Skip to main content

The Roles of Vision and Proprioception in the Planning of Reaching Movements

  • Chapter
Progress in Motor Control

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 629))

Abstract

While vision and proprioception can both provide information about arm configuration prior to movement, substantial evidence suggests that each modality is used for different stages of the planning process. In this chapter, we provide support for the idea that vision is mainly used to define the trajectory and the kinematics of reaching movements. Proprioception appears to be critical in the transformation of this plan into the motor commands sent to the arm muscles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander GE, Crutcher MD (1990) Neural representations of the target (goal) of visually guided arm movements in three motor areas of the monkey. J Neurophysiol 64: 164–178

    PubMed  CAS  Google Scholar 

  • Atkeson CG, Hollerbach JM (1985) Kinematic features of unrestrained vertical arm movements. J Neurosci 5: 2318–2330

    PubMed  CAS  Google Scholar 

  • ∗Bagesteiro LB, Sarlegna FR, Sainburg RL (2006) Differential influence of vision and proprioception on control of movement distance. Exp Brain Res 171: 358–370

    Article  PubMed  Google Scholar 

  • Brenner E, Smeets JB (2003) Fast corrections of movements with a computer mouse. Spat Vis 16: 365–376

    Article  PubMed  Google Scholar 

  • ∗Brown LE, Rosenbaum DA, Sainburg RL (2003a) Limb position drift: implications for control of posture and movement. J Neurophysiol 90: 3105–3118

    Article  Google Scholar 

  • Brown LE, Rosenbaum DA, Sainburg RL (2003b) Movement speed effects on limb position drift. Exp Brain Res 153: 266–274

    Article  Google Scholar 

  • Brown SH, Cooke JD (1981) Responses to force perturbations preceding voluntary human arm movements. Brain Res 220: 350–355

    Article  PubMed  CAS  Google Scholar 

  • Brown SH, Cooke JD (1984) Initial agonist burst duration depends on movement amplitude. Exp Brain Res 55: 523–527

    Article  PubMed  CAS  Google Scholar 

  • Brown SH, Cooke JD (1986) Initial agonist burst is modified by perturbations preceding movement. Brain Res 377: 311–322

    Article  PubMed  CAS  Google Scholar 

  • Cole JO (1995) Pride and a Daily Marathon. Paperback, Bradford Books

    Google Scholar 

  • Cooke JD, Brown S, Forget R, Lamarre Y (1985) Initial agonist burst duration changes with movement amplitude in a deafferented patient. Exp Brain Res 60: 184–187

    Article  PubMed  CAS  Google Scholar 

  • Cordo P, Bevan L, Gurfinkel V, Carlton L, Carlton M, Kerr G (1995) Proprioceptive coordination of discrete movement sequences: mechanism and generality. Can J Physiol Pharmacol 73: 305–315

    PubMed  CAS  Google Scholar 

  • Cruse H, Dean J, Heuer H, Scmidt RA (1990) Utilization of sensory information for motor control. In: Neumann O, Prinz W (eds) Relationships between perception and action, pp 43–79. Berlin: Springer-Verlag

    Google Scholar 

  • Day BL, Lyon IN (2000) Voluntary modification of automatic arm movements evoked by motion of a visual target. Exp Brain Res 130: 159–168

    Article  PubMed  CAS  Google Scholar 

  • ∗Desmurget M, Epstein CM, Turner RS, Prablanc C, Alexander GE, Grafton ST (1999) Role of the posterior parietal cortex in updating reaching movements to a visual target. Nat Neurosci 2: 563–567

    Article  PubMed  CAS  Google Scholar 

  • Desmurget M, Pelisson D, Rossetti Y, Prablanc C (1998) From eye to hand: planning goal-directed movements. Neurosci Biobehav Rev 22: 761–788

    Article  PubMed  CAS  Google Scholar 

  • Desmurget M, Rossetti Y, Jordan M, Meckler C, Prablanc C (1997) Viewing the hand prior to movement improves accuracy of pointing performed toward the unseen contralateral hand. Exp Brain Res 115: 180–186

    Article  PubMed  CAS  Google Scholar 

  • DiZio P, Lathan CE, Lackner JR (1993) The role of brachial muscle spindle signals in assignment of visual direction. J Neurophysiol 70: 1578–1584

    PubMed  CAS  Google Scholar 

  • Elliott D, Carson RG, Goodman D, Chua R (1991) Discrete vs. continuous visual control of manual aiming. Hum Mov Sci 10: 393–418

    Article  Google Scholar 

  • Feldman AG, Latash ML (2005) Testing hypotheses and the advancement of science: recent attempts to falsify the equilibrium point hypothesis. Exp Brain Res 161: 91–103

    Article  PubMed  Google Scholar 

  • Feldman AG, Ostry DJ, Levin MF, Gribble PL, Mitnitski AB (1998) Recent tests of the equilibrium-point hypothesis (lambda model). Motor Control 2: 189–205

    PubMed  CAS  Google Scholar 

  • Flanagan JR, Rao AK (1995) Trajectory adaptation to a nonlinear visuomotor transformation: evidence of motion planning in visually perceived space. J Neurophysiol 74: 2174–2178

    PubMed  CAS  Google Scholar 

  • Flash T, Henis E (1991) Arm trajectory modification during reaching towards visual targets. J Cognitive Neurosci 3: 220–230

    Article  Google Scholar 

  • Flash T, Hogan N (1985) The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci 5: 1688–1703

    PubMed  CAS  Google Scholar 

  • Forget R, Lamarre Y (1987) Rapid elbow flexion in the absence of proprioceptive and cutaneous feedback. Hum Neurobiol 6: 27–37

    PubMed  CAS  Google Scholar 

  • Fu QG, Flament D, Coltz JD, Ebner TJ (1995) Temporal encoding of movement kinematics in the discharge of primate primary motor and premotor neurons. J Neurophysiol 73: 836–854

    PubMed  CAS  Google Scholar 

  • Gauthier GM, Mussa Ivaldi F (1988) Oculo-manual tracking of visual targets in monkey: role of the arm afferent information in the control of arm and eye movements. Exp Brain Res 73: 138–154

    Article  PubMed  CAS  Google Scholar 

  • Georgopoulos AP (1998) Online visual control of the arm. Novartis Found Symp 218: 147–164

    PubMed  CAS  Google Scholar 

  • Georgopoulos AP, Schwartz AB, Kettner RE (1986) Neuronal population coding of movement direction. Science 233: 1416–1419

    Article  PubMed  CAS  Google Scholar 

  • Ghez C, Favilla M, Ghilardi MF, Gordon J, Bermejo R, Pullman S (1997) Discrete and continuous planning of hand movements and isometric force trajectories. Exp Brain Res 115: 217–233

    Article  PubMed  CAS  Google Scholar 

  • Ghez C, Gordon J, Ghilardi MF (1995) Impairments of reaching movements in patients without proprioception. II. Effects of visual information on accuracy. J Neurophysiol 73: 361–372

    PubMed  CAS  Google Scholar 

  • ∗Ghez C, Hening W, Gordon J (1991) Organization of voluntary movement. Curr Opin Neurobiol 1: 664–671

    Article  PubMed  CAS  Google Scholar 

  • Ghez C, Vicario D (1978) The control of rapid limb movement in the cat. II. Scaling of isometric force adjustments. Exp Brain Res 33: 191–202

    PubMed  CAS  Google Scholar 

  • Gielen CC, van den Oosten K, Pull ter Gunne F (1985) Relation between EMG activation patterns and kinematic properties of aimed arm movements. J Mot Behav 17: 421–442

    PubMed  CAS  Google Scholar 

  • Gilman S, Carr D, Hollenberg J (1976) Kinematic effects of deafferentation and cerebellar ablation. Brain 99: 311–330

    Article  PubMed  CAS  Google Scholar 

  • Goodale MA, Pelisson D, Prablanc C (1986) Large adjustments in visually guided reaching do not depend on vision of the hand or perception of target displacement. Nature 320: 748–750

    Article  PubMed  CAS  Google Scholar 

  • Gordon J, Ghez C (1987a) Trajectory control in targeted force impulses. II. Pulse height control. Exp Brain Res 67: 241–252

    Article  CAS  Google Scholar 

  • Gordon J, Ghez C (1987b) Trajectory control in targeted force impulses. III. Compensatory adjustments for initial errors. Exp Brain Res 67: 253–269

    Article  CAS  Google Scholar 

  • Gordon J, Ghilardi MF, Ghez C (1995) Impairments of reaching movements in patients without proprioception. I. Spatial errors. J Neurophysiol 73: 347–360

    PubMed  CAS  Google Scholar 

  • Gottlieb GL, Chen CH, Corcos DM (1996) Nonlinear control of movement distance at the human elbow. Exp Brain Res 112: 289–297

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb GL, Corcos DM, Agarwal GC, Latash ML (1990) Organizing principles for single joint movements. III. Speed- insensitive strategy as a default. J Neurophysiol 63: 625–636

    PubMed  CAS  Google Scholar 

  • Graziano MS, Cooke DF, Taylor CS (2000) Coding the location of the arm by sight. Science 290: 1782–1786

    Article  PubMed  CAS  Google Scholar 

  • Hay JC, Pick HL Jr, Ikeda K (1965) Visual capture produced by prism spectacles. Psychon Sci 2: 215–216

    Google Scholar 

  • Holmes NP, Spence C (2005) Visual bias of unseen hand position with a mirror: spatial and temporal factors. Exp Brain Res 166: 489–497

    Article  PubMed  Google Scholar 

  • Hoy MG, Zernicke RF (1986) The role of intersegmental dynamics during rapid limb oscillations. J Biomech 19: 867–877

    Article  PubMed  CAS  Google Scholar 

  • Kakei S, Hoffman DS, Strick PL (1999) Muscle and movement representations in the primary motor cortex. Science 285: 2136–2139

    Article  PubMed  CAS  Google Scholar 

  • Lackner JR, Taublieb AB (1984) Influence of vision on vibration-induced illusions of limb movement. Exp Neurol 85: 97–106

    Article  PubMed  CAS  Google Scholar 

  • Larish DD, Volp CM, Wallace SA (1984) An empirical note on attaining a spatial target after distorting the initial conditions of movement via muscle vibration. J Mot Behav 16: 76–83

    PubMed  CAS  Google Scholar 

  • Lateiner JE, Sainburg RL (2003) Differential contributions of vision and proprioception to movement accuracy. Exp Brain Res 151: 446–454

    Article  PubMed  Google Scholar 

  • Lestienne F (1979) Effects of inertial load and velocity on the braking process of voluntary limb movements. Exp Brain Res 35: 407–418

    Article  PubMed  CAS  Google Scholar 

  • Messier J, Adamovich S, Berkinblit M, Tunik E, Poizner H (2003) Influence of movement speed on accuracy and coordination of reaching movements to memorized targets in three-dimensional space in a deafferented subject. Exp Brain Res 150: 399–416

    PubMed  Google Scholar 

  • Morasso P (1981) Spatial control of arm movements. Exp Brain Res 42: 223–227

    Article  PubMed  CAS  Google Scholar 

  • Mott FW, Sherrington CS (1895) Experiments upon the influence of sensory nerves upon. movement and nutrition of the limbs. Proc R Soc B 57:481–488

    Google Scholar 

  • Nougier V, Bard C, Fleury M, Teasdale N, Cole J, Forget R, Paillard J, Lamarre Y (1996) Control of single-joint movements in deafferented patients: evidence for amplitude coding rather than position control. Exp Brain Res 109: 473–482

    Article  PubMed  CAS  Google Scholar 

  • Nourbakhsh MR, Kukulka CG (2004) Relationship between muscle length and moment arm on EMG activity of human triceps surae muscle. J Electromyogr Kinesiol 14: 263–273

    Article  PubMed  Google Scholar 

  • ∗Paillard J (1996) Fast and slow feedback loops for the visual correction of spatial errors in a pointing task: a reappraisal. Can J Physiol Pharmacol 74: 401–417

    Article  PubMed  CAS  Google Scholar 

  • Paillard J, Brouchon M (1968) Active and passive movements in the calibration of position sense. In: Freedman SJ (ed) The Neuropsychology of spatially oriented behaviour (pp 35–56). Illinois: Dorsey Press

    Google Scholar 

  • Papaxanthis C, Pozzo T, McIntyre J (2005) Kinematic and dynamic processes for the control of pointing movements in humans revealed by short-term exposure to microgravity. Neuroscience 135: 371–383

    Article  PubMed  CAS  Google Scholar 

  • Polit A, Bizzi E (1979) Characteristics of motor programs underlying arm movements in monkeys. J Neurophysiol 42: 183–194

    PubMed  CAS  Google Scholar 

  • Prablanc C, Echallier JE, Jeannerod M, Komilis E (1979a) Optimal response of eye and hand motor systems in pointing at a visual target. II. Static and dynamic visual cues in the control of hand movement. Biol Cybern 35: 183–187

    Article  CAS  Google Scholar 

  • Prablanc C, Echallier JF, Komilis E, Jeannerod M (1979b) Optimal response of eye and hand motor systems in pointing at a visual target. I. Spatio-temporal characteristics of eye and hand movements and their relationships when varying the amount of visual information. Biol Cybern 35: 113–124

    Article  CAS  Google Scholar 

  • Prablanc C, Martin O (1992) Automatic control during hand reaching at undetected two-dimensional target displacements. J Neurophysiol 67: 455–469

    PubMed  CAS  Google Scholar 

  • Prodoehl J, Gottlieb GL, Corcos DM (2003) The neural control of single degree-of-freedom elbow movements. Effect of starting joint position. Exp Brain Res 153: 7–15

    Article  PubMed  Google Scholar 

  • Proteau L, Boivin K, Linossier S, Abahnini K (2000) Exploring the limits of peripheral vision for the control of movement. J Mot Behav 32: 277–286

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran VS, Rogers-Ramachandran D, Cobb S (1995) Touching the phantom limb. Nature 377: 489–490

    Article  PubMed  CAS  Google Scholar 

  • Riehle A, Requin J (1989) Monkey primary motor and premotor cortex: single-cell activity related to prior information about direction and extent of an intended movement. J Neurophysiol 61: 534–549

    PubMed  CAS  Google Scholar 

  • Rosenbaum DA (1980) Human Movement Initiation: Specification of arm, direction, and extent. J Exp Psychol 109: 444–474

    CAS  Google Scholar 

  • Rossetti Y, Desmurget M, Prablanc C (1995) Vectorial coding of movement: vision, proprioception, or both? J Neurophysiol 74: 457–463

    PubMed  CAS  Google Scholar 

  • Rothwell JC, Traub MM, Day BL, Obeso JA, Thomas PK, Marsden CD (1982) Manual motor performance in a deafferented man. Brain 105: 515–542

    Article  PubMed  Google Scholar 

  • ∗Sainburg RL, Ghez C, Kalakanis D (1999) Intersegmental dynamics are controlled by sequential anticipatory, error correction, and postural mechanisms. J Neurophysiol 81: 1040–1056

    Google Scholar 

  • ∗Sainburg RL, Ghilardi MF, Poizner H, Ghez C (1995) Control of limb dynamics in normal subjects and patients without proprioception. J Neurophysiol 73: 820–835

    PubMed  CAS  Google Scholar 

  • Sainburg RL, Lateiner JE, Latash ML, Bagesteiro LB (2003) Effects of altering initial position on movement direction and extent. J Neurophysiol 89: 401–415

    Article  PubMed  Google Scholar 

  • Sainburg RL, Poizner H, Ghez C (1993) Loss of proprioception produces deficits in interjoint coordination. J Neurophysiol 70: 2136–2147

    PubMed  CAS  Google Scholar 

  • Sanes JN, Mauritz KH, Dalakas MC, Evarts EV (1985) Motor control in humans with large-fiber sensory neuropathy. Hum Neurobiol 4: 101–114

    PubMed  CAS  Google Scholar 

  • Sarlegna F, Blouin J, Bresciani JP, Bourdin C, Vercher JL, Gauthier GM (2003) Target and hand position information in the online control of goal-directed arm movements. Exp Brain Res 151: 524–535

    Article  PubMed  Google Scholar 

  • Sarlegna F, Blouin J, Vercher JL, Bresciani JP, Bourdin C, Gauthier GM (2004) Online control of the direction of rapid reaching movements. Exp Brain Res 157: 468–471

    Article  PubMed  Google Scholar 

  • Sarlegna FR (2006) Impairment of online control of reaching movements with aging: a double-step study. Neurosci Lett 403: 309–314

    Google Scholar 

  • Sarlegna FR, Gauthier GM, Bourdin C, Vercher JL, Blouin J (2006) Internally driven control of reaching movements: a study on a proprioceptively deafferented subject. Brain Res Bull 69: 404–415

    Article  PubMed  Google Scholar 

  • Sarlegna F, Sainburg RL (2007) The effect of target modality on visual and propriocaptive contributions to the control of movement distance. Exp Brain Res 176: 267–280

    Google Scholar 

  • Sarlegna FR, Sainburg RL, The effect of target modality on visual on visual and proprioceptive contributions to control of movement distance. xp Brain Res. 2006 Aug 4

    Google Scholar 

  • Saunders JA, Knill DC (2004) Visual feedback control of hand movements. J Neurosci 24: 3223–3234

    Article  PubMed  CAS  Google Scholar 

  • Schneider K, Zernicke RF, Schmidt RA, Hart TJ (1989) Changes in limb dynamics during the practice of rapid arm movements. J Biomech 22: 805–817

    Article  PubMed  CAS  Google Scholar 

  • Scott SH, Kalaska JF (1995) Changes in motor cortex activity during reaching movements with similar hand paths but different arm postures. J Neurophysiol 73: 2563–2567

    PubMed  CAS  Google Scholar 

  • Sergio LE, Kalaska JF (2003) Systematic changes in motor cortex cell activity with arm posture during directional isometric force generation. J Neurophysiol 89: 212–228

    Article  PubMed  Google Scholar 

  • Shapiro MB, Gottlieb GL, Corcos DM (2004) EMG responses to an unexpected load in fast movements are delayed with an increase in the expected movement time. J Neurophysiol 91: 2135–2147

    Article  PubMed  Google Scholar 

  • Sober SJ, Sabes PN (2003) Multisensory integration during motor planning. J Neurosci 23: 6982–6992

    PubMed  CAS  Google Scholar 

  • Soechting JF, Flanders M (1989) Sensorimotor representations for pointing to targets in three- dimensional space. J Neurophysiol 62: 582–594

    PubMed  CAS  Google Scholar 

  • Soechting JF, Lacquaniti F (1983) Modification of trajectory of a pointing movement in response to a change in target location. J Neurophysiol 49: 548–564

    PubMed  CAS  Google Scholar 

  • Taub E, Goldberg IA, Taub P (1975) Deafferentation in monkeys: pointing at a target without visual feedback. Exp Neurol 46: 178–186

    Article  PubMed  CAS  Google Scholar 

  • van Beers RJ, Sittig AC, Gon JJ (1999) Integration of proprioceptive and visual position-information: An experimentally supported model. J Neurophysiol 81: 1355–1364

    PubMed  Google Scholar 

  • Vindras P, Desmurget M, Prablanc C, Viviani P (1998) Pointing errors reflect biases in the perception of the initial hand position. J Neurophysiol 79: 3290–3294

    PubMed  CAS  Google Scholar 

  • Wann JP, Ibrahim SF (1992) Does limb proprioception drift? Exp Brain Res 91: 162–166

    Article  PubMed  CAS  Google Scholar 

  • ∗Wolpert DM, Ghahramani Z, Jordan MI (1995) Are arm trajectories planned in kinematic or dynamic coordinates? An adaptation study. Exp Brain Res 103: 460–470

    Article  PubMed  CAS  Google Scholar 

  • Woodworth RS (1899) The accuracy of voluntary movement. Psychol Rev 3: 1–114

    Google Scholar 

  • The references marked with an asterisk (*) are specifically recommended for further introduction or background to the topic.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Sainburg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sarlegna, F.R., Sainburg, R.L. (2009). The Roles of Vision and Proprioception in the Planning of Reaching Movements. In: Sternad, D. (eds) Progress in Motor Control. Advances in Experimental Medicine and Biology, vol 629. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-77064-2_16

Download citation

Publish with us

Policies and ethics