Advertisement

Past, Present, and Emerging Principles in the Neural Encoding of Movement

  • Timothy J. Ebner
  • Claudia M. Hendrix
  • Siavash Pasalar
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 629)

Understanding how the brain controls movement has been of primary interest to the motor control community for over 100 years. Yet even today an intense debate persists as to what and how movement parameters are encoded and whether the concept of parameterization is valid. Contemporary views concur that neuronal representations are dynamic, based on task parameters that are behaviorally relevant, and modifiable via learned associations. The chapters in this section provide both historical perspectives and new insights into the fundamental question of what and how movement parameters are encoded in the brain.

How the cerebral cortex controls and represents movements has been debated since the 19th century based on the motor effects of electrical stimulation of the cerebral cortex (Fritsch & Hitzig, 1870) and motor deficits in patients with epilepsy (Jackson, 1873). These initial investigations lead to the fundamental question of whether the cerebral cortex formulates and controls...

Keywords

Movement Parameter Primary Motor Cortex Muscle Synergy Motor Parameter Task Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aflalo, T. N. & Graziano, M. S. A. (2006). Partial tuning of motor cortex neurons to final posture in a free-moving paradigm. Proceedings of the National Academy of Sciences, 103, 2909–2914.Google Scholar
  2. Arbib, M. A., Iberall, T., & Lyons, D. (1985). Coordinated control programs for movements of the hand. Experimental Brain Research, 10, 111–129.Google Scholar
  3. Ashe, J. (1997). Force and the motor cortex. Behavioural Brain Research, 86, 1–15.PubMedCrossRefGoogle Scholar
  4. Ashe, J. & Georgopoulos, A. P. (1994). Movement parameters and neural activity in motor cortex and area 5. Cerebral Cortex, 4, 590–600.PubMedCrossRefGoogle Scholar
  5. Cabel, D. W., Cisek, P., & Scott, S. H. (2001). Neural activity in primary motor cortex related to mechanical loads applied to the shoulder and elbow during a postural task. Journal of Neurophysiology, 86, 2102–2108.PubMedGoogle Scholar
  6. Carmena, J. M., Lebedev, M. A., Crist, R. E., O'Doherty, J. E., Santucci, D. M., Dimitrov, D. F. et al. (2003). Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biology, 1, E42.PubMedCrossRefGoogle Scholar
  7. Cheney, P. D. & Fetz, E. E. (1980). Functional classes of primate corticomotoneuronal cells and their relation to active force. Journal of Neurophysiology, 44, 773–791.PubMedGoogle Scholar
  8. Chi, Z., Wu, W., Haga, Z., Hatsopoulos, N. G., & Margoliash, D. (2006). Template-based spike pattern identification with linear convolution and dynamic time warping. Journal of Neurophysiology, 97, 1221–1235.PubMedCrossRefGoogle Scholar
  9. Cordo, P. J. & Nashner, L. M. (1982). Properties of postural adjustments associated with rapid arm movements. Journal of Neurophysiology, 47, 287–302.PubMedGoogle Scholar
  10. Courtney, K. R. & Fetz, E. E. (1973). Unit responses recorded from cervical spinal cord of awake monkey. Brain Research, 52, 445–450.CrossRefGoogle Scholar
  11. D'Avella, A., Saltiel, P., & Bizzi, E. (2003). Combinations of muscle synergies in the construction of a natural motor behavior. Nature Neuroscience, 6, 300–308.PubMedCrossRefGoogle Scholar
  12. DeLong, M. R. (1973). Putamen: Activity of single units during slow and rapid arm movements. Science, 179, 1240–1242.PubMedCrossRefGoogle Scholar
  13. Donoghue, J. P., Sanes, J. N., Hatsopoulos, N. G., & Gaal, G. (1998). Neural discharge and local field potential oscillations in primate motor cortex during voluntary movements. Journal of Neurophysiology, 79, 159–173.PubMedGoogle Scholar
  14. Evarts, E. V. (1966). Pyramidal tract activity associated with a conditioned hand movement in the monkey. Journal of Neurophysiology, 29, 1011–1027.PubMedGoogle Scholar
  15. Evarts, E. V. (1968). Relation of pyramidal tract activity to force exerted during voluntary movement. Journal of Neurophysiology, 31, 14–27.PubMedGoogle Scholar
  16. Evarts, E. V. & Thach, W. T. (1969). Motor mechanisms of the CNS: Cerebrocerebellar interrelations. Annual Review of Physiology, 31, 451–498.PubMedCrossRefGoogle Scholar
  17. Fetz, E. E. & Cheney, P. D. (1980). Postspike facilitation of forelimb muscle activity by primate corticomotoneuronal cells. Journal of Neurophysiology, 44, 751–772.PubMedGoogle Scholar
  18. Flash, T. & Hogan, N. (1985). The coordination of arm movements: An experimentally confirmed mathematical model. Journal of Neuroscience, 5, 1688–1703.PubMedGoogle Scholar
  19. Fritsch, G. & Hitzig, E. (1870). On the electrical excitability of the cerebrum. Arch.f.Anat., Physiol.und wissenschaftl.Mediz., Leipzig, 37, 300–332.Google Scholar
  20. Fu, Q. G., Flament, D., Coltz, J. D., & Ebner, T. J. (1997). Relationship of cerebellar Purkinje cell simple spike discharge to movement kinematics in the monkey. Journal of Neurophysiology, 78, 478–491.PubMedGoogle Scholar
  21. Fu, Q. G., Suarez, J. I., & Ebner, T. J. (1993). Neuronal specification of direction and distance during reaching movements in the superior precentral premotor area and primary motor cortex of monkeys. Journal of Neurophysiology, 70, 2097–2116.PubMedGoogle Scholar
  22. Georgopoulos, A. P. (1991). Higher order motor control. Annual Review of Neuroscience, 14, 361–377.PubMedCrossRefGoogle Scholar
  23. Georgopoulos, A. P., Ashe, J., Smyrnis, N., & Taira, M. (1992). The motor cortex and the coding of force. Science, 256, 1692–1695.PubMedCrossRefGoogle Scholar
  24. Georgopoulos, A. P., Caminiti, R., Kalaska, J. F., & Massey, J. T. (1983). Spatial coding of movement: A hypothesis concerning the coding of movement direction by motor cortical populations. Experimental Brain Research, Suppl 7, 327–336.Google Scholar
  25. Georgopoulos, A. P., Kalaska, J. F., Caminiti, R., & Massey, J. T. (1982). On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. Journal of Neuroscience, 2, 1527–1537.PubMedGoogle Scholar
  26. Georgopoulos, A. P., Lurito, J. T., Petrides, M., Schwartz, A. B., & Massey, J. T. (1989). Mental rotation of the neuronal population vector. Science, 243, 234–236.PubMedCrossRefGoogle Scholar
  27. Gomez, J. E., Fu, Q., Flament, D., & Ebner, T. J. (2000). Representation of accuracy in the dorsal premotor cortex. European Journal of Neuroscience, 12, 3748–3760.PubMedCrossRefGoogle Scholar
  28. Graziano, M. S., Aflalo, T. N., & Cooke, D. F. (2005). Arm movements evoked by electrical stimulation in the motor cortex of monkeys. Journal of Neurophysiology, 94, 4209–4223.PubMedCrossRefGoogle Scholar
  29. Gribble, P. L. & Scott, S. H. (2002). Overlap of internal models in motor cortex for mechanical loads during reaching. Nature, 417, 938–941.PubMedCrossRefGoogle Scholar
  30. Harris, C. M. & Wolpert, D. M. (1998). Signal-dependent noise determines motor planning. Nature, 394, 780–784.PubMedCrossRefGoogle Scholar
  31. Hatsopoulos, N. G., Ojakangas, C. L., Paninski, L., & Donoghue, J. P. (1998). Information about movement direction obtained from synchronous activity of motor cortical neurons. Proceedings of the National Academy of Science, 95, 15706–15711.Google Scholar
  32. Hepp-Reymond, M. C., Wyss, U. R., & Anner, R. (1978). Neuronal coding of static force in the primate motor cortex. Journal of Physiology, 74, 287–291.Google Scholar
  33. Jackson, J. H. (1873). On the anatomical, physiological and pathological investigation of epilepsies. West Riding Lunatic Asylum Medical Reports, 3, 315–339.Google Scholar
  34. Jasper, H. H. (1958). Recent advances in our understanding of ascending activities of the reticular system. In Jasper, L. D. Proctor, R. S. Kringhtonand, W. C .Noshay, R. T. Costello (Eds.), Reticular Formation of the Brain (pp. 423–434). Boston: Little, Brown and Co.Google Scholar
  35. Johnson, M. T., Coltz, J. D., & Ebner, T. J. (1999). Encoding of target direction and speed during visual instruction and arm tracking in dorsal premotor and primary motor cortical neurons. European Journal of Neuroscience, 11, 4433–4445.PubMedCrossRefGoogle Scholar
  36. Johnson, M. T. & Ebner, T. J. (2000). Processing of multiple kinematic signals in the cerebellum and motor cortices. Brain Research Reviews, 33, 155–168.PubMedCrossRefGoogle Scholar
  37. Johnson, M. T., Mason, C. R., & Ebner, T. J. (2001). Central processes for the multiparametric control of arm movements in primates. Current Opinion in Neurobiology, 11, 684–688.PubMedCrossRefGoogle Scholar
  38. Kalaska, J. F., Cohen, D. A., Hyde, M. L., & Prud'homme, M. (1989). A comparison of movement direction-related versus load direction-related activity in primate motor cortex, using a two-dimensional reaching task. Journal of Neuroscience, 9, 2080–2102.PubMedGoogle Scholar
  39. Kalaska, J. F. & Crammond, D. J. (1992). Cerebral cortical mechanisms of reaching movements. Science, 255, 1517–1523.PubMedCrossRefGoogle Scholar
  40. Kettner, R. E., Schwartz, A. B., & Georgopoulos, A. P. (1988). Primate motor cortex and free arm movements to visual targets in three-dimensional space. III. Positional gradients and population coding of movement direction from various movement origins. Journal of Neuroscience, 8, 2938–2947.PubMedGoogle Scholar
  41. Lebedev, M. A., Carmena, J. M., O'Doherty, J. E., Zacksenhouse, M., Henriquez, C. S., Principe, J. C. et al. (2005). Cortical ensemble adaptation to represent velocity of an artificial actuator controlled by a brain-machine interface. Journal of Neuroscience, 25, 4681–4693.PubMedCrossRefGoogle Scholar
  42. Merchant, H., Battaglia-Mayer, A., & Georgopoulos, A. P. (2004). Neural responses during interception of real and apparent circularly moving stimuli in motor cortex and area 7a. Cerebral Cortex, 14, 314–331.PubMedCrossRefGoogle Scholar
  43. Messier, J. & Kalaska, J. F. (2000). Covariation of primate dorsal premotor cell activity with direction and amplitude during a memorized-delay reaching task. Journal of Neurophysiology, 84, 152–165.PubMedGoogle Scholar
  44. Moran, D. W. & Schwartz, A. B. (1999). Motor cortical representation of speed and direction during reaching. Journal of Neurophysiology, 82, 2676–2692.PubMedGoogle Scholar
  45. Morrow, M. M. & Miller, L. E. (2003). Prediction of muscle activity by populations of sequentially recorded primary motor cortex neurons. Journal of Neurophysiology, 89, 2279–2288.PubMedCrossRefGoogle Scholar
  46. Mussa-Ivaldi, F. A. (1988). Do neurons in the motor cortex encode movement direction? An alternative hypothesis. Neuroscience Letters, 91, 106–111.PubMedCrossRefGoogle Scholar
  47. Oram, M. W., Hatsopoulos, N. G., Richmond, B. J., & Donoghue, J. P. (2001). Excess synchrony in motor cortical neurons provides redundant direction information with that from coarse temporal measures. Journal of Neurophysiology, 86, 1700–1716.PubMedGoogle Scholar
  48. Paz, R. & Vaadia, E. (2004). Learning-induced improvement in encoding and decoding of specific movement directions by neurons in the primary motor cortex. PLoS Biology, 2, E45.PubMedCrossRefGoogle Scholar
  49. Reina, G. A., Moran, D. W., & Schwartz, A. B. (2001). On the relationship between joint angular velocity and motor cortical discharge during reaching. Journal of Neurophysiology, 85, 2576–2589.PubMedGoogle Scholar
  50. Roitman, A. V., Pasalar, S., Johnson, M. T., & Ebner, T. J. (2005). Position, direction of movement, and speed tuning of cerebellar Purkinje cells during circular manual tracking in monkey. Journal of Neuroscience, 25, 9244–9257.PubMedCrossRefGoogle Scholar
  51. Santello, M., Flanders, M., & Soechting, J. F. (1998). Postural hand synergies for tool use. Journal of Neuroscience, 18, 10105–10115.PubMedGoogle Scholar
  52. Schwartz, A. B. (1994). Direct cortical representation of drawing. Science, 265, 540–542.PubMedCrossRefGoogle Scholar
  53. Schwartz, A. B., Kettner, R. E., & Georgopoulos, A. P. (1988). Primate motor cortex and free arm movements to visual targets in three-dimensional space. I. Relations between single cell discharge and direction of movement. Journal of Neuroscience, 8, 2913–2927.PubMedGoogle Scholar
  54. Schwartz, A. B. & Moran, D. W. (1999). Motor cortical activity during drawing movements: Population representation during lemniscate tracing. Journal of Neurophysiology, 82, 2705–2718.PubMedGoogle Scholar
  55. Schwartz, A. B., Taylor, D. M., & Tillery, S. I. (2001). Extraction algorithms for cortical control of arm prosthetics. Current Opinion in Neurobiology, 11, 701–707.PubMedCrossRefGoogle Scholar
  56. Scott, S. H. (2004). Optimal feedback control and the neural basis of volitional motor control. Nature Reviews Neuroscience, 5, 532–546.PubMedCrossRefGoogle Scholar
  57. Scott, S. H. & Kalaska, J. F. (1997). Reaching movements with similar hand paths but different arm orientations. I. Activity of individual cells in motor cortex. Journal of Neurophysiology, 77, 826–852.PubMedGoogle Scholar
  58. Sergio, L. E., Hamel-Paquet, C., & Kalaska, J. F. (2005). Motor cortex neural correlates of output kinematics and kinetics during isometric-force and arm-reaching tasks. Journal of Neurophysiology, 94, 2353–2378.PubMedCrossRefGoogle Scholar
  59. Sergio, L. E. & Kalaska, J. F. (2003). Systematic changes in motor cortex cell activity with arm posture during directional isometric force generation. Journal of Neurophysiology, 89, 212–228.PubMedCrossRefGoogle Scholar
  60. Shmiel, T., Drori, R., Shmiel, O., Ben Shaul, Y., Nadasdy, Z., & Shemesh, M. et al. (2005). Neurons of the cerebral cortex exhibit precise interspike timing in correspondence to behavior. Proceedings of the National Academy of Sciences, 102, 18655–18657.Google Scholar
  61. Soechting, J. F. & Flanders, M. (1992). Moving in three-dimensional space: Frames of reference, vectors, and coordinate systems. Annual Review of Neuroscience, 15, 167–191.PubMedCrossRefGoogle Scholar
  62. Soechting, J. F. & Lacquaniti, F. (1989). An assessment of the existence of muscle synergies during load perturbations and intentional movements of the human arm. Experimental Brain Research, 74, 535–548.CrossRefGoogle Scholar
  63. Taira, M. & Georgopoulos, A. P. (1993). Cortical cell types from spike trains. Neuroscience Research, 17, 39–45.PubMedCrossRefGoogle Scholar
  64. Taylor, D. M., Tillery, S. I., & Schwartz, A. B. (2002). Direct cortical control of 3D neuroprosthetic devices. Science, 296, 1829–1832.PubMedCrossRefGoogle Scholar
  65. Thach, W. T. (1970a). Discharge of cerebellar neurons related to two maintained postures and two prompt movements. I. Nuclear cell output. Journal of Neurophysiology, 33, 527–536.Google Scholar
  66. Thach, W. T. (1970b). Discharge of cerebellar neurons related to two maintained postures and two prompt movements. II. Purkinje cell output and input. Journal of Neurophysiology, 33, 537–547.Google Scholar
  67. Todorov, E. (2000). Direct cortical control of muscle activation in voluntary arm movements: A model. Nature Neuroscience, 3, 391–398.PubMedCrossRefGoogle Scholar
  68. Todorov, E. (2004). Optimality principles in sensorimotor control. Nature Neuroscience, 7, 907–915.PubMedCrossRefGoogle Scholar
  69. Todorov, E. & Jordan, M. I. (2002). Optimal feedback control as a theory of motor coordination. Nature Neuroscience, 5, 1226–1235.PubMedCrossRefGoogle Scholar
  70. Vaadia, E., Haalman, I., Abeles, M., Bergman, H., Prut, Y., Slovin, H. et al. (1995). Dynamics of neuronal interactions in monkey cortex in relation to behavioural events. Nature, 373, 515–518.PubMedCrossRefGoogle Scholar
  71. Wessberg, J., Stambaugh, C. R., Kralik, J. D., Beck, P. D., Laubach, M., Chapin, J. K. et al. (2000). Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature, 408, 361–365.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Timothy J. Ebner
    • 1
  • Claudia M. Hendrix
  • Siavash Pasalar
  1. 1.Department of NeuroscienceUniversity of MinnesotaMinneapolisUSA

Personalised recommendations