Skip to main content

Control from an Allometric Perspective

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 629))

Abstract

Control of complexity is one of the goals of medicine, in particular, understanding and controlling physiological networks in order to ensure their proper operation. I have attempted to emphasize the difference between homeostatic control and allometric control mechanisms. Homeostatic control is familiar and has as its basis a negative feedback character, which is both local and relatively fast. Allometric control, on the other hand, is a new concept that can take into account long-time memory, correlations that are inverse power law in time, as well as long-range interactions in complex phenomena as manifest by inverse power-law distributions in the system variable. Allometric control introduces the fractal character into otherwise featureless random time series to enhance the robustness of physiological networks by introducing the fractional calculus into the control of the networks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • W.A. Altemeier, S. McKinney and R.W. Glenny, “Fractal nature of regional ventilation distribution”, J. Appl. Physiol. 88, 1551–1557 (2000).

    PubMed  CAS  Google Scholar 

  • G.I. Barenblatt, Scaling Phenomena in Fluid Mechanics, Cambridge University Press, Cambridge (1994).

    Google Scholar 

  • J.B. Bassingthwaighte, L.S. Liebovitch and B.J. West, Fractal Physiology, Oxford University Press, New York (1994).

    Google Scholar 

  • J. Beran, Statistics for Long-Memory Processes, Chapman & Hall, New York (1994).

    Google Scholar 

  • R.G. Brown, Introduction to Random Signal Analysis and Kalman Filtering, Wiley & Sons, New York (1983).

    Google Scholar 

  • *T.G. Buchman, “Physiologic Failure: Multiple Organ Dysfunction Syndrome” in Complex Systems in Science in BioMedicine, T.S. Deisboeck and S.A. Kauffman (eds.), Kluwer Academic-Plenum Publishers, New York (2006).

    Google Scholar 

  • W.B. Cannon, The Wisdom of the Body, W.W. Norton & Co., New York (1932).

    Google Scholar 

  • J.J. Collins and C.J. DeLuca, “Random walking during quiet standing”. Phys. Rev. Lett. 73, 764–767 (1994).

    Article  PubMed  Google Scholar 

  • *A.L. Goldberger, D.R. Rigney and B.J. West, “Chaos, fractals and physiology”, Scientific American 262, 42–49 (1990).

    Article  PubMed  CAS  Google Scholar 

  • L. Griffin, D.J. West and B.J. West, ''Random stride intervals with memory'', J. Biol. Phys. 26, 185–202 (2000).

    Article  Google Scholar 

  • J.M. Hausdorff, C.K. Peng, Z. Ladin, J.Y. Wei and A.L. Goldberger, “Is walking a random walk? Evidence for long-range correlations in stride interval of human gait”, J. Appl. Physiol. 78, 349–358 (1995).

    PubMed  CAS  Google Scholar 

  • J.S. Huxley, Problems of Relative Growth, Dial Press, New York (1931).

    Google Scholar 

  • P.Ch. Ivanov, L.A.N. Amaral, A.L. Goldberger, S. Havlin, M.G. Rosenblum, A.R. Struzik and H.E. Stanley, “Multifractality in human heartbeat dynamics”, Nature 399, 461–465 (1999).

    Article  PubMed  CAS  Google Scholar 

  • V. Kobelev and E. Romanov, “Fractional Langevin equation to describe anomalous diffusion”, Prog. Theor. Phys. Supp. 139, 470–476 (2000).

    Article  Google Scholar 

  • R.L. Magin, “Fractional Calculus in Bioengineering, Part 3”, Critical Reviews in Biomedical Engineering 32(3&4), 195–328 (2004).

    Article  PubMed  Google Scholar 

  • B.B. Mandelbrot, Fractals: form, chance and dimension, W.H. Freeman, San Francisco (1977).

    Google Scholar 

  • K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley, New York (1993).

    Google Scholar 

  • *A. Mutch and G.R. Lefevre, “Health,’Small-Worlds’, Fractals and Complex Networks: An Emerging Field”, Med Sci Monit 9, MT55–MT59 (2003).

    Google Scholar 

  • T.F. Nonnenmacher and R. Metzler, “On the Riemann-Liouville fractional calculus and some recent applications”, Fractals 3, 557 (1995).

    Article  Google Scholar 

  • C.K. Peng, J. Mistus, J.M. Hausdorff, S. Havlin, H.E. Stanley and A.L. Goldberger, “Long-range anticorrelations and non-Gaussian behavior of the heartbeat”, Phys. Rev. Lett. 70, 1343–1346 (1993).

    Article  Google Scholar 

  • I. Podlubny, Fractional Differential Equations, Academic Press, San Diego (1999).

    Google Scholar 

  • D.E. Reynolds, “Coarse graining and control theory model reduction”, arXiv:cond:mat/0309116v1 (2003).

    Google Scholar 

  • H.H. Szeto, P.Y. Cheng, J.A. Decena, Y. Chen, Y. Wu and G. Dwyer, “Fractal properties of fetal breathing dynamics”, Am. J. Physiol. 262 (Regulatory Integrative Comp. Physiol. 32) R141–R147 (1992).

    Google Scholar 

  • B.J. West, “Fractal physiology, complexity and the fractional calculus”, in Fractals, Diffusion and Relaxation in Disordered ComplexSystems, Advances in Chemical Physics Series, Eds. W.T. Coffey and Y.P. Kalmykov, Wiley & Sons, New York (2006a).

    Google Scholar 

  • B.J. West, Physiology, Promiscuity and Prophecy at the Millennium: A Tale of Tails, World Scienfic, Singapore (1999).

    Google Scholar 

  • *B.J. West, Where Medicine Went Wrong, Rediscovering the Road to Complexity, World Scientific, Singapore (2006b).

    Book  Google Scholar 

  • *B.J. West and A.L. Goldberger, “Physiology in Fractal Dimensions”, American Scientist 75, 354–364 (1987).

    Google Scholar 

  • B.J. West and L. Griffin, ''Allometric control of human gait'', Fractals 6, 101–108 (1998).

    Article  Google Scholar 

  • B.J. West and L. Griffin, ''Allometric control, inverse power laws and human gait'', Chaos, Solitions & Fractals 10, 1519–1527 (1999).

    Article  Google Scholar 

  • B.J. West, M. Bologna and P. Grigolini, Physics of Fractal Operators, Springer, New York (2003).

    Google Scholar 

  • B.J. West, M.N. Novaes and V. Kavcic, “Fractal Probability Density and EEF/ERP Time Series”, Chapter 10 in Fractal Geometry in Biological Systems, Eds. P.M. Iannoccone and M. Khokha, CRC, Boca Raton (1995).

    Google Scholar 

  • B.J. West, R. Zhang, A.W. Sanders, J.H. Zuckerman and B.D. Levine, “Fractal Fluctuations in Cardiac Time Series”, Phys. Rev. E 59, 3492 (1999).

    Article  CAS  Google Scholar 

  • The references marked with an asterisk (*) are specifically recommended for further introduction or background to the topic.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce J. West .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

West, B.J. (2009). Control from an Allometric Perspective. In: Sternad, D. (eds) Progress in Motor Control. Advances in Experimental Medicine and Biology, vol 629. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-77064-2_4

Download citation

Publish with us

Policies and ethics