Introduction to Section on Perception and Action

Themes in Perception and Action
  • Brett R. Fajen
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 629)


Over the past few decades, several research communities have (more or less independently) converged onto the idea that many interesting and important issues can be addressed by studying the connection between perception and action. Although much has been learned about vision, hearing, touch, and motor control by studying these systems in isolation, investigations of the rich interplay between perception and action have led to a new set of research questions and a fresh perspective on old problems. The six chapters that follow illustrate why the study of perception and action is bound to play an important role in making progress in motor control.

The primary goal of this introductory chapter is to provide readers with some broader context to better appreciate the six chapters that follow. In the next section, four central themes in the study of perception and action will be reviewed: (1) the coupling of perception and action, (2) the role of internal models, prediction, and...


Internal Model Mirror Neuron Feedforward Control Mirror Neuron System Ventral Stream 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aglioti, S., DeSouza, J. F., & Goodale, M. A. (1995). Size-contrast illusions decieve the eye but not the hand. Current Biology, 5, 679–685.PubMedCrossRefGoogle Scholar
  2. Chapman, S. (1968). Catching a baseball. American Journal of Physics, 36, 368–370.CrossRefGoogle Scholar
  3. Culham, J. C., & Valyear, K. F. (2006). Human parietal cortex in action. Current Opinion in Neurobiology, 16, 205–212.PubMedCrossRefGoogle Scholar
  4. Dessing, J. C., Peper, C. E., Bullock, D., & Beek, P. J. (2005). How position, velocity, and temporal information combine in the prospective control of catching: Data and model. Journal of Cognitive Neuroscience, 17(4), 668–686.PubMedCrossRefGoogle Scholar
  5. Donges, E. (1978). A two-level model of driver steering behavior. Human Factors, 28, 211–221.Google Scholar
  6. Duffy, C. (2003). The cortical analysis of optic flow. In L. M. Chalupa & J. S. Werner (Eds.), The Visual Neurosciences. Cambridge, MA: MIT Press.Google Scholar
  7. Fajen, B. R., Riley, M. A., & Turvey, M. T. (2007). Information, affordances, and the control of action in sport. International Journal of Sport Psychology, Manuscript submitted for publication.Google Scholar
  8. Frost, B. J., & Sun, H. (2004). The biological bases of time-to-collision computation. In H. Hecht & G. J. P. Savelsbergh (Eds.), Time-to-contact (pp. 13–37). Amsterdam: Elsevier.CrossRefGoogle Scholar
  9. Gibson, J. J. (1986). The ecological approach to visual perception. Hillsdale, NJ: Erlbaum.Google Scholar
  10. Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neuroscience, 15, 20–25.CrossRefGoogle Scholar
  11. Goodale, M. A., & Milner, A. D. (2004). Sight Unseen: An Exploration of Conscious and Unconscious Vision. Oxford: Oxford University Press.Google Scholar
  12. Goodale, M. A., & Westwood, D. A. (2004). An evolving view of duplex vision: Separate but interacting cortical pathways for perception and action. Current Opinion in Neurobiology, 14, 203–211.PubMedCrossRefGoogle Scholar
  13. Hayhoe, M. M., Mennie, N., Gorgos, K., Semrau, J., & Sullivan, B. (2004). The role of prediction in catching balls. Journal of Vision, 4(8), 156a.CrossRefGoogle Scholar
  14. Hecht, H., & Savelsbergh, G. (Eds.). (2004). Time-to-contact. Amsterdam: Elsevier.Google Scholar
  15. Iacoboni, M. (2005). Neural mechanisms of imitation. Current Opinion in Neurobiology, 15, 632–637.PubMedCrossRefGoogle Scholar
  16. Land, M. F. (1998). The visual control of steering. In L. R. Harris & M. Jenkin (Eds.), Vision and Action (pp. 163–180). Cambridge: Cambridge University Press.Google Scholar
  17. Land, M. F., & Horwood, J. (1995). Which parts of the road guide steering. Nature, 377(339–340).PubMedCrossRefGoogle Scholar
  18. Land, M. F., & Lee, D. N. (1994). Where We Look When We Steer. Nature, 369(6483), 742–744.PubMedCrossRefGoogle Scholar
  19. Loomis, J. M., & Beall, A. C. (2004). Model-based control of perception-action. In L. M. Vaina, S. A. Beardsley & S. K. Rushton (Eds.), Optic flow and beyond: Kluwer.Google Scholar
  20. McBeath, M. K., Shaffer, D. M., & Kaiser, M. K. (1995). How baseball outfielders determine where to run to catch fly balls. Science, 268(5210), 569–573.PubMedCrossRefGoogle Scholar
  21. McLeod, P., Reed, N., & Dienes, Z. (2006). The generalized optic acceleration cancellation theory of catching. Journal of Experimental Psychology-Human Perception and Performance, 32(1), 139–148.PubMedCrossRefGoogle Scholar
  22. Mehta, B., & Schaal, S. (2002). Forward models in visuomotor control. Journal of Neurophysiology, 88(2), 942–953.PubMedGoogle Scholar
  23. Merchant, H., & Georgopoulos, A. (2006). Neurophysiology of perception and motor aspects of interception. Journal of Neurophysiology, 95(1–13).PubMedCrossRefGoogle Scholar
  24. Miall, R. C., & Jackson, J. K. (2006). Adaptation to visual feedback delays in manual tracking: evidence against the Smith Predictor model of human visually guided action. Experimental Brain Research, 172(1), 77–84.CrossRefGoogle Scholar
  25. Michaels, C. F., Jacobs, D. M., & Bongers, R. M. (2006). Lateral interception II: Predicting hand movements. Journal of Experimental Psychology-Human Perception and Performance, 32(2), 459–472.PubMedCrossRefGoogle Scholar
  26. Michaels, C. F., & Oudejans, R. R. (1992). The optics and actions of catching fly balls: Zeroing out optical acceleration. Ecological Psychology, 4, 199–222.CrossRefGoogle Scholar
  27. Milner, A. D., & Goodale, M. A. (1995). The Visual Brain in Action. Oxford: Oxford University Press.Google Scholar
  28. Peper, L., Bootsma, R. J., Mestre, D. R., & Bakker, F. C. (1994). Catching balls: how to get the hand to the right place at the right time. Journal of Experimental Psychology: Human Perception and Performance, 20(3), 591–612.PubMedCrossRefGoogle Scholar
  29. Philbeck, J. W., Loomis, J. M., & Beall, A. C. (1997). Visually perceived location is an invariant in the control of action. Percept Psychophys, 59(4), 601–612.PubMedCrossRefGoogle Scholar
  30. Ramachandran, V. S., & Oberman, L. M. (2006). Broken mirrors: A theory of autism. Scientific American(November), 295(5), 62–69.Google Scholar
  31. Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192.PubMedCrossRefGoogle Scholar
  32. Rizzolatti, G., Fogassi, L., & Gallese, V. (2006). Mirrors in the mind. Scientific American (November), 295(5), 54–61.Google Scholar
  33. Sternad, D., Duarte, M., Katsumata, H., & Schaal, S. (2001). Bouncing a ball: Tuning into dynamic stability. Journal of Experimental Psychology-Human Perception and Performance, 27(5), 1163–1184.PubMedCrossRefGoogle Scholar
  34. Warren, W. H. (1984). Perceiving affordances: Visual guidance of stair climbing. Journal of Experimental Psychology: Human Perception and Performance, 10, 683–703.PubMedCrossRefGoogle Scholar
  35. Warren, W. H. (1988). Action modes and laws of control for the visual guidance of action. In O. G. Meijer & K. Roth (Eds.), Movement behavior: The motor-action controversy. Amsterdam: North Holland.Google Scholar
  36. Warren, W. H. (1998). Visually controlled locomotion: 40 years later. Ecological Psychology, 10(3–4), 177–219.CrossRefGoogle Scholar
  37. Warren, W. H. (2006). The dynamics of perception and action. Psychological Review, 113(2), 358–389.PubMedCrossRefGoogle Scholar
  38. Zago, M., & Lacquaniti, F. (2005). Visual perception and interception of falling objects: a review of evidence for an internal model of gravity. Journal of Neural Engineering, 2, S198–S208.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Cognitive ScienceRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations