Advertisement

Disorders of the Perceptual-Motor System

  • Steven A. Jax
  • H. Branch Coslett
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 629)

Abstract

The study of patients with movement disorders provides insight into both the functional organization and the neural substrates of the perceptual-motor system. By and large, we feel this source of information has been under-utilized within the basic science of motor control. To begin to address this shortcoming, this chapter reviews three disorders of the perceptual-motor system (disorders of the body schema, optic ataxia, and ideomotor apraxia) and illustrates how the study of these disorders can inform central issues within the field of motor control. These issues include (1) the need for the perceptual-motor system to maintain a representation of the body’s current configuration in order to produce movements, (2) the use of visual information in movement production, (3) the coordinate frame in which movements are controlled, (4) the distinction between movement planning and online correction, and (5) the role of the parietal cortex in action. In the conclusion, we discuss several limitations of studying patients with movement disorders as well as suggest that greater communication is needed between researchers in the basic science of motor control and clinicians developing treatments for movement disorders.

Keywords

Motor Control Movement Planning Dorsal Stream Body Schema Ventral Stream 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Suggested Readings

General Reviews of Motor Disorders

  1. Freund, H., Jeannerod, M., Hallett, M., & Leiguarda, R. (Eds.). (2005). Higher-order motor disorders: From neuroanatomy and neurobiology to clinical neurology. Oxford: Oxford University Press.Google Scholar
  2. Dewey, D. & Tupper, D. E. (Eds.). (2004) Developmental Motor Disorders: A neuropsychological perspective. New York, NY: The Guilford Press.Google Scholar
  3. DeRenzi, E. (1982). Disorders of Space Exploration and Cognition. John Wiley, Chichester.Google Scholar

Body Schema

  1. Haggard, P., & Wolpert, D. M. (2005). Disorders of body scheme. In H. Freund, M. Jeannerod, M. Hallett, & R. Leiguarda (Eds.) Higher-order motor disorders: From neuroanatomy and neurobiology to clinical neurology. Oxford. Oxford University Press.Google Scholar

Optic Ataxia

  1. Buxbaum, L. J., & Coslett, H. B. (1997). Subtypes of optic ataxia: reframing the disconnection account. Neurocase, 3, 159–166.CrossRefGoogle Scholar
  2. Glover, S. (2003). Optic ataxia as a deficit specific to the on-line control of actions. Neuroscience and Biobehavioral Reviews, 27, 447–456.PubMedCrossRefGoogle Scholar

Apraxia

  1. Buxbaum, L. J., & Coslett, H. B. (2001). Specialized structural descriptions for human body parts: Evidence from autotopagnosia. Cognitive Neuropsychology, 18, 289–306.PubMedGoogle Scholar
  2. Leiguarda, R. C., & Mardsen, C. D. (2000). Limb apraxias: Higher-order disorders of sensorimotor integration. Brain, 123, 860–879.PubMedCrossRefGoogle Scholar

Reviews of Other Movement Disorders

  1. Alexander, N. B. (1996). Differential diagnosis of gait disorders in older adults. Clinical Geriatric Medicine, 12, 689–703.Google Scholar
  2. Jankovic, J., & Tolosa, E. (Eds.) (2000). Parkinson's disease and movement disorders. Philadelphia, PA: Lippincott, Williams, & Wilkins.Google Scholar

References

  1. Andersen, R. A., & Buneo, C. A. (2002). Intentional maps in posterior parietal cortex. Annual Review of Neuroscience, 25, 189–220.PubMedCrossRefGoogle Scholar
  2. Balint, R. (1909). Sellenlahmung des ‘Schauens’, optische Ataxie, raumliche Storung der Aufmersamkeit. Monatsschrift für Psychiatrie und Neurologie, 25, 51–81.CrossRefGoogle Scholar
  3. Bard, C., Turrell, Y., Fleury, M., Teasdale, N., Lamarre, Y., & Martin, O. (1999). Deafferentation and pointing with visual double-step perturbations. Experimental Brain Research, 125, 410–416.CrossRefGoogle Scholar
  4. Buxbaum, L.J. (2001) Ideomotor Apraxia: A call to action. Neurocase, 7, 445–458.PubMedCrossRefGoogle Scholar
  5. Buxbaum, L. J., & Coslett, H. B. (1997). Subtypes of optic ataxia: reframing the disconnection account. Neurocase, 3, 159–166.CrossRefGoogle Scholar
  6. Buxbaum, L. J., & Coslett, H. B. (1998). Spatio-motor representations in reaching: evidence for subtypes of optic ataxia. Cognitive Neuropsychology, 15, 279–312.CrossRefGoogle Scholar
  7. Buxbaum, L. J., & Coslett, H. B. (2001). Specialized structural descriptions for human body parts: Evidence from autotopagnosia. Cognitive Neuropsychology, 18, 289–306.PubMedGoogle Scholar
  8. Buxbaum, L. J., Giovannetti, T., & Libon, D. (2000). The role of the dynamic body schema in praxis: Evidence from primary progressive apraxia. Brain and Cognition, 44, 166–191.PubMedCrossRefGoogle Scholar
  9. Buxbaum, L. J., Johnson-Frey, S. H., & Bartlett-Williams, M. (2005). Deficient internal models for planning hand-object interactions in apraxia. Neuropsychologia, 43, 917–929.PubMedCrossRefGoogle Scholar
  10. Cole, J., & Paillard, J. (1995). Living without touch and peripheral information about body position and movement: Studies with deafferented subjects. In J.L. Bermudez, A. Marcel, & N. Eilan (Eds.) The body and the Self (pp. 245–266). Cambridge, MA: MIT Press.Google Scholar
  11. Coslett, H. B. (1998). Evidence for a disturbance of the body schema in neglect. Brain and Cognition, 37, 529–544.CrossRefGoogle Scholar
  12. Coslett, H. B., Saffran, E. M., Schwoebel, J. (2002). Knowledge of the human body: A distinct semantic domain. Neurology, 59, 357–363.PubMedGoogle Scholar
  13. De Renzi, E. (1982). Disorders of space exploration. In Disorders of space exploration and cognition (pp. 54–137). New York, NY. John Wiley & Sons.Google Scholar
  14. De Renzi, E. (1985). Methods of limb apraxia examination and their bearing on the interpretation of the disorder. In E. A. Roy (Ed.), Neuropsychological studies of apraxia and related disorders (pp. 45–64). Amsterdam: Elsevier, North Holland.Google Scholar
  15. Desmurget, M., & Grafton, S. T. (2000). Forward modeling allows feedback control for fast reaching movements. Trends in Cognitive Science, 4, 423–431.CrossRefGoogle Scholar
  16. Dijkerman, H.C., McIntosh, R.D., Anema, H.A., de Haan, E.H., Kappelle, L.J., & Milner, A.D. (2006). Reaching errors in optic ataxia are linked to eye position rather than head or body position. Neuropsychologia, 44, 2766–2773.Google Scholar
  17. Feldman, A. G. (1986). Once more on the equilibrium point hypothesis (λ model) for motor control. Journal of Motor Behavior, 18, 17–54.PubMedGoogle Scholar
  18. Flanders, M., Helms-Tillery, S. I., & Soechting, J. F. (1992). Early stages in a sensorimotor transformation. Behavioral and Brain Sciences, 15, 309–362.Google Scholar
  19. Forget, R., & Lamarre, Y. (1987). Rapid elbow flexion in the absence of proprioceptive and cutaneous feedback. Human Neurobiology, 6, 27–37.PubMedGoogle Scholar
  20. Gallagher, S. (1995) Body schema and intentionality. In The Body and the Self. J.L. Bermudez, A. Marcel, & N. Eilan (Eds.), Cambridge: MIT Press.Google Scholar
  21. Ghafouri, M., Archambault, P. S., Adamovich, S. V., & Feldman, A. G. (2002). Pointing movements may be produced in different frames of reference depending on the task demand. Brain Research, 929, 117–128.PubMedCrossRefGoogle Scholar
  22. Ghez, C., Gordon, J., & Ghilardi, M. F. (1995). Impairments of reaching movements in patients without proprioception II. Effects of visual information on accuracy. Journal of Neurophysiology, 73, 361–372.PubMedGoogle Scholar
  23. Glover, S. (2003). Optic ataxia as a deficit specific to the on-line control of actions. Neuroscience and Biobehavioral Reviews, 27, 447–456.PubMedCrossRefGoogle Scholar
  24. Glover, S. (2004). Separate visual representations in the planning and control of action. Behavioural and Brain Sciences, 27, 3–24.Google Scholar
  25. Goldenberg, G., & Hagmann, S. (1997). The meaning of meaningless gestures: a study of visuo-imitative apraxia. Neuropsychologia, 35, 333–341.PubMedCrossRefGoogle Scholar
  26. Goodale M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neuroscience, 15, 20–25.CrossRefGoogle Scholar
  27. Goodale, M. A., & Westwood, D. A. (2004). An evolving view of duplex vision: separate but interacting cortical pathways for perception and action. Current Opinion in Neurobiology, 14(2), 203–211.PubMedCrossRefGoogle Scholar
  28. Gonzales Rothi, L. J., Ochipa, C., & Heilman, K. M. (1991). A cognitive neuropsychological model of limb praxis. Cognitive Neuropsychology, 8, 443–458.CrossRefGoogle Scholar
  29. Gordon, J., Ghilardi, M. F., & Ghez, C. (1994). Accuracy of planar reaching movements. I. Independence of direction and extent variability. Experimental Brain Research, 99, 97–111.CrossRefGoogle Scholar
  30. Gordon, J., Ghilardi, M. F., & Ghez, C. (1995). Impairments of reaching movements in patients without proprioception. I. Spatial errors. Journal of Neurophysiology, 73, 347–360.PubMedGoogle Scholar
  31. Grea, H., Pisella, L., Rossetti, Y., Desmurget, M., Tilikete, C., Grafton, S. T., Prablanc, C., & Vighetto, A. (2002). A lesion of the posterior parietal cortex disrupts on-line adjustments during aiming movements. Neuropsychologia, 40, 2471–2480.PubMedCrossRefGoogle Scholar
  32. Haaland, K. Y., Harrington, D. L., Knight, R. T. (1999). Spatial deficits in ideomotor limb apraxia. A kinematic analysis of aiming movements. Brain, 122, 1169–1182.PubMedCrossRefGoogle Scholar
  33. Haaland, K. Y., Harrington, D. L., Knight, R. T. (2000). Neural representations of skilled movement. Brain, 123, 2306–2313.PubMedCrossRefGoogle Scholar
  34. Haggard, P., & Wolpert, D. M. (2005). Disorders of body scheme. In H. Freund, M. Jeannerod, M. Hallett, & R. Leiguarda (Eds.) Higher-order motor disorders: From neuroanatomy and neurobiology to clinical neurology. Oxford. Oxford University Press.Google Scholar
  35. Harris, C. M. & Wolpert, D. M. (1998). Signal-dependent noise determines motor planning. Nature, 394, 780–784.PubMedCrossRefGoogle Scholar
  36. Head, H., & Holmes, G. (1911–12) Sensory disturbances from cerebral lesions. Brain, 34, 102–244.CrossRefGoogle Scholar
  37. Heilman, K.M., Gonzales Rothi, L.J., Valenstein, E. (1982). Two forms of ideomotor apraxia. Neurology, 32, 342–346.PubMedGoogle Scholar
  38. Hermsdörfer, J., Ulrich, S., Marquardt, C., Goldenberg, G., & Mai, N. (1999). Prehension with the ipsilesional hand after unilateral brain damage. Cortex, 35, 139–161.PubMedCrossRefGoogle Scholar
  39. Himmelbach, M., & Karnath, H. O. (2005). Dorsal and ventral stream interaction: Contributions from optic ataxia. Journal of Cognitive Neuroscience, 17, 632–640.PubMedCrossRefGoogle Scholar
  40. Hogan, N., Krebs, H. I., Rohrer, B., Fasoli, S., Stein, J., & Volpe, B. T. (2005) Technology for Recovery after Stroke. In J. Bogousslavsky, M.P. Barnes, & B. Dobkin (Eds.), Recovery after Stroke (pp. 604–622). Cambridge University Press.Google Scholar
  41. Ietswaart, M., Carey, D. P., Della Sala, S., & Dijkhuizen, R. S. (2001). Memory-driven movements in limb apraxia: I s there evidence for impaired communication between the dorsal and the ventral streams? Neuropsychologia, 39, 950–961.PubMedCrossRefGoogle Scholar
  42. Ingram, H. A., van Donkelaar, P., Cole, J., Vercher, J. L., Gauthier, G. M., & Miall, R. C. (2000) The role of proprioception and attention in a visuomotor adaptation task. Experimental Brain Research, 132, 114–126.CrossRefGoogle Scholar
  43. Jackson, G. M., Jackson, S. R., Husain, M., Harvey, M., Kramer, T., & Dow, L. (2000). The coordination of bimanual prehension movements in a centrally deafferented patient. Brain, 123, 380–393.PubMedCrossRefGoogle Scholar
  44. Jackson, S. R., Newport, R., Mort, D., & Husain, M. (2005). Where the eye looks, the hand follows: Limb-dependent magnetic misreaching in optic ataxia. Current Biology, 15, 42–46.PubMedGoogle Scholar
  45. Jakobson, L. S., Archibald, Y. M., Carey, D. P., & Goodale, M. A. (1991). A kinematic analysis of reaching and grasping movements in a patient recovering from optic ataxia. Neuropsychologia, 29, 803–809.PubMedCrossRefGoogle Scholar
  46. Jax, S. A., Buxbaum, L. J., & Moll, A. D. (2006). Deficits in movement planning and intrinsic coordinate control in ideomotor apraxia. Journal of Cognitive Neuroscience, 18, 2063–2076.Google Scholar
  47. Jax, S. A., Coslett, H. B., Lie, E., & Buxbaum, L. J. (2006). Evidence for disrupted head- and body-centered visuomotor transformations in optic ataxia. Manuscript in preparation.Google Scholar
  48. Jeannerod, M. (1986). Mechanisms of visuomotor coordination: A study in normal and brain-damaged subjects. Neuropsychologia, 24, 41–78.PubMedCrossRefGoogle Scholar
  49. Jeannerod, M., Decety, J., & Michel, F. (1994). Impairment of grasping movements following a bilateral posterior parietal lesion. Neuropsychologia, 32, 369–380.PubMedCrossRefGoogle Scholar
  50. Karnath, H. O., & Perenin, M. T. (2005). Cortical control of visually guided reaching: Evidence from patients with optic ataxia. Cerebral Cortex, 15(10), 1561–1569.PubMedCrossRefGoogle Scholar
  51. Kawato, M. (1996). Bidirectional theory approach to integration. In T. Inui & J. L. McClelland (Eds.), Attention and Performance XVI: Information integration (pp. 335–367). Cambridge, MA: MIT Press.Google Scholar
  52. Kawato, M. (1999). Internal models for motor control and trajectory planning. Current Opinion in Neurobiology, 9, 718–727.PubMedCrossRefGoogle Scholar
  53. Laimgruber, K., Goldenberg, G., & Hermsdorfer, J. (2005). Manual and hemispheric asymmetries in the execution of actual and pantomimed prehension. Neuropsychologia, 43, 682–692.PubMedCrossRefGoogle Scholar
  54. Leiguarda, R. C., & Mardsen, C. D. (2000). Limb apraxias: Higher-order disorders of sensorimotor integration. Brain, 123, 860–879.PubMedCrossRefGoogle Scholar
  55. Milner, A. D., Paulignan, Y., Dijkerman, H. C., Michel, F., & Jeannerod, M. (1999). A paradoxical improvement of misreaching in optic ataxia: New evidence for two separate neural systems for visual localization. Proceedings of the Royal Society of London Series B Biological Sciences, 266, 2225–2229.CrossRefGoogle Scholar
  56. Ogden, J. A. (1985). Autopagnosia: Occurrence in a patient without nominal aphasia and with an intact ability to point to parts of animals and objects. Brain, 108, 1009–1022.PubMedCrossRefGoogle Scholar
  57. Parsons, L. M. (1987). Imagined spatial transformations of one's body. Journal of Experimental Psychology: General, 116, 172–191.CrossRefGoogle Scholar
  58. Parsons, L. M. (1994). Temporal and kinematic properties of motor behavior reflected in mentally stimulated action. Journal of Experimental Psychology: Human Perception and Performance, 20, 709–730.PubMedCrossRefGoogle Scholar
  59. Perenin, M. T., & Vighetto, A. (1983). Optic ataxia: a specific disorder in visuomotor coordination. In Hein, A., & Jeannerod, M. (Eds.) Spatially oriented behavior. (pp. 305–326) New York: Springer.Google Scholar
  60. Perenin, M. T., & Vighetto, A. (1988). Optic ataxia: a specific disruption in visuomotor mechanisms. I. Different aspects of the deficit in reaching for objects. Brain, 111, 643–74.PubMedCrossRefGoogle Scholar
  61. Pisella, L., Grea, H., Tilikete, C., Vighetto, A., Desmurget, M., Rode, G., Boisson, D., & Rossetti, Y. (2000). An ‘automatic pilot’ for the hand in human posterior parietal cortex: Toward reinterpreting optic ataxia. Nature Neuroscience, 3, 729–736.PubMedCrossRefGoogle Scholar
  62. Poizner, H., Merians, A. S., Clark, M. A., Macauley, B., Gonzales Rothi, L. J., & Heilman, K. M. (1998). Left hemispheric specialization for learned, skilled, and purposeful action. Neuropsychology, 12, 163–182.PubMedCrossRefGoogle Scholar
  63. Polit, A., & Bizzi, E. (1978). Processes controlling arm movements in monkeys. Science, 201, 1235–1237.PubMedCrossRefGoogle Scholar
  64. Revol, P., Rossetti, Y., Vighetto, A., Rode, G., Boisson, D., & Pisella, L. (2003). Pointing errors in immediate and delayed conditions in unilateral optic ataxia. Spatial Vision, 16(3–4), 347–364.PubMedCrossRefGoogle Scholar
  65. Rosenbaum, D. A., Meulenbroek, R. G. J., Vaughan, J., & Jansen, C. (2001). Posture-based motion planning: Applications to grasping. Psychological Review, 10 , 709–734.CrossRefGoogle Scholar
  66. Rumiati, R. I., & Humphreys, G. W. (1998). Recognition by action: dissociating visual and semantic routes to action in normal observers. Journal of Experimental Psychology: Human Perception and Performance, 24, 631–647.PubMedCrossRefGoogle Scholar
  67. Sainburg, R. L., Ghilardi, M. F., Poizner, H., & Ghez, C. (1995). The control of limb dynamics in normal subjects and patients without proprioception. Journal of Neurophysiology, 73, 820–835.PubMedGoogle Scholar
  68. Schwoebel, J., Boronat, C., & Coslett, H.B. (2002). The man who executed “imagined” movements: Evidence for dissociable components of the body schema. Brain and Cognition, 50, 1–16.PubMedCrossRefGoogle Scholar
  69. Schwoebel, J., Buxbaum, L. J., & Coslett, H. B. (2004). Representations of the human body in the production and imitation of complex movements. Cognitive Neuropsychology, 21, 285–298.PubMedCrossRefGoogle Scholar
  70. Schwoebel, J., Buxbaum, L. J., & Coslett, H. B. (2006). Accurate reaching after active but not passive movements of the hand: Evidence for forward modeling in a patient with central deafferentation. Manuscript in preparation.Google Scholar
  71. Schwoebel, J., & Coslett, H. B. (2005). Evidence for multiple, distinct representations of the human body. Journal of Cognitive Neuroscience, 17, 543–553.PubMedCrossRefGoogle Scholar
  72. Schwoebel, J., Coslett, H. B., & Buxbaum, L. J. (2001a). Compensatory coding of body part location in autotopagnosia: Evidence for extrinsic egocentric coding. Cognitive Neuropsychology, 18, 363–381.Google Scholar
  73. Schwoebel, J., Friedman, R., Duda, N., & Coslett, H. B. (2001b) Pain and the body schema: evidence for peripheral effects on mental representations of movement. Brain, 124, 2098–2104.CrossRefGoogle Scholar
  74. Shadmehr, R. and Mussa-Ivaldi, F. (1994). Adaptive representation of dynamics during learning of a motor task. Journal of Neuroscience, 14, 3208–3224.PubMedGoogle Scholar
  75. Sirigu, A., Duhamel, J.-R., Cohen, L., Pillon, B., Dubois, B., Agid, Y. (1996). The mental representation of hand movements after parietal cortex damage. Science, 273, 1564–1568.PubMedCrossRefGoogle Scholar
  76. Sirigu, A., Grafman, J., Bressler, K., & Sunderland, T. (1991). Multiple representations contribute to body knowledge processing. Brain, 114, 629–642.PubMedCrossRefGoogle Scholar
  77. Van Beers, R. J., Sittig, A. C., & Gon, J. J, (1999). Integration of proprioceptive and visual position-information: An experimentally supported model. Journal of Neurophysiology, 81, 1355–1364.PubMedGoogle Scholar
  78. Van Thiel, E., Meulenbroek, R. G. J., & Hulstijn, W. (1998). Path curvature in workspace and in joint space: Evidence for coexisting coordinative rules in aiming. Motor Control, 2, 334–351.Google Scholar
  79. Vindras, P., & Viviani, P. (1998). Frames of reference and control parameters in visuomanual pointing. Journal of Experimental Psychology: Human Perception and Performance, 24, 569–591.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Moss Rehabilitation Research Institute; University of Pennsylvania Medical SchoolDepartment of Physical Medicine & RehabilitationPhiladelphiaUSA

Personalised recommendations