Mutuality in the Perception of Affordances and the Control of Movement

  • Claudia Carello
  • Jeffrey B. Wagman
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 629)


James Gibson introduced the concept of affordance to emphasize the importance of behavior in constraining perception. In this view, perception is not judged in terms of sensitivities to properties that are measured by physical instruments (photometers for brightness, scales for weight, etc.) but in terms of properties that matter to behaving systems (whether an object is appropriate to carry out some task). The affordance notion is brought to bear on understanding and motivating a variety of experimental phenomena in the study of dynamic touch, the domain of touch most concerned with using objects and interacting with surfaces.


Perceptual Learning Weight Perception Grasp Position Recurrence Quantification Analysis Ellipsoid Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Amazeen, E., & Turvey, M. T. (1996). Weight perception and the haptic size-weight illusion are functions of the inertia tensor. Journal of Experimental Psychology: Human Perception and Performance, 22, 213–232.PubMedCrossRefGoogle Scholar
  2. Bingham, G. P. (1993). Perceiving the size of trees: Form as information about scale. Journal of Experimental Psychology: Human Perception and Performance, 19, 1139–1161.CrossRefGoogle Scholar
  3. Carello, C. (2004). Perceiving affordances by dynamic touch: hints from the control of movement. Ecological Psychology, 16, 31–36.CrossRefGoogle Scholar
  4. Carello, C., Shockley, K., Harrison, S., Richardson, M., & Turvey, M. T. (2003). Heaviness perception depends on movement. In S. Rogers & J. Effken (Eds.), Studies in perception and action, VII (pp. 87–90). Mahwah, NJ: Erlbaum.Google Scholar
  5. Carello, C., Thuot, S., & Turvey, M. T. (2000). Aging and the perception of a racket’s sweet spot. Human Movement Science, 19, 28–41.CrossRefGoogle Scholar
  6. Carello, C., Thuot, S., Anderson, K. L., & Turvey, M. T. (1999). Perceiving the sweet spot. Perception, 28, 1128–1141.CrossRefGoogle Scholar
  7. Carello, C., & Turvey, M. T. (2000). Rotational invariants and dynamic touch. In M. Heller (Ed.), Touch, representation and blindness (pp. 27–66). Oxford: Oxford University Press.Google Scholar
  8. Carello, C., & Turvey, M. T. (2004). Physics and psychology of the muscle sense. Current Directions in Psychological Science, 13, 25–28.CrossRefGoogle Scholar
  9. Charpentier, A. (1891). Analyse experimentale de quelques elements de la sensation de poids [Experimental study of some aspects of weight perception]. Archives de Physiologie Normales et Pathologiques, 3, 122–135.Google Scholar
  10. Fitzpatrick, P., Carello, C., & Turvey, M. T. (1994). Eigenvalues of the inertia tensor and exteroception by the “muscular sense.” Neuroscience, 60, 551–568.PubMedCrossRefGoogle Scholar
  11. Gibson, E. J. (1969). Principles of perceptual learning and development. New York: Appleton.Google Scholar
  12. Gibson, E. J., & Pick, A. (2000). An ecological approach to perceptual learning and development. New York: Oxford University Press.Google Scholar
  13. Gibson, J. J. (1966). The senses considered as perceptual systems. Boston: Houghton Mifflin.Google Scholar
  14. Gibson, J. J. (1986). The ecological approach to visual perception. Hillsdale, NJ: LEA (Originally published in 1979).Google Scholar
  15. Goodale, M. A., & Milner, D. A. (2004). Sight unseen: An exploration of conscious and unconscious vision. New York: Oxford University Press.Google Scholar
  16. Hommel, B., Mussler, J., Aschersleben, G., Prinz, W. (2001). The theory of event coding. A framework for perception and action planning. Behavioral and Brain Sciences, 24, 849–937.PubMedCrossRefGoogle Scholar
  17. Kingma, I., Beek, P., & van Dieen J. H. (2002). The inertia tensor versus static moment and mass in perceiving length and heaviness of hand-wielded rods. Journal of Experimental Psychology: Human Perception and Performance, 28, 180–191.Google Scholar
  18. Lederman, S. J., & Klatzky, R. L. (1987). Hand movements: A window into haptic object recognition. Cognitive Psychology, 19, 342–368.PubMedCrossRefGoogle Scholar
  19. Lederman, S. J., & Klatzky, R. L. (1993). Extracting object properties by haptic exploration. Acta Psychologica, 84, 29–40.PubMedCrossRefGoogle Scholar
  20. Michaels, C. F. (2000). Information, perception, and action: What should ecological psychologists learn from Milner and Goodale (1995)? Ecological Psychology, 12, 241–258CrossRefGoogle Scholar
  21. Michaels, C. F., & Carello, C. (1981). Direct perception. New York: Prentice Hall.Google Scholar
  22. Milner, D. A., & Goodale, D. A. (1995). The visual brain in action. New York: Oxford University Press.Google Scholar
  23. Pagano, C. C., Grutzmacher, R. P., & Jenkins, J. C. (2001). Comparing verbal and reaching responses to visually perceived egocentric distances, Ecological Psychology, 13, 197–226.CrossRefGoogle Scholar
  24. Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9, 129–154.CrossRefGoogle Scholar
  25. Reed, E. S. (1982). An outline of a theory of action systems. Journal of Motor Behavior, 14, 98–134.PubMedGoogle Scholar
  26. Riley, M. A., Wagman, J. B., Santana, M-V., Carello, C., & Turvey, M. T. (2002). Perceptual behavior: Recurrence analysis of a haptic exploratory procedure. Perception, 31, 481–510.PubMedCrossRefGoogle Scholar
  27. Shaw, R. E., & Wagman, J. B. (2001). Explanatory burdens and natural law: invoking a field description of perception-action. Behavioral and Brain Sciences, 24, 905–906.Google Scholar
  28. Shockley, K., Carello, C., & Turvey, M. T. (2004). Metamers in the haptic perception of heaviness and moveable–ness. Perception & Psychophysics, 66, 731–742.CrossRefGoogle Scholar
  29. Shockley, K., Grocki, M., Carello, C., & Turvey, M. T. (2001). Somatosensory attunement to the rigid body laws. Experimental Brain Research, 136, 133–137.CrossRefGoogle Scholar
  30. Stroop, M., Turvey, M. T., Fitzpatrick, P., & Carello, C. (2000). Inertia tensor and weight-percept models of length perception by static holding. Journal of Experimental Psychology: Human Perception and Performance, 26, 1133–1147.PubMedCrossRefGoogle Scholar
  31. Turvey, M. T. (1996). Dynamic touch. American Psychologist, 51, 1134–1152.PubMedCrossRefGoogle Scholar
  32. Turvey, M. T., Burton, G., Amazeen, E. L., Butwill, M., & Carello, C. (1998). Perceiving the width and height of a hand-held object by dynamic touch. Journal of Experimental Psychology: Human Perception and Performance, 24, 35–48.PubMedCrossRefGoogle Scholar
  33. Turvey, M. T., & Carello, C. (1981). Cognition: The view from ecological realism. Cognition, 10, 313–321.PubMedCrossRefGoogle Scholar
  34. Turvey, M. T., & Carello, C. (1995). Dynamic touch. In W. Epstein & S. Rogers (Eds.), Handbook of perception and cognition, Vol. 5. Perception of space and motion (pp. 401–490). New York: Academic Press.Google Scholar
  35. Turvey, M .T., Shockley, K., & Carello, C. (1999). Affordance, proper function, and the physical basis of perceived heaviness. Cognition, 73, B17–B26.PubMedCrossRefGoogle Scholar
  36. Wagman, J., B. & Carello, C. (2001). Inertial constraints on affordances of tools. Ecological Psychology, 13, 173–195.CrossRefGoogle Scholar
  37. Wagman, J. B. & Carello, C. (2003). Haptically creating affordances: The user-tool interface. Journal of Experimental Psychology: Applied. 9, 175–186.PubMedCrossRefGoogle Scholar
  38. Wagman, J. B., & Malek, E. A. (2007). Perception of whether an object can be carried through an aperture depends on anticipated speed. Ecological Psychology, 54, 54–61.Google Scholar
  39. Wagman, J. B., Shockley, K., Riley, M. A., & Turvey, M. T. (2001). Attunement, calibration, and exploration in fast haptic perceptual learning. Journal of Motor Behavior, 33, 323--327.PubMedCrossRefGoogle Scholar
  40. Wagman, J. B., & Taylor, K. R. (2005). Perceiving affordances for aperture crossing for the person-plus-object system. Ecological Psychology, 17, 105–130.CrossRefGoogle Scholar
  41. Warren, W. H. (1984). Perceiving affordances: Visual guidance of stairclimbing. Journal of Experimental Psychology: Human Perception and Performance, 10, 683–703.PubMedCrossRefGoogle Scholar
  42. Warren, W. H. (2006). The dynamics of perception and action. Psychological Review, 113, 358–389.PubMedCrossRefGoogle Scholar
  43. Warren, W. H., & Whang, S. (1987). Visual guidance of walking through apertures: Body-scaled information for affordances. Journal of Experimental Psychology: Human Perception and Performance, 13, 371–383.PubMedCrossRefGoogle Scholar
  44. Webber, C. L., & Zbilut, J. P. (1994). Dynamical assessment of physiological systems and states using recurrence plot strategies. Journal of Applied Physiology, 76, 965–973.PubMedGoogle Scholar
  45. Webber, C. L., & Zbilut, J. P. (1996). Assessing deterministic structures in physiological systems using recurrence plot strategies. In M. C. K. Khoo (Ed.) Bioengineering approaches to pulmonary physiology and medicine (pp. 137–148). New York: Plenum.CrossRefGoogle Scholar
  46. Weber, E. H. (1978). The sense of touch (H. E. Ross Ed. and Translator). London: Academic Press. (Original work published 1834).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Center for the Ecological Study of Perception and ActionUniversity of ConnecticutStorrsUSA

Personalised recommendations