Nature of Motor Control: Perspectives and Issues

  • Michael T. Turvey
  • Sergio Fonseca
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 629)


Four perspectives on motor control provide the framework for developing a comprehensive theory of motor control in biological systems. The four perspectives, of decreasing orthodoxy, are distinguished by their sources of inspiration: neuroanatomy, robotics, self-organization, and ecological realities. Twelve major issues that commonly constrain (either explicitly or implicitly) the understanding of the control and coordination of movement are identified and evaluated within the framework of the four perspectives. The issues are as follows: (1) Is control strictly neural? (2) Is there a divide between planning and execution? (3) Does control entail a frequently involved knowledgeable executive? (4) Do analytical internal models mediate control? (5) Is anticipation necessarily model dependent? (6) Are movements preassembled? (7) Are the participating components context independent? (8) Is force transmission strictly myotendinous? (9) Is afference a matter of local linear signaling? (10) Is neural noise an impediment? (11) Do standard variables (of mechanics and physiology) suffice? (12) Is the organization of control hierarchical?


Motor Control Muscle Length Motor Score Force Transmission Movement Variability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abarbanel, H. D. I. (1996). Analysis of observed chaotic data. New York: Springer.Google Scholar
  2. Ahn, A. N., & Full, R. J. (2002). A motor and a brake: two leg extensor muscles acting at the same joint manage energy differently in a running insect. The Journal of Experimental Biology, 205, 379–389.PubMedGoogle Scholar
  3. Bassingthwaighte, J. B., Liebovitch, L. S., & West, B. J. (1994). Fractal physiology. Oxford: Oxford University Press.Google Scholar
  4. Beer, R. (1995). Computational and dynamical languages for autonomous agents. In R. Port & T. van Gelder (Eds.), Mind as motion: Explorations in the dynamics of cognition (pp. 121–147). Cambridge, MA: MIT Press.Google Scholar
  5. Bernstein, N. (1967). The coordination and regulation of movements. Oxford: Pergamon Press.Google Scholar
  6. ∗Bernstein, N. A. (1996). On dexterity and its development. In M. L. Latash & M. T. Turvey (Eds.), Dexterity and its development (pp. 3–244). Mahwah, NJ:Erlbaum.Google Scholar
  7. Bird, J., Layzell, P., Webster, A., & Husbands, P. (2003). Towards epistemically autonomous robots: exploiting the potential of physical systems. Leonardo, 36, 109–114.CrossRefGoogle Scholar
  8. Cabrera, J. L. & Milton, J. G. (2004). Human stick balancing: Tuning Levy flights to improve balance control. Chaos, 14, 691–698.PubMedCrossRefGoogle Scholar
  9. Calder, W. A. (1984). Size, function and life history. Cambridge, MA: Harvard University Press.Google Scholar
  10. Cariani, P. (1992). Some epistemological implications of devices that construct their own sensors and effectors. In F. Varela and P. Bourgine (Eds.), Towards a practice of autonomous systems. Cambridge, MA:MIT Press.Google Scholar
  11. Chen, Y., Ding, M., & Kelso, J. A. S. (1997). Long memory processes (1/f α type) in human coordination. Physics Review Letters, 79, 4501–4504CrossRefGoogle Scholar
  12. ∗Chiel, H. J., & Beer, R. D. (1997). The brain has a body: adaptive behavior emerges from interactions of nervous system, body and environment. Trends in Neuroscience, 20, 553–557.CrossRefGoogle Scholar
  13. Christini, D. J., In, V., Spano, M. L., Ditto, W. L., & Collins, J. (1997). Real-time experimental control of a system in its chaotic and nonchaotic regimes. Physical Review E, 56, R3749–R3752.CrossRefGoogle Scholar
  14. ∗Dickinson, M., Farley, C., Full, R. J., et al. (2000). How animals move: An integrative view. Science, 288, 100–106.PubMedCrossRefGoogle Scholar
  15. Duarte, M., & Zatsiorsky, V. M. (2001). Long-range correlations in human standing. Physics Letters A, 283, 124–128.CrossRefGoogle Scholar
  16. Dubois, D. M. (1998). Computing anticipatory systems with incursion and hyperincursion. American Institute of Physics Conference Proceedings (1st International Conference on Computing Anticipatory Systems), 437, 3–21.Google Scholar
  17. Erlhagen, W., & Schöner, G. (2002). Dynamic field theory of movement preparation. Psychological Review, 109, 545–572.PubMedCrossRefGoogle Scholar
  18. Feldman, A. G. (1998). Spatial frames of reference for motor control. In M. Latash (Ed.), Progress in motor control (pp. 289–313). Champaign, IL: Human Kinetics.Google Scholar
  19. ∗Feldman A. G., & Levin M. F. (1995). The origin and use of positional frames of reference in motor control. Behavioral & Brain Sciences, 18, 723–806.CrossRefGoogle Scholar
  20. Fitch, H., & Turvey, M. T. (1978). On the control of activity: Some remarks from an ecological point of view. In D. Landers & R. W. Christina (Eds.), Psychology of motor behavior and sport (pp. 3–35). Urbana, IL: Human Kinetics.Google Scholar
  21. Forgacs, G. (1995). On the possible role of cytoskeletal filamentous networks in intracellular signaling: an approach based on percolation. Journal of Cell Science, 108, 2131–2143.PubMedGoogle Scholar
  22. Fonseca, S., & Turvey, M. T. (2006). Biotensegrity perceptual hypothesis: A medium of haptic perception. Paper presented at the North America Meeting of the International Society for Ecological Psychology, Cincinnati, Ohio, June 22–24.Google Scholar
  23. Foo, P., Kelso, J. A. S., & de Guzman, G. C. (2000). Functional stabilization of unstable fixed points: Human pole balancing using time-to-balance information. Journal of Experimental Psychology: Human perception and Performance, 26, 1281–1297.PubMedCrossRefGoogle Scholar
  24. Fowler, C. A., & Turvey, M. T. (1978). Skill acquisition: An event approach with special reference to searching for the optimum of a function of several variables. In G. Stelmach (Ed.) Information processing in motor control and learning. NY: Academic Press.Google Scholar
  25. Full, R., & Koditscheck, D. (1999). Templates and anchors: Neuromechanical hypotheses of legged locomotion on land. Journal of Experimental Biology, 202, 3325–3332.PubMedGoogle Scholar
  26. Fulton, J. F. (1938). Physiology of the nervous system. New York: Oxford University Press.Google Scholar
  27. Gibson, J. J. (1986). The ecological approach to visual perception. Hillsdale, NJ: Erlbaum. (Originally published in 1979).Google Scholar
  28. Gleitman, H. (1999). Psychology (5th edition), Norton Publishing.Google Scholar
  29. Graziano, M., Taylor, C., Moore, T., & Cooke, D. (2002). The cortical control of movement revisited. Neuron, 36, 349–362.PubMedCrossRefGoogle Scholar
  30. Greene, P. H. (1969). Seeking mathematical models for skilled actions. In D. Bootzin & H. C. Huffley (Eds.), Biomechanics (pp. 149–180). New York: Plenum Press.Google Scholar
  31. Greene, P. H. (1972). Problems of organization of motor systems. In R. Rosen & F. Snell (Eds.) Progress in theoretical biology (Vol 2). New York: Academic Press.Google Scholar
  32. Gurfinkel, V. S., Kots, Ya. M., Krinskiy, V. I., et al. (1971). Concerning tuning before movement. In I. M. Gelfand, V. S. Gurfinkel, S. V. Fomin & M. L. Tsetlin (Eds.), Models of the structural- functional organization of certain biological systems (pp. 361–372). Cambridge, MA: MIT Press.Google Scholar
  33. Haridas, C., Zehr, E. P., Misiaszek, J. E. (2005). Postural uncertainty leads to dynamic control of cutaneous reflexes from the foot during human walking. Brain Research, 1062, 48–62.PubMedCrossRefGoogle Scholar
  34. Hausdorff, J. M., Purdon, P. L., Peng, C.–K., Ladin, Z., Wei, J. Y., & Goldberger, A. L. (1996). Fractal dynamics of human gait: Stability of long-range correlations in stride interval fluctuations. Journal of Applied Physiology, 80, 1448–1457.PubMedGoogle Scholar
  35. ∗Hollerbach, J. M. (1990a). Fundamentals of motor behavior. In D. N. Osherson, S. M. Kosslyn, & J. M. Hollerbach et al. (Eds.), Visual cognition and action: An invitation to cognitive science, Volume 2 (pp. 153–182). Cambridge, MA: MIT Press.Google Scholar
  36. Hollerbach, J. M. (1990b). Planning of arm movements. In Osherson et al. (Eds.), Visual cognition and action: An invitation to cognitive science, Volume 2 (pp. 183–211). Cambridge, MA: MIT Press.Google Scholar
  37. Holmes, P., Full, R. J., Koditscheck, D., & Guckenheimer, J. (2006). The dynamics of legged locomotion: Models, analyses, and challenges. Society of Industrial and Applied Mathematics, 48, 207–304.Google Scholar
  38. Hu, S., Chen, J., Butler, J. P., & Wang, N. (2005). Prestress mediates force propagation into the nucleus. Biochemical and Biophysical Research Communications, 329(2), 423–428.PubMedCrossRefGoogle Scholar
  39. ∗Huijing, P. A. (2003). Muscular force transmission necessitates a multilevel integrative approach to the analysis of function of skeletal muscle. Exercise and Sport Science Review, 31, 167–175.CrossRefGoogle Scholar
  40. Huijing, P. A., & Baan, G. C. (2002). Myofascial force transmission: muscle relative position and length agonist and synergist muscle force. Journal of Applied Physiology, 94, 1092–1107.PubMedGoogle Scholar
  41. Ingber, D. E. (2003a). Tensegrity I: Cell structure and hierarchical systems biology. Journal of Cell Science, 116, 1157–1173.CrossRefGoogle Scholar
  42. Ingber, D. E. (2003b). Tensegrity II: How structural networks influence cellular information processing networks. Journal of Cell Science, 116, 1397–1408.CrossRefGoogle Scholar
  43. Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (2000). Principles of neural science. New York: McGraw Hill.Google Scholar
  44. Kargo, W. J., & Rome, L. C. (2002). Functional morphology of proximal hindlimb muscles in the frog Rana pipiens. Journal of Experimental Biology, 205, 1987–2004.PubMedGoogle Scholar
  45. ∗Kawato, M. (1999). Internal models for motor control and trajectory planning. Current Opinions in Neurobiology, 9, 718–727.CrossRefGoogle Scholar
  46. Kelso, J. A. S. (1995). Dynamic patterns. Cambridge. MA: Bradford, MIT Press.Google Scholar
  47. Kirsch, D. (1991). Foundations of AI: The big issues. Artificial Intelligence, 47, 3–30.CrossRefGoogle Scholar
  48. Kugler, P. N., Kelso, J. A. S., & Turvey, M. T. (1980). On the concept of coordinative structures as dissipative structures: I. Theoretical lines of convergence. In G. E. Stelmach & J. Requin (Eds.), Tutorials in motor behavior (pp. 1–47). New York: North Holland.Google Scholar
  49. Kugler, P. N., & Turvey, M. T. (1987). Information, natural law, and the self-assembly of rhythmic movements. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  50. Latash, M. (1993). Control of human movement. Champaigne, IL: Human Kinetics.Google Scholar
  51. Liebovitch, L. S. (1998). Fractals and chaos simplified for the life sciences. New York: Oxford University Press.Google Scholar
  52. Linstedt, S. L., & Calder, W. A. (1981). Body size, physiological time and the longevity of homeothermic animals. Quarterly Review of Biology, 56, 1–16.CrossRefGoogle Scholar
  53. Loeb, G. E. (2001). Learning from the spinal cord. Journal of Neurophysiology, 533, 111–117.Google Scholar
  54. Mandelbrot, B. B. (1983). The fractal geometry of nature. New York: Freeman.Google Scholar
  55. McBeath, M. K., Shaffer, D. M., & Kaiser, M. K. (1995). How baseball outfielders determine where to run to catch fly balls. Science, 268, 569–573.PubMedCrossRefGoogle Scholar
  56. McClamrock, R. (1995). Existential cognition: Computational minds in the world. Chicago: University of Chicago Press.Google Scholar
  57. Mehta, B., & Schaal, S. (2002). Forward models in visuomotor control. Journal of Neurophysiology, 88, 942–953.PubMedGoogle Scholar
  58. ∗Michaels, C. F., & Zaal, F. T. J. M. (2002). Catching fly balls. In K. Davids, G. J. P. Savelsbergh, S. J. Bennett, and J. van der Kamp (Eds.), Interceptive actions in sport: Information and movement (pp. 172–183). London: Routledge.Google Scholar
  59. Newell, K. M., & Corcos, D. M. (1993). Issues in variability and motor control. In K. M. Newell & D. M. Corcos (Eds.), Variability and motor control (pp. 1–12). Champaign, IL: Human Kinetics.Google Scholar
  60. Ostry, D. J., & Feldman, A. G. (2003). A critical evaluation of the force control hypothesis in motor control. Experimental Brain Research, 153, 275–288.CrossRefGoogle Scholar
  61. Pattee, H. H. (1996). The problem of observables in models of biological organization. In E. I. Kahlil and K. E. Boulding (Eds.), Evolution, order and complexity (pp. ). London: Routledge.Google Scholar
  62. Purves, D., Augustine, G. J., Fitzpatrick, D., Katz, L. C., LaMantia, A-S., McNamara, J. O., & Williams, S. M. (2001). Neuroscience. Sunderland MA; Sinauer Associates.Google Scholar
  63. Pressing, J. (1999). The referential dynamics of cognition and action. Psychological Review, 106, 714–747.CrossRefGoogle Scholar
  64. Rack, P. M., & Westbury, D. R. (1969). The effects of length and stimulus rate on tension in the isometric cat soleus muscle. Journal of Physiology, 204, 443–460).PubMedGoogle Scholar
  65. Raibert, M. H., & Hodgins, j. K. (1993). Legged robots. In R. Beer, R. Ritzman, and T. McKenna (Eds.), Biological neural networks in invertebrate neuroethology and robotics (pp. 319–354). Boston, MA: Academic Press.Google Scholar
  66. Reed, E. (1985). An ecological approach to the evolution of behavior. In T. D. Johnston and A. T. Pietrewicz (Eds.), Issues in the ecological study of learning (pp. 357–383). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  67. ∗Riley, M., & Turvey, M. T. (2002). Variability and determinism in motor behavior. Journal of Motor Behavior, 34, 99–125.PubMedCrossRefGoogle Scholar
  68. Rosen, R. (1978). Fundamentals of measurement and the representation of natural systems. New York: Elsevier.Google Scholar
  69. Rosen, R. (1985). Anticipatory systems: Philosophical, mathematical and methodological foundations. NY: Pergamon Press.Google Scholar
  70. Rosen, R. (1991). Life itself. NY: Columbia University Press.Google Scholar
  71. Rosen, R. (2000). Essays on Life itself. NY: Columbia University Press.Google Scholar
  72. Rosenbaum, D. A., Loukopoulos, L. D., Meulenbroek, R. J., Vaughan, J., & Engelbrecht, S. E. (1995). Planning reaches by evaluating stored postures. Psychological Review, 102, 28–67.Google Scholar
  73. Sanes, J., & Schieber, M. H. (2001). Orderly somatotopy in primary motor cortex: Does it exist? NeuroImage, 13, 968–974.PubMedCrossRefGoogle Scholar
  74. Scott, S. H. (2003). The role of primary motor cortex in goal-directed movements: insights from neurophysiological studies on non-human primates. Current Opinions in Neurobiology, 13, 671–677.CrossRefGoogle Scholar
  75. Sherrington, C. S. (1906). The integrative action of the nervous system. Oxford University Press, Oxford.Google Scholar
  76. Shinbrot, T., & Muzzio, F. J. (2001). Noise to order. Science, 410, 251–258.Google Scholar
  77. Sorensen, K. L., Hollands, M. A., & Patla, A. E. (2002). The effects of human ankle muscle vibration on posture and balance during adaptive locomotion. Experimental Brain Research, 143, 24–34.CrossRefGoogle Scholar
  78. Stark, J. (2000). Observing complexity, seeing simplicity. Philosophical Transactions of the Royal Society of London A, 358, 41–61.CrossRefGoogle Scholar
  79. Stepp, N., & Turvey, M. T. (2007). Weak anticipation, strong anticipation, and ecological theory. Paper presented at the XIV International Conference on Perception and Action, Yokohama, Japan, June 1–6.Google Scholar
  80. Strasmann, T., Wal, J. C. van der., Halata, Z., & Drukker, J. (1990). Functional topography and ultrastructure of periarticular mechanoreceptors in the lateral elbow region of the rat. Acta Anatomica, 138, 1–14.PubMedCrossRefGoogle Scholar
  81. Takens, F. (1981). Detecting strange attractors in turbulence. In D. Rand & L. S. Young. (Eds.), Dynamical systems and turbulence (pp. 366–381). Berlin: Springer.CrossRefGoogle Scholar
  82. Todorov, E. (2004). Optimality principles in sensorimotor control. Nature Neuroscience, 7, 907–91.PubMedCrossRefGoogle Scholar
  83. Traynelis, S. F., & Jaramillo, F. (1998). Getting the most out of noise in the central nervous system. Trends in Neuroscience, 21, 137–145.CrossRefGoogle Scholar
  84. ∗Turvey, M. T. (1990). Coordination. American Psychologist, 45, 938–953PubMedCrossRefGoogle Scholar
  85. Turvey, M. T. (1992). Affordances and Prospective Control: An outline of the ontology. Ecological Psychology, 4, 173–187.CrossRefGoogle Scholar
  86. Turvey, M. T. (2004). Impredicativity, dynamics, and the perception-action divide. In V. K.Jirsa & J. A. S.Kelso (Eds.), Coordination Dynamics: Issues and Trends. Vol.1 Applied Complex Systems (pp. 1–20). New York: Springer Verlag.Google Scholar
  87. Turvey, M. T., & Carello, C. (1995). Dynamic touch. In W. Epstein & S. Rogers (Eds.), Handbook of perception and cognition, Vol. V. Perception of space and motion (pp. 401–490). San Diego: Academic Press.Google Scholar
  88. Turvey, M. T., Fitch, H. L., & Tuller, B. (1982). The Bernstein perspective, I: The problems of degrees of freedom and context-conditioned variability. In J. A. S. Kelso (Ed.), Understanding human motor control. Hillsdale, New Jersey: Lawrence Erlbaum Associates.Google Scholar
  89. Turvey, M. T., Shaw, R. E., & Mace, W. (1978). Issues in the theory of action: Degrees of freedom, coordinative structures and coalitions. In J. Requin (Ed.), Attention and performance VII (pp. 557–595) Hillsdale, NJ: Erlbaum.Google Scholar
  90. Wal, J. C. van der (1988). The organization of the substrate of proprioception in the elbow region of the rat. Doctoral Dissertation, University of Limburg, Masstricht, The Netherlands.Google Scholar
  91. Wal, J. C. van der, & Drukker, J. (1988). The occurrence of muscle spindles in relation to the architecture of the connective tissues in the lateral cubical region of the rat. In Hnik (Ed.), Mechanoreceptors: Development, structure, and function (pp. 345–346). New York: Plenum Press.Google Scholar
  92. Warren, W. H. (2006). Dynamics of perception and action. Psychological Review, 113, 358–389.PubMedCrossRefGoogle Scholar
  93. Wendling, S., Canadas, P., & Chabrand, P. (2003). Toward a generalised tensegrity model describing the mechanical behaviour of the cytoskeleton structure. Computer Methods in Biomechanics and Biomedical Engineering, 6(1), 45–52.PubMedCrossRefGoogle Scholar
  94. West, B. J. & Deering, B. (1995). The lure of modern science: Fractal thinking. Singapore: World Scientific.CrossRefGoogle Scholar
  95. West, B. J., & Griffin, L. (1998). Allometric control of human gait. Fractals, 6, 101–108.CrossRefGoogle Scholar
  96. West, B. J. (1999). Physiology, promiscuity, and prophecy at the millennium: A tale of tails. Singapore: World Scientific.Google Scholar
  97. Winfree, A. T. (1987). When time breaks down: The three-dimensional dynamics of electrochemical waves and cardiac arrhythmias. Princeton, NJ: Princeton University Press.Google Scholar
  98. Wing, A. M., & Kristofferson, A. B. (1973). Response delays and the timing of discrete motor responses. Perception & Psychophysics, 14, 5–12.CrossRefGoogle Scholar
  99. Wolpert, D. M. & Gharamani, Z. (2000). Computational principles of movement neuroscience. Nature Neuroscience, 3 (Supplement), 1212–1217.PubMedCrossRefGoogle Scholar
  100. Zehr, E. P., Komiyama, T., & Stein, R. B. (1997). Cutaneous reflexes during human gait: electromyographic and kinematic responses to electrical stimulation. Journal of Neurophysiology, 77, 3310–3325.Google Scholar
  101. ∗Zehr E. P., & Stein, R. B. (1999). What functions do reflexes serve during human locomotion? Progress in Neurobiology, 58, 185–205.PubMedCrossRefGoogle Scholar
  102. The references marked with an asterisk (*) are specifically recommended for further introduction or background to the topic.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Michael T. Turvey
    • 1
  • Sergio Fonseca
  1. 1.Center for the Ecological Study of Perception and ActionUniversity of Connecticut, Storrs, and Haskins LaboratoriesNew HavenUSA

Personalised recommendations