scholar 

  • Strausfeld N, Reisenman CE (2009) Dimorphic olfactory lobes in the Arthropoda. Ann N Y Acad Sci 1170:487–496

    Article  PubMed  Google Scholar 

  • Sutherland DL, Hogg ID, Waas JR (2010) Phylogeography and species discrimination in the Paracalliope fluviatilis species complex (Crustacea: Amphipoda): can morphologically similar heterospecifics identify compatible mates? Biol J Linn Soc 99:196–205

    Article  Google Scholar 

  • Swanson WJ, Vacquier VD (2002) The rapid evolution of reproductive proteins. Nat Rev Genet 3:137–144

    Article  CAS  PubMed  Google Scholar 

  • Symonds MRE, Elgar MA (2004) The mode of pheromone evolution: evidence from bark beetles. Proc Biol Sci 271:839–846

    Article  PubMed  Google Scholar 

  • Symonds MRE, Elgar MA (2008) The evolution of pheromone diversity. Trends Ecol Evol 23:220–228

    Article  PubMed  Google Scholar 

  • Van der Meeren GI (1994) Sex- and size-dependent mating tactics in a natural population of shore crabs Carcinus maenas. J Anim Ecol 63:307–314

    Article  Google Scholar 

  • Van Son TC, Thiel M (2007) Anthropogenic stressors and their effects on the behavior of aquatic crustaceans. In: Duffy JE, Thiel M (eds) Evolutionary ecology of social and sexual systems: Crustaceans as model organisms. Oxford University Press, New York, pp 413–441

    Chapter  Google Scholar 

  • Vickers NJ (2000) Mechanisms of animal navigation in odor plumes. Biol Bull 198:203–212

    Article  CAS  PubMed  Google Scholar 

  • Voigt CC, von Helversen O (1999) Storage and display of odour by male Saccopteryx bilineata (Chiroptera, Emballonuridae). Behav Ecol Sociobiol 47:29–40

    Article  Google Scholar 

  • Voigt CC, Caspers B, Speck S (2005) Bats, bacteria, and bat smell: sex-specific diversity of microbes in a sexually selected scent organ. J Mammal 86:745–749

    Article  Google Scholar 

  • Weissburg MJ (2000) The fluid dynamical context of chemosensory behavior. Biol Bull 198:188–202

    Article  CAS  PubMed  Google Scholar 

  • Zeeck E, Hardege JD, Bartels-Hardege HD, Wesselmann G (1988) Sex pheromone in a marine polychaete: determination of the chemical structure. J Exp Zool 246:285–292

    Article  CAS  Google Scholar 

  • Zhang D, Lin J, Harley M, Hardege JD (2010a) Characterization of a sex pheromone in a simultaneous hermaphroditic shrimp, Lysmata wurdemanni. Mar Biol 157:1–6

    Article  CAS  Google Scholar 

  • Zhang D, Zhu J, Hardege JD, Lin J (2010b) Surface glycoproteins are not the contact pheromones in the Lysmata shrimp. Mar Biol 157:171–176

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Iván A. Hinojosa for his help in preparing the final figures and Drs. Chuck Derby and Marc Weissburg for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Thiel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Thiel, M., Breithaupt, T. (2010). Chemical Communication in Crustaceans: Research Challenges for the Twenty-First Century. In: Breithaupt, T., Thiel, M. (eds) Chemical Communication in Crustaceans. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77101-4_1

Download citation

Publish with us

Policies and ethics