Time Scales, Difficulty/Skill Duality, and the Dynamics of Motor Learning

  • Karl M. Newell
  • Yeou-Teh Liu
  • Gottfried Mayer-Kress
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 629)


In this chapter we elaborate on the dynamical basis for the time scales of change in motor learning. It is known that in both oscillatory and growth/decay processes the exponential characterizes the time scales of change. A few characteristic or even multiple time scales can arise from continually evolving landscape dynamics due to bifurcations between attractor organization and the transient dynamics toward and away from fixed points. These principles are applied to the determination of the laws of learning and the related duality between the difficulty of the task and the skill of the learner.


Skill Level Motor Learning Task Difficulty Multiple Time Scale Dual Vector 


  1. Adams, J. A. (1971). A closed-loop theory of motor learning. Journal of Motor Behavior, 3, 111–150.PubMedGoogle Scholar
  2. Bak, P. (1996). How nature works: The science of self-organized criticality. New York: Springer.Google Scholar
  3. Bassingthwaighte, J. B., Liebovitch, L. S., & West, B. J. (1994). Fractal physiology. Oxford: Oxford University Press.Google Scholar
  4. Brown, S., & Heathcote, A. (2003). Averaging learning curves across and within participants. Behavioral Research Methods, Instrumentation and Computers, 35, 11–21CrossRefGoogle Scholar
  5. Chiang, H., Slobounov, S. M., & Ray, W. (2004). Practice-related modulations of force enslaving and cortical activity as revealed by EEG. Clinical Neurophysiology, 115, 1033–1043.PubMedCrossRefGoogle Scholar
  6. Corcos, D. M., Jaric, S. & Gottlieb, G. L. (1996). Electromyographic analysis of performance enhancement. In: Zelaznik, H. (Ed.). Advances in motor learning and control (pp. 123–153). Champaign, Ill: Human Kinetics.Google Scholar
  7. Crossman, E. R. F. W. (1959). A theory of the acquisition of speed-skill. Ergonomics, 2, 153–166.CrossRefGoogle Scholar
  8. Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experience. New York: Harper and Row.Google Scholar
  9. Gallistel, C. R., Fairhurst, S., & Balsam, P. (2004). The learning curve: implications of a quantitative analysis. Proceedings of the National Academy of Science USA, 101, 13124–13131.CrossRefGoogle Scholar
  10. Haken, H. (1983). Synergetics: An introduction (3rd Ed.). Berlin: Springer-Verlag.Google Scholar
  11. Haliday, D., Resnick, R., & Walker, J. (2005). Fundamentals of Physics (6th Ed.). New York: Wiley.Google Scholar
  12. Hallett, M., & Grafman, J. (1997). Executive function and motor skill learning. International Review of Neurobiology, 41, 297–323PubMedCrossRefGoogle Scholar
  13. Heathcote, A., Brown, S., & Mewhort, D. J. K. (2000). The power law repealed: The case for an exponential law of practice. Psychonomic Bulletin & Review, 7, 185–207CrossRefGoogle Scholar
  14. Hilgard, E. R. (1956). Theories of learning (2 nd Ed.). New York: McGraw-Hill.Google Scholar
  15. Holding, D. H. (1965). Principles of training. Oxford: Pergamon.Google Scholar
  16. Ivry, R. (1996). Representational issues in motor learning: Phenomena and theory. In H. Heuer & S. W. Keele (Eds.). Handbook of perception and action Volume 2: Motor skills (pp. 263–330). London: Academic Press.Google Scholar
  17. Kaplan, D., & Glass, L. (1995). Understanding nonlinear dynamics. New York: Springer-Verlag.Google Scholar
  18. ∗Kelso, J. A. S. (1995). Dynamic patterns: The self-organization of brain and behavior. Cambridge, MA: MIT Press.Google Scholar
  19. ∗Kugler, P. N., & Turvey, M. T. (1987). Information, natural law, and the self-assembly of rhythmic movement: Theoretical and experimental investigations. Hillsdale, NJ: Erlbaum.Google Scholar
  20. ∗Kugler, P.N., Kelso, J. A. S., & Turvey, M. T. (1980). On the concept of coordinative structures as dissipative structures: I. Theoretical lines of convergence. In G. E. Stelmach & J. Requin (Eds.), Tutorials in motor behavior (pp. 1–49). New York: North–Holland.Google Scholar
  21. Kugler, P. N., Kelso, J. A. S., & Turvey, M. T. (1982). On the control and coordination of naturally developing systems. In J. A. S. Kelso & J. E. Clark (Eds.), The development of movement control and co-ordination (pp. 5–78). New York: Wiley.Google Scholar
  22. Lane, N. E. (1987). Skill acquisition rates and patterns: Issues and training implications. New York: Springer-Verlag.Google Scholar
  23. Lashley, K. (1950). In search of the engram. Symposia of the Society for Experimental Biology, 4:454–482.Google Scholar
  24. Liu, Y-T., Mayer-Kress, G., & Newell, K. M. (2003). Beyond curve fitting: A dynamical systems account of exponential learning in a discrete positioning task. Journal of Motor Behavior, 35, 197–207.PubMedCrossRefGoogle Scholar
  25. Liu, Y-T., Mayer-Kress, G., & Newell, K. M. (2004). Beyond curve fitting to inferences about learning. Journal of Motor Behavior, 36, 233–238.CrossRefGoogle Scholar
  26. Liu, Y-T., Mayer-Kress, G., & Newell, K. M. (2006). Qualitative and quantitative change in the dynamics of motor learning. Journal of Experimental Psychology: Human Perception and Performance, 32, 380–393.PubMedCrossRefGoogle Scholar
  27. Liu, Y-T., Mayer-Kress, G., & Newell, K. M. (2007). Self-organized criticality predicts success rates in a self-paced motor learning task. Journal of Sport & Exercise Psychology, 29. 106.Google Scholar
  28. Liu, Y-T., Mayer-Kress, G., Hong, S. L., & Newell, K. M. (2007). Adaptation and learning: Characteristic time scales of performance dynamics. Manuscript under review.Google Scholar
  29. Logan, G. D. (1988). Toward an instance theory of automatization. Psychological Review, 95, 492–527.CrossRefGoogle Scholar
  30. MacKay, D. (1980). The motor program: Back to the computer. Trends in Neuroscience, 3, 97–100.CrossRefGoogle Scholar
  31. Magill, R. A. (1985). Motor learning: Concepts and applications. Dubuque, Iowa: Brown.Google Scholar
  32. Mayer-Kress, G. J., Newell, K. M., & Liu, Y-T. (1998). What can we learn from learning curves? InterJournal of Complexity, 246.Google Scholar
  33. Mazur, J. E., & Hastie, R. (1978). Learning as accumulation: A reexamination of the learning curve. Psychological Bulletin, 85, 1256–1274.PubMedCrossRefGoogle Scholar
  34. Myung, I. J., Kim, C., & Pitt, M. A. (2000). Toward an explanation of the power law artefact: insights from response surface analysis. Memory and Cognition, 28, 832–840.Google Scholar
  35. *Newell, A., & Rosenbloom, P. S. (1981). Mechanisms of skill acquisition and the law of practice. In J. R. Anderson (Ed), Cognitive skills and their acquisition (pp. 1–55). Hillsdale, NJ: Erlbaum.Google Scholar
  36. Newell, K. M. (1985). Coordination, control and skill. In D. Goodman, I. Franks & R. Wilberg (Eds.), Differing perspectives in motor learning, memory and control. Amsterdam: North-Holland.Google Scholar
  37. ∗Newell, K. M. (1986). 6straints on the development of coordination. In M. G. Wade & H. T. A. Whiting (Eds.), Motor skill acquisition in children: Aspects of coordination and control (pp. 341–360). Amsterdam: Martinies NIJHOS.Google Scholar
  38. Newell, K. M. (1991). Motor skill acquisition. Annual Review of Psychology, 42, 213–237.PubMedCrossRefGoogle Scholar
  39. Newell, K. M. (1996). Change in movement and skill: Learning, retention, and transfer. In M. Latash & M. Turvey (Eds.), Dexterity and its development. Hillsdale, NJ: Erlbaum.Google Scholar
  40. ∗Newell, K. M., Liu, Y-T., & Mayer-Kress, G. (2001). Time scales in motor learning and development. Psychological Review, 108, 57–82.PubMedCrossRefGoogle Scholar
  41. Newell, K. M., Liu, Y-T., & Mayer-Kress, G. (2003). A dynamical systems interpretation of epigenetic landscapes for infant motor development. Infant Development and Behavior, 26, 449–472.CrossRefGoogle Scholar
  42. Newell, K. M., Liu, Y-T., & Mayer-Kress, G. (2005). Learning in the brain-computer interface: Insights about degrees of freedom and degeneracy in a landscape model of motor learning. Cognitive Processing, 6, 37–47.CrossRefGoogle Scholar
  43. Proctor, R. W., & Dutta, A. (1995). Skill acquisition and human performance. Thousand Oaks, C.A.: SageGoogle Scholar
  44. Rowland, T. (2004). Dual Vector Space. From MathWorld–A Wolfram Web Resource, created by Eric W. Weisstein. http://mathworld.wolfram.com/DualVectorSpace.html
  45. Salmoni, A. W. (1989). Motor skill learning. In D. H. Holding (Ed.), Human skills (pp. 197–227). New York: Wiley. Google Scholar
  46. Schmidt, R. A. (1975). A schema theory of discrete motor skill learning. Psychological Review, 82, 225–260.CrossRefGoogle Scholar
  47. Schmidt, R. A., & Lee, T. D. (1999). Motor control and learning (3rd Ed.). Champaign, Ill: Human Kinetics.Google Scholar
  48. Schöner, G. (1989). Learning and recall in a dynamic theory of coordination patterns. Biological Cybernetics, 62, 39–54.PubMedCrossRefGoogle Scholar
  49. Schroeder, M. (1991). Fractals, chaos, power laws: Minutes from an infinite paradise. New York: Freeman.Google Scholar
  50. Sherrington, C. S. (1906). The integrative action of the nervous system. New York: Charles Scribner’s Sons.Google Scholar
  51. Snoddy, G. S. (1926). Learning and stability. Journal of Applied Psychology, 10, 1–36.CrossRefGoogle Scholar
  52. Strogatz, S. H. (1994). Nonlinear dynamics and chaos. New York: Addison-Wesley.Google Scholar
  53. Thorndike, E. L. (1927). The law of effect. American Journal of Psychology, 39, 212–222.CrossRefGoogle Scholar
  54. Thurstone, L. L. (1919). The learning curve equation. Psychological Monographs, XXVI, Whole No. 114.Google Scholar
  55. Toma, K., & Nakai, T. (2002). Functional MRI in human motor control studies and clinical applications. Magnetic Resonance and Medical Science, 1, 109–120.CrossRefGoogle Scholar
  56. Underwood, B. (1949). Experimental psychology. New York: Appleton-Century-Crofts.Google Scholar
  57. Vallacher, R. R., & Nowak, A. J. (1994). Dynamical systems in social psychology. New York: Academic Press.Google Scholar
  58. Ward, L. M. (2002). Dynamical cognitive science. Cambridge, MA: MIT Press.Google Scholar
  59. Weisstein, E.W. (1999). Metric Tensor. From MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/MetricTensor.html
  60. Woodworth, R. A., & Schlosberg, H. (1938). Experimental psychology. New York: Holt.Google Scholar
  61. Zanone, P. G., & Kelso, J. A. S. (1992). Evolution of behavioral attractors with learning: Nonequilibrium phase transitions. Journal of Experimental Psychology: Human Perception and Performance, 18, 403–421.PubMedCrossRefGoogle Scholar
  62. The references marked with an asterisk (*) are specifically recommended for further introduction or background to the topic.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Karl M. Newell
    • 1
  • Yeou-Teh Liu
  • Gottfried Mayer-Kress
  1. 1.Department of KinesiologyPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations