Skip to main content

From Intention to Action: Motor Cortex and the Control of Reaching Movements

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 629))

Abstract

The motor cortex was experimentally identified more than a century ago using surface electrical stimulation and lesions. Those first studies initiated a debate about the role of the motor cortex in the control of voluntary movement that continues to this day. The main issue concerns the degree to which the descending motor command emanating from the motor cortex specifies the spatiotemporal form of a movement or its causal forces, torques and muscle activity. The neurophysiological evidence supports both perspectives. This chapter surveys some of that evidence, with particular focus on the latter, more ‘traditional’, role of motor cortex.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  • Adamovich SV, Levin MF, Feldman AG (1997) Central modification of reflex parameters may underlie the fastest arm movements. J Neurophysiol 77: 1460–1469

    PubMed  CAS  Google Scholar 

  • Ajemian R, Bullock D, Grossberg S (2000) Kinematic coordinates in which motor cortical cells encode movement direction. J Neurophysiol 84: 2191–2203

    PubMed  CAS  Google Scholar 

  • Ajemian R, Bullock D, Grossberg S (2001) A model of movement coordinates in the motor cortex: Posture-dependent changes in the gain and direction of single cell tuning curves. Cerebral Cortex 11: 1124–1135

    Article  PubMed  CAS  Google Scholar 

  • Ashe J (1997) Force and the motor cortex. Behav Brain Res 87: 255–269

    Article  PubMed  CAS  Google Scholar 

  • Ashe J, Georgopoulos AP (1994) Movement parameters and neural activity in motor cortex and area 5. Cerebral Cortex 6: 590–600

    Article  Google Scholar 

  • Bennett KM, Lemon RN (1994) The influence of single monkey corticomotoneuronal cells at different levels of activity in target muscles. J Physiol 477: 291–307

    PubMed  Google Scholar 

  • Bennett KM, Lemon RN (1996) Corticomotoneuronal contribution to the fractionation and muscle activity during precision grip in the monkey. J Neurophysiol 75: 1826–1842

    PubMed  CAS  Google Scholar 

  • Bhushan N, Shadmehr R (1999) Computational nature of human adaptive control during learning of reaching movements in force fields. Biol Cybern 81: 39–60

    Article  PubMed  CAS  Google Scholar 

  • Boline J, Ashe J (2005) On the relation between single cell activity in the motor cortex and the direction and magnitude of three-dimensional dynamic isometric force. Exp Brain Res 167: 148–159

    Article  PubMed  Google Scholar 

  • Burnod Y, Baraduc P, Battaglia-Mayer A, Guigon E, Koechlin E, Ferraina S, Lacquaniti F, Caminiti R (1999) Parieto-frontal coding of reaching: an integrated framework. Exp Brain Res 129: 325–346

    Article  PubMed  CAS  Google Scholar 

  • Cabel DW, Cisek P, Scott SH (2001) Neural activity in primary motor cortex related to mechanical loads to the shoulder and elbow during a postural task. J Neurophysiol 86: 2102–2108

    PubMed  CAS  Google Scholar 

  • Caminiti R, Johnson P, Urbano A (1990) Making arm movements within different parts of space: dynamic aspects in the primate motor cortex. J Neurosci 10: 2039–2058

    PubMed  CAS  Google Scholar 

  • Caminiti R, Johnson P, Galli C, Ferraina S, Burnod Y (1991) Making arm movements within different parts of space: the premotor and motor cortical representation of a coordinate system for reaching to visual targets. J Neurosci 11: 1182–1197

    PubMed  CAS  Google Scholar 

  • Carmena JM, Lebedev MA, Crist RE, O’Doherty JE, Santucci DM, Dimitrov DF, Patil PG, Henriquez CS, Nicolelis MAL (2003) Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biol 1: 1–16

    Article  CAS  Google Scholar 

  • Cheney PD, Fetz EE (1980) Functional classes of primate corticomotoneuronal cells and their relation to active force. J Neurophysiol 44: 773–791

    PubMed  CAS  Google Scholar 

  • Cheney PD, Fetz EE, Mewes K (1991) Neural mechanisms underlying corticospinal and rubrospinal control of limb movements. Prog Brain Res 87: 213–252

    Article  PubMed  CAS  Google Scholar 

  • Cheney PD, Fetz EE, Palmer SS (1985) Patterns of facilitation and suppression of antagonist forelimb muscles from motor cortex sites in the awake monkey. J Neurophysiol 53: 805–820

    PubMed  CAS  Google Scholar 

  • Crammond DJ, Kalaska JF (1996) Differential relation of discharge in primary motor cortex and premotor cortex to movements versus actively maintained postures during a reaching task. Exp Brain Res 108: 45–61

    Article  PubMed  CAS  Google Scholar 

  • Crammond DJ, Kalaska JF (2000) Prior information in motor and premotor cortex: activity during the delay period and effect on pre-movement activity. J Neurophysiol 84: 986–1005

    PubMed  CAS  Google Scholar 

  • Drew T (1993) Motor cortical activity during voluntary gait modifications in the cat. I. Cells related to the forelimbs. J Neurophysiol 70: 179–199

    PubMed  CAS  Google Scholar 

  • Donchin O, Francis JT, Shadmehr R (2003) Quantifying generalization from trial-to-trial behavior of adaptive systems that learn basis functions: theory and experiments in human motor control. J Neurosci 23: 9032–9045

    PubMed  CAS  Google Scholar 

  • Dum RP, Strick PL (1991) The origin of corticospinal projections from the premotor areas in the frontal lobe. J Neurosci 11: 667–689

    PubMed  CAS  Google Scholar 

  • Evarts EV (1968) Relation of pyramidal tract activity to force exerted during voluntary movement. J Neurophysiol 31: 14–27

    PubMed  CAS  Google Scholar 

  • Evarts EV (1969) Activity of pyramidal tract neurons during postural fixation. J Neurophysiol 32: 375–385

    PubMed  CAS  Google Scholar 

  • Evarts EV, Fromm C, Kroller J, Jennings VA (1983) Motor cortex control of finely graded forces. J Neurophysiol 49: 1199–1215

    PubMed  CAS  Google Scholar 

  • Flanders M, Tillery S, Soechting JF ( 1992) Early stages in a sensorimotor transformation Behav Brain Sci 15: 309–362

    Google Scholar 

  • Feldman AG. (1986) Once more on the equilibrium-point hypothesis (Lambda model) for motor control. J Mot Behav 18: 17–54

    PubMed  CAS  Google Scholar 

  • Feldman AG, Adamovitch SV, Ostry DJ, Flanagan JR. The origin of electromyograms – explanations based on the equilibrium point hypothesis. In: Multiple Muscle Systems: Biomechanics and Movement Organization, ed. Winters JM, Woo SL-Y. New York: Springer-Verlag, 1990, pp. 195–213

    Google Scholar 

  • Feldman AG, Latash ML (2005) Testing hypotheses and the advancement of science: recent attempts to falsify the equilibrium point hypothesis. Exp Brain Res 161: 91–103

    Article  PubMed  Google Scholar 

  • Feldman AG, Levin MF. (1995) The origin and use of positional frames of reference in motor control. Behav Brain Sci 18: 723–744

    Article  Google Scholar 

  • Fetz EE, Cheney PD (1980) Postspike facilitation of forelimb muscle activity by primate corticomotoneuronal cells. J Neurophysiol 44: 751–772

    PubMed  CAS  Google Scholar 

  • Flash T, Hogan N (1985) The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci 5: 1688–1703

    PubMed  CAS  Google Scholar 

  • Foisy M, Feldman AG (2006) Threshold control of arm posture and movement adaptation to load. Exp Brain Res 175: 726–744

    Article  PubMed  Google Scholar 

  • Fu Q-G, Flament D, Coltz JD, Ebner TJ (1995) Temporal encoding of movement kinematics in the discharge of primate primary motor and premotor neurons. J Neurophysiol 73: 836–854

    PubMed  CAS  Google Scholar 

  • Fu Q-G, Suarez JI, Ebner TJ (1993) Neuronal specification of direction and distance during reaching movements in the superior precentral premotor area and primary motor cortex of monkeys. J Neurophysiol 70: 2097–2116

    PubMed  CAS  Google Scholar 

  • Georgopoulos AP, Ashe J, Smyrnis N, Taira M (1992) The motor cortex and the coding of force. Science 256: 1692–1695

    Article  PubMed  CAS  Google Scholar 

  • Georgopoulos AP, Caminiti R, Kalaska JF (1984) Static spatial effects in motor cortex and area 5: Quantitative relations in a two-dimensional space. Exp Br Res 54: 446–454

    Article  CAS  Google Scholar 

  • Georgopoulos AP, Caminiti R, Kalaska JF, Massey JT (1983) Spatial coding of movement: a hypothesis concerning the coding of movement direction by motor cortical populations. In: Neural Coding of Motor Performance, ed. Massion J, Paillard J, Schultz W, Wiesendanger M. Exp Brain Res Suppl 7: 327–336

    Google Scholar 

  • Georgopoulos AP, Grillner S (1989) Visuomotor coordination in reaching and locomotion. Science 245: 1209–1210

    Article  PubMed  CAS  Google Scholar 

  • Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT (1982) On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J Neurosci 2: 1527–1537

    PubMed  CAS  Google Scholar 

  • Georgopoulos AP, Kalaska JF, Crutcher MD, Caminiti R, Massey JT (1984) The representation of movement direction in the motor cortex: single cell and population studies. In: Dynamic Aspects of Neocortical Function, ed. Edelman GM, Gall WE, Cowan WM. John Wiley & Sons, New York, pp. 501–524

    Google Scholar 

  • Georgopoulos AP, Kettner RE, Schwartz AB (1988) Primate motor cortex and free-arm movements to visual targets in three-dimensional space: II. Coding of the direction of movement by a neuronal population. J Neurosci 8: 2931–2937

    Google Scholar 

  • Ghafouri M, Feldman AG (2001) The timing of control signals underlying fast point-to-point arm movements. Exp Brain Res 137: 411–423

    Article  PubMed  CAS  Google Scholar 

  • Graham KM, Moore KD, Cabel DW, Gribble PL, Cisek P, Scott SH (2003) Kinematics and kinetics of multijoint reaching in nonhuman primates. J Neurophysiol 89: 2667–2677

    Article  PubMed  Google Scholar 

  • Gribble PL, Scott SH (2002) Overlap of internal models in motor cortex for mechanical loads during reaching. Nature 417: 938–941

    Article  PubMed  CAS  Google Scholar 

  • Hamel-Pâquet C, Sergio LE, Kalaska JF (2006) Parietal area 5 activity does not reflect the differential time-course of motor output kinetics during arm-reaching and isometric-force tasks. J Neurophysiol 95: 3353–3370

    Article  PubMed  Google Scholar 

  • Harris CM & Wolpert DM (1998) Signal-dependent noise determines motor planning. Nature 394: 780–784

    Article  PubMed  CAS  Google Scholar 

  • Haruno M, Wolpert DM, Kawato M (2001) MOSAIC model for sensorimotor learning and control. Neural Comput 13: 2201–2220

    Article  PubMed  CAS  Google Scholar 

  • Hatsopoulos N, Joshi J, O’Leary JG (2004) Decoding continuous and discrete motor behaviors using motor and premotor cortical ensembles. J Neurophysiol 92: 1165–1174

    Article  PubMed  Google Scholar 

  • Hepp-Reymond M, Kirkpatrick-Tanner M, Gabernet L, Qi HX, Weber B (1999) Context-dependent force coding in motor and premotor cortical areas. Exp Brain Res 128: 123–133

    Article  PubMed  CAS  Google Scholar 

  • Holdefer RN, Miller LE (2002) Primary motor cortical neurons encode functional muscle synergies. Exp Brain Res 146: 233–243

    Article  PubMed  CAS  Google Scholar 

  • Hollerbach JM (1982) Computers, brains and the control of movements. Trends Neurosci 6: 189–192

    Article  Google Scholar 

  • Humphrey DR, Schmidt EM, Thompson WD (1970) Predicting measures of motor performance from multiple cortical spike trains. Science 170: 758–762

    Article  PubMed  CAS  Google Scholar 

  • Hwang EJ, Shadmehr R (2005) Internal models of limb dynamics and the encoding of limb state. J Neural Eng 2: S266–278

    Article  PubMed  Google Scholar 

  • Hwang EJ, Donchin O, Smith MA, Shadmehr R (2003) A gain-field encoding of limb position and velocity in the internal model of arm dynamics. PLoS Biol 1: 209–220

    Article  CAS  Google Scholar 

  • Kakei S, Hoffman DS, Strick P (1999) Muscle and movement representation in the primary motor cortex. Science 285: 2136–2139

    Article  PubMed  CAS  Google Scholar 

  • Kakei S, Hoffman DS, Strick P (2001) Direction of action is represented in the ventral premotor cortex. Nat Neurosci 4: 1020–1025

    Article  PubMed  CAS  Google Scholar 

  • Kakei S, Hoffman DS, Strick PL (2003) Sensorimotor transformations in cortical motor areas. Neurosci Res 46: 1–10

    Article  PubMed  Google Scholar 

  • Kalaska JF (1991) What parameters of reaching are encoded by discharges of cortical cells? in Motor Control: Concepts and Issues, ed. Humphrey DR & Freund H-J, John Wiley & Sons, pp. 307–330

    Google Scholar 

  • Kalaska JF, Caminiti R, Georgopoulos AP (1983) Cortical mechanisms related to the direction of two-dimensional arm movements: relations to parietal area 5 and comparison with motor cortex. Exp Brain Res 51: 247–260

    Article  PubMed  CAS  Google Scholar 

  • Kalaska JF, Cohen DAD, Hyde ML, Prud’Homme M (1989) A comparison of movement direction-related versus load direction-related activity in primate motor cortex, using a two-dimensional reaching task. J Neurosci 9: 2080–2102

    PubMed  CAS  Google Scholar 

  • Kalaska JF, Cohen DAD, Prud’Homme M, Hyde ML (1990) Parietal area 5 neuronal activity encodes movement kinematics, not movement dynamics. Exp Brain Res 80: 351–364

    Article  PubMed  CAS  Google Scholar 

  • Kalaska JF, Crammond DJ (1992) Cerebral cortical mechanisms of reaching movements. Science 255: 1517–1523

    Article  PubMed  CAS  Google Scholar 

  • Kalaska JF, Scott SH, Cisek P, Sergio LE (1997) Cortical control of reaching movements. Curr Opin Neurobiol 7: 849–859

    Article  PubMed  CAS  Google Scholar 

  • Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9: 718–727

    Article  PubMed  CAS  Google Scholar 

  • Koike Y, Hirose H, Sakurai Y, Iijima T (2006) Prediction of arm trajectory from a small number of neuron activities in the primary motor cortex. Neurosci Res 55: 146–153

    Google Scholar 

  • Kurtzer I, Pruszynski JA, Herter TM, Scott SH (2006) Primate upper limb muscles exhibit activity patterns that differ from their anatomical action during a postural task. J Neurophysiol 95: 493–504

    Article  PubMed  Google Scholar 

  • Maier MA, Bennett KM, Hepp-Reymond MC, Lemon RN (1993) Contribution of the monkey corticomotoneuronal system to the control of force in precision grip. J Neurophysiol 69: 772–785

    PubMed  CAS  Google Scholar 

  • McKiernan BJ, Marcario JK, Karrer JH, Cheney PD (1998) Corticomotoneuronal postspike effects in shoulder, elbow, wrist, digit, and intrinsic hand muscles during a reach and prehension task. J Neurophysiol 80: 1961–1980

    PubMed  CAS  Google Scholar 

  • McKiernan BJ, Marcario JK, Karrer JH, Cheney PD (2000) Correlations between corticomotoneuronal (CM) cell postspike effects and cell-target muscle covariation. J Neurophysiol 83: 99–115

    PubMed  CAS  Google Scholar 

  • Middleton FA, Strick PL (2000) Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Brain Res Rev 31: 236–250

    Article  PubMed  CAS  Google Scholar 

  • Moran DW, Schwartz AB (1999a) Motor cortical representation of speed and direction during reaching. J Neurophysiol 82: 2676–2692

    CAS  Google Scholar 

  • Moran DW, Schwartz AB (1999b) Motor cortical activity during drawing movements: population representation during spiral tracing. J Neurophysiol 82: 2693–2704

    CAS  Google Scholar 

  • Morrow MM, Miller LE (2003) Prediction of muscle activity by populations of sequentially recorded primary motor cortex neurons. J Neurophysiol 89: 2279–2288

    Article  PubMed  CAS  Google Scholar 

  • Morrow MM, Pohlmeyer EA, Miller LE (2007) Control of muscle synergies by cortical ensembles. (in press, this volume)

    Google Scholar 

  • Muir RB, Lemon RN (1983) Corticospinal neurons with a special role in precision grip. Brain Res 261: 312–316

    Article  PubMed  CAS  Google Scholar 

  • Mussa-Ivaldi FA (1988) Do neurons in the motor cortex encode movement direction? An alternative hypothesis. Neurosci Lett 91: 106–111

    Article  PubMed  CAS  Google Scholar 

  • Ostry DJ, Feldman AG (2003) A critical evaluation of the force control hypothesis in motor control. Exp Brain Res 153: 275–288

    Article  PubMed  Google Scholar 

  • Paninski L, Fellows MR, Hatsopoulos NG, Donoghue JP (2004a) Spatiotemporal tuning of motor cortical neurons for hand position and velocity. J Neurophysiol 91: 515–532

    Article  Google Scholar 

  • Paninski L, Shohan S, Fellows MR, Hatsopoulos N, Donoghue JP (2004b) Superlinear population encoding of dynamic hand trajectory in primary motor cortex. J Neurosci 29: 8551–8561

    Article  CAS  Google Scholar 

  • Park MC, Belhaj-Saif A, Cheney PD (2004) Properties of primary motor cortex output to forelimb muscles in rhesus monkeys. J Neurophysiol 92: 2968–2984

    Article  PubMed  Google Scholar 

  • Paz R, Vaadia E (2007) Learning from learning: what can visuomotor adaptation teach us about the neuronal representation of movement? (in press, this volume)

    Google Scholar 

  • Picard N, Strick PL (2001) Imaging the premotor areas. Curr Opin Neurobiol 11: 663–672.

    Article  PubMed  CAS  Google Scholar 

  • Porter R, Lemon RN (1993) Corticospinal Function and Voluntary Movement. Clarendon Press, Oxford

    Google Scholar 

  • Rathelot J-A, Strick PL (2006) Muscle representation in the macqaue moor cortex: an anatomical perspective. Proc Nat Acad Sci 103: 8257–8262

    Article  PubMed  CAS  Google Scholar 

  • Reimer J, Hatsopoulos NG (2007) The problem of parametric neural coding in the motor system (in press, this volume)

    Google Scholar 

  • Santucci DM, Kralik JD, Lebedev MA, Nicolelis MAL (2005) Frontal and parietal cortical ensembles predict single-trial muscle activity during reach movements in primates. Eur J Neurosci 22: 1529–1540

    Article  PubMed  Google Scholar 

  • Schwartz AB (1993) Motor cortical activity during drawing movements: population representation during sinusoidal tracing. J Neurophysiol 70: 28–36

    PubMed  CAS  Google Scholar 

  • Schwartz AB (1994) Direct cortical representation of drawing. Science 265: 540–542

    Article  PubMed  CAS  Google Scholar 

  • Schwartz AB, Kettner RE, Georgopoulos AP (1988) Primate motor cortex and free arm movements to visual targets in three-dimensional space. I. Relations between single neuron discharge and direction of movement. J Neurosci 8: 2913–2927

    PubMed  CAS  Google Scholar 

  • Scott SH (2004) Optimal feedback control and the neural basis of volitional motor control. Nat Rev Neurosci 5: 534–546

    Article  CAS  Google Scholar 

  • Scott SH, Kalaska JF (1997) Reaching movements with similar hand paths but different arm orientations. I. Activity of individual cells in motor cortex. J Neurophysiol 77: 826–852

    PubMed  CAS  Google Scholar 

  • Scott SH, Sergio LE, Kalaska JF (1997) Reaching movements with similar hand paths but different arm orientations. II. Activity of individual cells in dorsal premotor cortex and parietal area 5. J Neurophysiol 78: 2413–2426

    PubMed  CAS  Google Scholar 

  • Sergio LE, Kalaska JF (2003) Systematic changes in motor cortex cell activity with arm posture during directional isometric force generation. J Neurophysiol 89: 212–228

    Article  PubMed  Google Scholar 

  • Sergio LE, Hamel-Pâquet C, Kalaska JF (2005) Motor cortex neural correlates of output kinematics and kinetics during isometric-force and arm-reaching tasks. J Neurophysiol 94: 2353–2378

    Article  PubMed  Google Scholar 

  • Serruya MD, Hatsopoulos MG, Paninski L, Fellows MR, Donoghue JP (2002) Instant neural control of a movement signal. Nature 416: 141–142

    Article  PubMed  CAS  Google Scholar 

  • Shadmehr R (2004) Generalization as a behavioral window to the neural mechanisms of learning internal models. Hum Mov Sci 23: 543–568

    Article  PubMed  Google Scholar 

  • Shinoda Y, Yokota J, Futami T (1981) Divergent projections of individual corticospinal axons to motoneurons of multiple muscles in the monkey. Neurosci Lett 9: 7–12

    Article  Google Scholar 

  • Soechting JF, Flanders M (1989) Sensorimotor representations for pointing to targets in three-dimensional space. J Neurophysiol 62: 582–594

    PubMed  CAS  Google Scholar 

  • Soechting JF, Flanders M (1992) Moving in three-dimensional space: frames of reference, vectors and coordinate systems. Annu Rev Neurosci 15: 167–191

    Article  PubMed  CAS  Google Scholar 

  • Taira M, Boline J, Smyrnis N, Georgopoulos AP, Ashe J (1996) On the relations between single cell activity in the motor cortex and the direction and magnitude of three-dimensional static isometric force. Exp Br Res 109: 367–376

    Article  CAS  Google Scholar 

  • Taylor CSR, Gross CG (2003) Twitches versus movements: a story of motor cortex. The Neuroscientist 9: 332–342

    Article  PubMed  Google Scholar 

  • Taylor DM, Tillery SIH, Schwartz AB (2002) Direct cortical control of 3D neuroprosthetic devices. Science 296: 1829–1832

    Article  PubMed  CAS  Google Scholar 

  • Thach WT (1978) Correlation of neural discharge with pattern and force of muscular activity, joint position, and direction of intended next movement in motor cortex and cerebellum. J Neurophysiol 41: 654–676

    PubMed  CAS  Google Scholar 

  • Thoroughman K, Shadmehr R (2000) Learning of action through adaptive combination of motor primitives. Nature 407: 742–747

    Article  PubMed  CAS  Google Scholar 

  • Todorov E (2000) Direct cortical control of muscle activation in voluntary arm movements: a model. Nat Neurosci 3: 391–398

    Article  PubMed  CAS  Google Scholar 

  • Todorov E (2004) Optimality principles in sensorimotor control. Nat Neurosci 7: 907–915

    Article  PubMed  CAS  Google Scholar 

  • Todorov E, Jordan MI (2002) Optimal feedback control as a theory of motor coordination. Nat Neurosci 5: 1226–1235

    Article  PubMed  CAS  Google Scholar 

  • Townsend BR, Paninski L, Lemon RN (2006) Linear coding of muscle activity in primary motor cortex and cerebellum. J Neurophysiol 96: 2578–2592

    Article  PubMed  Google Scholar 

  • Wessberg J, Stambaugh C, Kralik J, Beck P, Chapin J, Kim J, Biggs S, Srinivasan M, Nicolelis M (2000) Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature 408: 361–365

    Article  PubMed  CAS  Google Scholar 

  • Wolpert DM, Kawato M (1998) Multiple paired forward and inverse models for motor control. Neural Netw 11: 1317–1329

    Article  PubMed  CAS  Google Scholar 

  • Wolpert DM, Miall RC (1996) Forward models for physiological motor control. Neural Netw 9: 1265–1279

    Article  PubMed  Google Scholar 

  • Wu W, Hatsopoulos NG (2006) Evidence against a single coordinate system representation in the motor cortex. Exp Br Res 175: 197–210

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. Kalaska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kalaska, J.F. (2009). From Intention to Action: Motor Cortex and the Control of Reaching Movements. In: Sternad, D. (eds) Progress in Motor Control. Advances in Experimental Medicine and Biology, vol 629. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-77064-2_8

Download citation

Publish with us

Policies and ethics