Skip to main content

Control of Muscle Synergies by Cortical Ensembles

  • Chapter
Book cover Progress in Motor Control

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 629))

Abstract

Since its introduction in the early 1980s, the concept of a “preferred direction” for neuronal discharge has proven to be a powerful means of studying diverse properties of individual neurons in the motor areas of the brain. More recently, the activity recorded from ensembles of neurons, each with an identified preferred direction, has been used to predict hand movement, both off-line, and in real-time. Our recent experiments have addressed similar issues, but have focused on the relation between primary motor cortical discharge and muscle activity, rather than limb kinematics.

We recently introduced the concept of a “muscle-space” preferred direction (PDM), that is analogous to the familiar hand-space preferred direction (PDH). In this manuscript, we show that there is considerable variety in the direction of these PDM vectors across neurons, but that for a given task and neuron, two successive measurements of PDM are very similar. We found that these vectors tend to form clusters in particular regions of the muscle space that may reflect neurons that control synergistically important groups of muscles.

We have also shown that the discharge measured from neural ensembles can be used to predict the activity of individual muscles, in much the way that kinematic signals have been predicted by other groups. In fact, the accuracy of these predictions is similar to that of kinematic signals, despite the stochastic nature and greater bandwidth of the EMG signals. PDMs represent a divergence from one neuron to numerous muscles, while the prediction of muscle activity represents convergence from many neurons to individual muscles. We are continuing to investigate the nature of this complex matrix of functional interconnections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alstermark, B., & Lundberg, A. (1992). The C3-C4 propriospinal system: target reaching and food taking. In l. Jami, E. Pierrot-Deseilligny & D. Zytnicki (Eds.), Muscle afferents and spinal control of movement (pp. 327–354). London: Pergamon Press.

    Google Scholar 

  • Armand, J. (1982). The origin, course and terminations of corticospinal fibers in various mammals. Prog Brain Res, 57, 329–360.

    Article  PubMed  CAS  Google Scholar 

  • Ashe, J., & Georgopoulos, A. P. (1994). Movement parameters and neural activity in motor cortex and area 5. Cerebral Cortex, 6, 590–600.

    Article  Google Scholar 

  • Baker, S. N., & Lemon, R. N. (1998). Computer simulation of post-spike facilitation in spike-triggered averages of rectified EMG. J Neurophysiol, 80(3), 1391–1406.

    PubMed  CAS  Google Scholar 

  • Bizzi, E., Giszter, S. F., Loeb, E., Mussa-Ivaldi, F. A., & Saltiel, P. (1995). Modular organization of motor behavior in the frog's spinal cord. Trends Neurosci, 18, 442–446.

    Article  PubMed  CAS  Google Scholar 

  • Cabel, D. W., Cisek, P., & Scott, S. H. (2001). Neural activity in primary motor cortex related to mechanical loads applied to the shoulder and elbow during a postural task. J Neurophysiol, 86(4), 2102–2108.

    PubMed  CAS  Google Scholar 

  • Caminiti, R., Johnson, P. B., & Urbano, A. (1990). Making arm movements within different parts of space: Dynamic aspects in the primate motor cortex. J Neurosci, 10, 2039–2058.

    PubMed  CAS  Google Scholar 

  • Carmena, J. M., Lebedev, M. A., Crist, R. E., O'Doherty, J. E., Santucci, D. M., Dimitrov, D., et al. (2003). Learning to Control a Brain-Machine Interface for Reaching and Grasping by Primates. PLoS Biol, 1(2), 193–208.

    Article  CAS  Google Scholar 

  • Chapin, J. K., Moxon, K. A., Markowitz, R. S., & Nicolelis, M. A. (1999). Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nat Neurosci, 2(7), 664–670.

    Article  PubMed  CAS  Google Scholar 

  • d'Avella, A., & Bizzi, E. (2005). Shared and specific muscle synergies in natural motor behaviors. Proc Natl Acad Sci USA, 102(8), 3076–3081.

    Article  PubMed  Google Scholar 

  • Evarts, E. V. (1968). Relation of pyramidal tract activity to force exerted during voluntary movement. J Neurophysiol, 31, 14–27.

    PubMed  CAS  Google Scholar 

  • Fabiani, G. E., McFarland, D. J., Wolpaw, J. R., & Pfurtscheller, G. (2004). Conversion of EEG activity into cursor movement by a brain-computer interface (BCI). IEEE Trans Neural Syst Rehabil Eng, 12(3), 331–338.

    Article  PubMed  Google Scholar 

  • Fetz, E. E., & Cheney, P. D. (1980). Postspike facilitation of forelimb muscle activity by primate corticomotoneuronal cells. J Neurophysiol, 44, 751–772.

    PubMed  CAS  Google Scholar 

  • Fetz, E. E., Cheney, P. D., & German, D. C. (1976). Corticomotoneuronal connections of precentral cells detected by post-spike averages of EMG activity in behaving monkeys. Brain Res, 114, 505–510.

    Article  PubMed  CAS  Google Scholar 

  • Georgopoulos, A. P. (1988). Neural integration of movement: Role of motor cortex in reaching. FASEB J, 2, 2849–2857.

    PubMed  CAS  Google Scholar 

  • Georgopoulos, A. P. (1995). Current issues in directional motor control. Trends Neurosci, 18, 506–510.

    Article  PubMed  CAS  Google Scholar 

  • Georgopoulos, A. P., Kalaska, J. F., Caminiti, R., & Massey, J. T. (1982). On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J Neurosci, 2, 1527–1537.

    PubMed  CAS  Google Scholar 

  • Georgopoulos, A. P., Schwartz, A. B., & Kettner, R. E. (1986). Neuronal population coding of movement direction. Science, 233, 1416–1419.

    Article  PubMed  CAS  Google Scholar 

  • Hochberg, L. R., Serruya, M. D., Friehs, G. M., Mukand, J. A., Saleh, M., Caplan, A. H., et al. (2006). Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature, 442(7099), 164–171.

    Article  PubMed  CAS  Google Scholar 

  • Holdefer, R. N., & Miller, L. E. (2002). Primary motor cortical neurons encode functional muscle synergies. Exp Brain Res, 146, 233–243.

    Article  PubMed  CAS  Google Scholar 

  • Hunter, I. W., & Korenberg, M. J. (1986). The identification of nonlinear biological systems: Wiener and Hammerstein cascade models. Biol Cybern, 55(2–3), 135–144.

    PubMed  CAS  Google Scholar 

  • Johnson, M. T. V., Coltz, J. D., & Ebner, T. J. (1999). Encoding of target direction and speed during visual instruction and arm tracking in dorsal premotor and primary motor cortical neurons. Eur J Neurosci, 11(12), 4433–4445.

    Article  PubMed  CAS  Google Scholar 

  • Kakei, S., Hoffman, D. S., & Strick, P. L. (1999). Muscle and movement representations in the primary motor cortex. Science, 285(5436), 2136–2139.

    Article  PubMed  CAS  Google Scholar 

  • Kakei, S., Hoffman, D. S., & Strick, P. L. (2001). Direction of action is represented in the ventral premotor cortex. Nat Neurosci, 4(10), 1020–1025.

    Article  PubMed  CAS  Google Scholar 

  • Kalaska, J. F., Cohon, D. A. D., Hyde, M. L., & Prud'homme, M. (1989). A comparison of movement direction-related versus load direction-related activity in primate motor cortex, using a two-dimensional reaching task. J Neurosci, 9, 2080–2102.

    PubMed  CAS  Google Scholar 

  • Kennedy, P. R., & Bakay, R. A. (1998). Restoration of neural output from a paralyzed patient by a direct brain connection. Neuroreport, 9(8), 1707–1711.

    Article  PubMed  CAS  Google Scholar 

  • Kuypers, H. G. J. M. (1981). Anatomy of the descending pathways. In J.M. Brookhart V.B. Mountcastle V.B. Brooks S.R. Geiger (Ed.), Handbook of Physiology, The Nervous System: American Physiological Society Bethesda.

    Google Scholar 

  • Lamarre, Y., Spidalieri, G., & Lund, J. P. (1981). Patterns of muscular and motor cortical activity during a simple arm movement in the monkey. Can J Physiol Pharmacol, 59, 748–756.

    PubMed  CAS  Google Scholar 

  • Li, C.-S. R., Padoa-Schioppa, C., & Bizzi, E. (2001). Neuronal correlates of motor performance and motor learning in the primary motor cortex of monkeys adapting to an external force field. Neuron, 30, 593–607.

    Article  PubMed  CAS  Google Scholar 

  • McKiernan, B. J., Marcario, J. K., Karrer, J. H., & Cheney, P. D. (1998). Corticomotoneuronal postspike effects in shoulder, elbow, wrist, digit, and intrinsic hand muscles during a reach and prehension task. J Neurophysiol, 80(4), 1961–1980.

    PubMed  CAS  Google Scholar 

  • McKiernan, B. J., Marcario, J. K., Karrer, J. H., & Cheney, P. D. (2000). Correlations between corticomotoneuronal (CM) cell postspike effects and cell-target muscle covariation. J Neurophysiol, 83(1), 99–115.

    PubMed  CAS  Google Scholar 

  • Miller, L. E., & Sinkjaer, T. (1998). Primate red nucleus discharge encodes the dynamics of limb muscle activity. J Neurophysiol, 80, 59–70.

    PubMed  CAS  Google Scholar 

  • Miller, L. E., van Kan, P. L. E., Sinkjaer, T., Andersen, T., Harris, G. D., & Houk, J. C. (1993). Correlation of primate red nucleus discharge with muscle activity during free-form arm movements. J Physiol London, 469, 213–243.

    PubMed  CAS  Google Scholar 

  • Moran, D. W., & Schwartz, A. B. (1999a). Motor cortical activity during drawing movements: Population representation during spiral tracing. J Neurophysiol, 82(5), 2693–2704.

    CAS  Google Scholar 

  • Moran, D. W., & Schwartz, A. B. (1999b). Motor cortical representation of speed and direction during reaching. J Neurophysiol, 82(5), 2676–2692.

    CAS  Google Scholar 

  • Morrow, M. M., & Miller, L. E. (2003). Representation of kinematic variables and muscle activity patterns in M1 discharge across two workspaces.: Society for Neuroscience.

    Google Scholar 

  • Mussa-Ivaldi, F. A., & Bizzi, E. (2000). Motor learning through the combination of primitives. Philos Trans R Soc Lond B Biol Sci, 355(1404), 1755–1769.

    Article  PubMed  CAS  Google Scholar 

  • Paninski, L., Fellows, M. R., Hatsopoulos, N. G., & Donoghue, J. P. (2004). Spatiotemporal tuning of motor cortical neurons for hand position and velocity. J Neurophysiol, 91(1), 515–532.

    Article  PubMed  Google Scholar 

  • Poliakov, A. V., & Schieber, M. H. (1998). Multiple fragment statistical analysis of post-spike effects in spike-triggered averages of rectified EMG. J Neurosci Methods, 79(2), 143–150.

    Article  PubMed  CAS  Google Scholar 

  • Saltiel, P., Wyler-Duda, K., D'Avella, A., Tresch, M. C., & Bizzi, E. (2001). Muscle synergies encoded within the spinal cord: Evidence from focal intraspinal NMDA iontophoresis in the frog. J Neurophysiol, 85(2), 605–619.

    PubMed  CAS  Google Scholar 

  • Schwartz, A. B., Kettner, R. E., & Georgopoulos, A. P. (1988). Primate motor cortex and free arm movements to visual targets in three-dimensional space. I. Relations between single cell discharge and direction of movement. J Neurosci, 8(8), 2913–2927.

    PubMed  CAS  Google Scholar 

  • Scott, S. H., & Kalaska, J. F. (1997). Reaching movements with similar hand paths but different arm orientations. I. Activity of individual cells in motor cortex. J Neurophysiol, 77, 826–852.

    PubMed  CAS  Google Scholar 

  • Serruya, M. D., Hatsopoulos, N. G., Paninski, L., Fellows, M. R., & Donoghue, J. P. (2002). Instant neural control of a movement signal. Nature, 416(6877), 141–142.

    Article  PubMed  CAS  Google Scholar 

  • Shah, A., Fagg, A. H., & Barto, A. G. (2004). Cortical involvement in the recruitment of wrist muscles. J Neurophysiol, 91(6), 2445–2456.

    Article  PubMed  Google Scholar 

  • Shen, L., & Alexander, G. (1997). Neural correlates of a spatial sensory-to-motor transformation in primary motor cortex. J Neurophysiol, 77, 1171–1194.

    PubMed  CAS  Google Scholar 

  • Shinoda, Y., Yamaguchi, T., & Futami, T. (1986). Multiple axon collaterals of single corticospinal axons in the cat spinal cord. J Neurophysiol, 55, 425–448.

    PubMed  CAS  Google Scholar 

  • Shinoda, Y., Yokota, J., & Futami, T. (1981). Divergent projection of individual corticospinal axons to motoneurons of multiple muscles in the monkey. Neurosci Lett, 23(1), 7–12.

    Article  PubMed  CAS  Google Scholar 

  • Soechting, J. F., Burton, J. E., & Onoda, N. (1978). Relationships between sensory input, motor output and unit activity in interpositus and red nuclei during intentional movement. Brain Res, 152, 65–79.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, D. M., Tillery, S. I., & Schwartz, A. B. (2002). Direct cortical control of 3D neuroprosthetic devices. Science, 296(5574), 1829–1832.

    Article  PubMed  CAS  Google Scholar 

  • Thach, W. T. (1978). Correlation of neural discharge with pattern and force of muscular activity, joint position, and direction of next movement in motor cortex and cerebellum. J Neurophysiol, 41, 654–676.

    PubMed  CAS  Google Scholar 

  • Tresch, M. C., & Bizzi, E. (1999). Responses to spinal microstimulation in the chronically spinalized rat and their relationship to spinal systems activated by low threshold cutaneous stimulation. Exp Brain Res, 129(3), 401–416.

    Article  PubMed  CAS  Google Scholar 

  • Wessberg, J., Stambaugh, C. R., Kralik, J. D., Beck, P. D., Laubach, M., Chapin, J. K., et al. (2000). Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature, 408(6810), 361–365.

    Article  PubMed  CAS  Google Scholar 

  • Westwick, D. T., Pohlmeyer, E. A., Solla, S. A., Miller, L. E., & Perreault, E. J. (2006). Identification of multiple-input systems with highly coupled inputs: Application to EMG prediction from multiple intracortical electrodes. Neural Comput, 18(2), 329–355.

    Article  PubMed  Google Scholar 

  • Wolpaw, J. R., & McFarland, D. J. (2004). Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc Natl Acad Sci USA, 101(51), 17849–17854.

    Article  PubMed  CAS  Google Scholar 

  • Wu, W., Gao, Y., Bienenstock, E., Donoghue, J. P., & Black, M. J. (2006). Bayesian population decoding of motor cortical activity using a Kalman filter. Neural Comput, 18(1), 80–118.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle M. Morrow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Morrow, M.M., Pohlmeyer, E.A., Miller, L.E. (2009). Control of Muscle Synergies by Cortical Ensembles. In: Sternad, D. (eds) Progress in Motor Control. Advances in Experimental Medicine and Biology, vol 629. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-77064-2_9

Download citation

Publish with us

Policies and ethics