Physiological Mechanisms Impacting Weight Regulation

  • David Fields
  • Higgins Paul
Part of the Issues in Clinical Child Psychology book series (ICCP)

Within the framework of body weight regulation, the first law of thermodynamics (i.e., the Law of Conservation of Energy - “Energy cannot be created nor destroyed, it simply is transferred from one form to another”) concisely and eloquently identifies the basic paradigm of body weight regulation, and is described by the equation below: Energy intake + Energy expenditure = ± Body weight

Therefore, the regulation of body weight is a balance between food intake and energy expenditure, where excess calories are stored as extra pounds and a deficit between intake and expenditure results in weight loss.

This chapter serves as a link between the treatment literature that might be recommended at a clinic, and the physiologic mechanisms underlying weight regulation. With this end in mind, we have chosen to present the chapter in two parts—with the first looking at the control of energy expenditure and the second looking at the physiology of appetite regulation. The section on control of energy expenditure will focus on a distinct aspect of physical activity—spontaneous free-living energy expenditure—and attempt to answer the basic question of why it is so hard for some people to be physically active. The section on the physiology of appetite regulation will focus on signaling pathways (both neural-peptides and hormones) originating from three distinct regions: a) adipose tissue, b) gastrointestinal system and pancreas, and c) the central nervous system.


Physical Activity Food Intake Pancreatic Polypeptide Arcuate Nucleus Reduce Food Intake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahima, R. S., Bjorbaek, C., Osei, S., & Flier, J. S. (1999). Regulation of neuronal and glial proteins by leptin: Implications for brain development. Endocrinology, 140, 2755–2762PubMedCrossRefGoogle Scholar
  2. Air, E. L., Benoit, S. C., Blake Smith, K. A., Clegg, D. J., & Woods, S. C. (2002). Acute third ventricular administration of insulin decreases food intake in two paradigms. Pharmacology Biochemistry and Behavior, 72, 423–429CrossRefGoogle Scholar
  3. Air, E. L., Strowski, M. Z., Benoit, S. C., Conarello, S. L., Salituro, G. M., Guan, X. M., et al. (2002). Small molecule insulin mimetics reduce food intake and body weight and prevent development of obesity. Nature Medicine, 8, 179–183PubMedCrossRefGoogle Scholar
  4. Badman, M. K., & Flier, J. S. (2005). The gut and energy balance: Visceral allies in the obesity wars. Science, 307, 1909–1914PubMedCrossRefGoogle Scholar
  5. Bannon, A. W., Seda, J., Carmouche, M., Francis, J. M., Norman, M. H., Karbon, B., et al. (2000). Behavioral characterization of neuropeptide y knockout mice. Brain Research, 868, 79–87PubMedCrossRefGoogle Scholar
  6. Batterham, R. L., Cowley, M. A., Small, C. J., Herzog, H., Cohen, M. A., Dakin, C. L., et al. (2002). Gut hormone pyy(3–36) physiologically inhibits food intake. Nature, 418, 650–654PubMedCrossRefGoogle Scholar
  7. Bouchard, C., Malina, R., & Perusse, L. (1997). Genetics of fitness and physical performance. Champaign, IL: Human KineticsGoogle Scholar
  8. Bouchard, C., Tremblay, A., Despres, J. P., Nadeau, A., Lupien, P. J., Theriault, G., et al. (1990). The response to long-term overfeeding in identical twins. New England Journal of Medicne, 322, 1477–1482CrossRefGoogle Scholar
  9. Challis, B. G., Pinnock, S. B., Coll, A. P., Carter, R. N., Dickson, S. L., & O'Rahilly, S. (2003). Acute effects of pyy3–36 on food intake and hypothalamic neuropeptide expression in the mouse. Biochemical and Biophysical Research Communications, 311, 915–919PubMedCrossRefGoogle Scholar
  10. Christ, C. Y., Hunt, D., Hancock, J., Garcia-Macedo, R., Mandarino, L. J., & Ivy, J. L. (2002). Exercise training improves muscle insulin resistance but not insulin receptor signaling in obese zucker rats. Journal of Applied Physiology, 92, 736–744PubMedCrossRefGoogle Scholar
  11. Cummings, D. E., Purnell, J. Q., Frayo, R. S., Schmidova, K., Wisse, B. E., & Weigle, D. S. (2001). A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes, 50, 1714–1719PubMedCrossRefGoogle Scholar
  12. Date, Y., Murakami, N., Toshinai, K., Matsukura, S., Niijima, A., Matsuo, H., et al. (2002). The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology, 123, 1120–1128PubMedCrossRefGoogle Scholar
  13. de Lecea, L., Kilduff, T. S., Peyron, C., Gao, X., Foye, P. E., Danielson, P. E., et al. (1998). The hypocretins: Hypothalamus-specific peptides with neuroexcitatory activity. Proceedings of the National Academy of Sciences of the United States of America, 95, 322–327PubMedCrossRefGoogle Scholar
  14. Deriaz, O., Fournier, G., Tremblay, A., Despres, J. P., & Bouchard, C. (1992). Lean-body-mass composition and resting energy expenditure before and after long-term overfeeding. American Journal of Clinical Nutrition, 56, 840–847PubMedGoogle Scholar
  15. Di Marzo, V., Goparaju, S. K., Wang, L., Liu, J., Batkai, S., Jarai, Z., et al. (2001). Lep-tin-regulated endocannabinoids are involved in maintaining food intake. Nature, 410, 822–825PubMedCrossRefGoogle Scholar
  16. Di Marzo, V., & Matias, I. (2005). Endocannabinoid control of food intake and energy balance. Nature Neuroscience, 8, 585–589PubMedCrossRefGoogle Scholar
  17. Donahoo, W. T., Levine, J. A., & Melanson, E. L. (2004). Variability in energy expenditure and its components. Current Opinion in Clinical Nutrition and Metabolic Care, 7, 599–605PubMedCrossRefGoogle Scholar
  18. Druce, M., & Bloom, S. R. (2006). The regulation of appetite. Archives of Disease in Childhood, 91, 183–187PubMedCrossRefGoogle Scholar
  19. Dulloo, A. G. (2002). Biomedicine. A sympathetic defense against obesity. Science, 297, 780–781PubMedCrossRefGoogle Scholar
  20. Ello-Martin, J. A., Ledikwe, J. H., & Rolls, B. J. (2005). The influence of food portion size and energy density on energy intake: Implications for weight management. American Journal of Clinical Nutrition, 82(Suppl. 1), 236S–241SPubMedGoogle Scholar
  21. Faulconbridge, L. F., Cummings, D. E., Kaplan, J. M., & Grill, H. J. (2003). Hyperphagic effects of brainstem ghrelin administration. Diabetes, 52, 2260–2265PubMedCrossRefGoogle Scholar
  22. Franks, P. W., Ravussin, E., Hanson, R. L., Harper, I. T., Allison, D. B., Knowler, W. C., et al. (2005). Habitual physical activity in children: The role of genes and the environment. American Journal of Clinical Nutrition, 82, 901–908PubMedGoogle Scholar
  23. Gelfand, E. V., & Cannon, C. P. (2006a). Rimonabant: A cannabinoid receptor type 1 blocker for management of multiple cardiometabolic risk factors. Journal of the American College of Cardiology, 47, 1919–1926CrossRefGoogle Scholar
  24. Gelfand, E. V., & Cannon, C. P. (2006b). Rimonabant: A selective blocker of the cannabinoid cb1 receptors for the management of obesity, smoking cessation and cardiometabolic risk factors. Expert Opinion on Investigational Drugs, 15, 307–315CrossRefGoogle Scholar
  25. Gibbs, J., Fauser, D. J., Rowe, E. A., Rolls, B. J., Rolls, E. T., & Maddison, S. P. (1979). Bombesin suppresses feeding in rats. Nature, 282, 208–210PubMedCrossRefGoogle Scholar
  26. Hayward, M. D., Pintar, J. E., & Low, M. J. (2002). Selective reward deficit in mice lacking beta-endorphin and enkephalin. The Journal of Neuroscience, 22, 8251–8258PubMedGoogle Scholar
  27. Hill, J. O., DiGirolamo, M., & Heymsfield, S. B. (1985). Thermic effect of food after ingested versus tube-delivered meals. American Journal of Physiology, 248(3 Pt 1), E370–E374PubMedGoogle Scholar
  28. Hotta, K., Funahashi, T., Bodkin, N. L., Ortmeyer, H. K., Arita, Y., Hansen, B. C., et al. (2001). Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes, 50, 1126–1133PubMedCrossRefGoogle Scholar
  29. Hu, E., Liang, P., & Spiegelman, B. M. (1996). Adipoq is a novel adipose-specific gene dysregulated in obesity. The Journal of Biological Chemistry, 271, 10697–10703PubMedCrossRefGoogle Scholar
  30. Ikeda, H., West, D. B., Pustek, J. J., Figlewicz, D. P., Greenwood, M. R., Porte, D., Jr., et al. (1986). Intraventricular insulin reduces food intake and body weight of lean but not obese zucker rats. Appetite, 7, 381–386PubMedGoogle Scholar
  31. Jones, L. C., Bellingham, W. P., & Ward, L. C. (1990). Sex differences in voluntary locomotor activity of food-restricted and ad libitum-fed rats. Implications for the maintenance of a body weight set-point. Comparative Biochemistry and Physiology, 96, 287–290PubMedGoogle Scholar
  32. Kalra, S. P., Dube, M. G., Pu, S., Xu, B., Horvath, T. L., & Kalra, P. S. (1999). Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocrine Reviews, 20, 68–100PubMedCrossRefGoogle Scholar
  33. Kalra, S. P., Dube, M. G., Sahu, A., Phelps, C. P., & Kalra, P. S. (1991). Neuropeptide y secretion increases in the paraventricular nucleus in association with increased appetite for food. Proceedings of the National Academy of Sciences of the United States of America, 88, 10931–10935PubMedCrossRefGoogle Scholar
  34. Kemnitz, J. W., Weindruch, R., Roecker, E. B., Crawford, K., Kaufman, P. L., & Ershler, W. B. (1993). Dietary restriction of adult male rhesus monkeys: Design, methodology, and preliminary findings from the first year of study. Journal of Gerontology, 48, B17–B26PubMedGoogle Scholar
  35. Kissileff, H. R., Pi-Sunyer, F. X., Thornton, J., & Smith, G. P. (1981). C-terminal octapep-tide of cholecystokinin decreases food intake in man. American Journal of Clinical Nutrition, 34, 154–160PubMedGoogle Scholar
  36. Koska, J., DelParigi, A., de Courten, B., Weyer, C., & Tataranni, P. A. (2004). Pancreatic polypeptide is involved in the regulation of body weight in pima Indian male subjects. Diabetes, 53, 3091–3096PubMedCrossRefGoogle Scholar
  37. Kristensen, P., Judge, M. E., Thim, L., Ribel, U., Christjansen, K. N., Wulff, B. S., et al. (1998). Hypothalamic cart is a new anorectic peptide regulated by leptin. Nature, 393(6680), 72–76PubMedCrossRefGoogle Scholar
  38. Kusminski, C. M., McTernan, P. G., & Kumar, S. (2005). Role of resistin in obesity, insulin resistance and type ii diabetes. Clinical Science (Lond), 109, 243–256Google Scholar
  39. Lanningham-Foster, L., Nysse, L. J., & Levine, J. A. (2003). Labor saved, calories lost: The energetic impact of domestic labor-saving devices. Obesity Research, 11, 1178–1181PubMedCrossRefGoogle Scholar
  40. Lauderdale, D. S., Fabsitz, R., Meyer, J. M., Sholinsky, P., Ramakrishnan, V., & Goldberg, J. (1997). Familial determinants of moderate and intense physical activity: A twin study. Medicine Science in Sports and Exercise, 29, 1062–1068Google Scholar
  41. Levine, J. A. (2004). Nonexercise activity thermogenesis (neat): Environment and biology. American Journal of Phyiology and Endocrinology and Metabolism, 286, E675–E685CrossRefGoogle Scholar
  42. Levine, J. A., Eberhardt, N. L., & Jensen, M. D. (1999). Role of nonexercise activity thermogenesis in resistance fat gain in humans. Science, 283, 212–214PubMedCrossRefGoogle Scholar
  43. Levine, J. A., & Kotz, C. M. (2005). Neat - non-exercise activity thermogensis - egocentric & geocentric environmental factors vs. Biological regulation. Acta Physiologica Scandinavica, 184, 309–318PubMedCrossRefGoogle Scholar
  44. Levine, J. A., Lanningham-Foster, L. M., McCrady, S. K., Krizan, A. C., Olson, L. R., Kane, P. H., et al. (2005). Interindividual variation in posture allocation: Possible role in human obesity. Science, 307(5709), 584–586PubMedCrossRefGoogle Scholar
  45. Levine, J. A., Schleusner, S. J., & Jensen, M. D. (2000). Energy expenditure of non-exercise activity. American Journal of Clinical Nutrition, 72, 1451–1454PubMedGoogle Scholar
  46. Loftus, T. M., Jaworsky, D. E., Frehywot, G. L., Townsend, C. A., Ronnett, G. V., Lane, M. D., et al. (2000). Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science, 288(5475), 2379–2381PubMedCrossRefGoogle Scholar
  47. Loos, R. J., Rankinen, T., Tremblay, A., Perusse, L., Chagnon, Y., & Bouchard, C. (2005). Melanocortin-4 receptor gene and physical activity in the quebec family study. International Journal of Obesity (Lond), 29, 420–428CrossRefGoogle Scholar
  48. Lorentzon, M., Lorentzon, R., Lerner, U. H., & Nordstrom, P. (2001). Calcium sensing receptor gene polymorphism, circulating calcium concentrations and bone mineral density in healthy adolescent girls. European Journal of Endocrinology, 144, 257–261PubMedCrossRefGoogle Scholar
  49. Mabry, P. D., & Campbell, B. A. (1975). Potentiation of amphetamine-induced arousal by food deprivation: Effect of hypothalamic lesions. Physiology and Behavior, 14, 85–88PubMedCrossRefGoogle Scholar
  50. Maia, J. A., Thomis, M., & Beunen, G. (2002). Genetic factors in physical activity levels: A twin study. American Journal of Preventive Medicine, 23(Suppl. 2), 87–91PubMedCrossRefGoogle Scholar
  51. Marks, J. L., Porte, D., Jr., Stahl, W. L., & Baskin, D. G. (1990). Localization of insulin receptor mrna in rat brain by in situ hybridization. Endocrinology, 127, 3234–3236PubMedCrossRefGoogle Scholar
  52. McLaughlin, C. L., & Baile, C. A. (1981). Obese mice and the satiety effects of chole-cystokinin, bombesin and pancreatic polypeptide. Physiology and Behavior, 26, 433–437PubMedCrossRefGoogle Scholar
  53. Montague, C. T., Farooqi, I. S., Whitehead, J. P., Soos, M. A., Rau, H., Wareham, N. J., et al. (1997). Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature, 387(6636), 903–908PubMedCrossRefGoogle Scholar
  54. Nakazato, M., Murakami, N., Date, Y., Kojima, M., Matsuo, H., Kangawa, K., et al. (2001). A role for ghrelin in the central regulation of feeding. Nature, 409(6817), 194–198PubMedCrossRefGoogle Scholar
  55. Neary, N. M., Small, C. J., Wren, A. M., Lee, J. L., Druce, M. R., Palmieri, C., et al. (2004). Ghrelin increases energy intake in cancer patients with impaired appetite: Acute, randomized, placebo-controlled trial. The Journal of Clinical Endocrinology and Metabolism, 89, 2832–2836PubMedCrossRefGoogle Scholar
  56. Novak, C. M., Kotz, C. M., & Levine, J. A. (2006). Central orexin sensitivity, physical activity, and obesity in diet-induced obese and diet-resistant rats. American Journal of Physiology and Endocrinology and Metabolism, 290, E396–E403CrossRefGoogle Scholar
  57. Orlet Fisher, J., Rolls, B. J., & Birch, L. L. (2003). Children 's bite size and intake of an entree are greater with large portions than with age-appropriate or self-selected portions. American Journal of Clinical Nutrition, 77, 1164–1170PubMedGoogle Scholar
  58. Perusse, L., Leblanc, C., & Bouchard, C. (1988). Familial resemblance in lifestyle components: Results from the canada fitness survey. Canadian Journal of Public Health, 79, 201–205Google Scholar
  59. Perusse, L., Tremblay, A., Leblanc, C., & Bouchard, C. (1989). Genetic and environmental influences on level of habitual physical activity and exercise participation. American Journal of Epidemiology, 129, 1012–1022PubMedGoogle Scholar
  60. Ravussin, E. (2005). Physiology. A neat way to control weight? Science, 307(5709), 530–531PubMedCrossRefGoogle Scholar
  61. Robin, J. P., Boucontet, L., Chillet, P., & Groscolas, R. (1998). Behavioral changes in fasting emperor penguins: Evidence for a “refeeding signal” linked to a metabolic shift. American Journal of Physiology, 274(3 Pt 2), R746–R753PubMedGoogle Scholar
  62. Rolls, B. J., Engell, D., & Birch, L. L. (2000). Serving portion size influences 5-year-old but not 3-year-old children 's food intakes. Journal of the American Diatetic Association, 100, 232–234CrossRefGoogle Scholar
  63. Salmen, T., Heikkinen, A. M., Mahonen, A., Kroger, H., Komulainen, M., Pallonen, H., et al. (2003). Relation of aromatase gene polymorphism and hormone replacement therapy to serum estradiol levels, bone mineral density, and fracture risk in early postmenopausal women. The Annals of Medicine, 35, 282–288CrossRefGoogle Scholar
  64. Schmidt, P. T., Naslund, E., Gryback, P., Jacobsson, H., Holst, J. J., Hilsted, L., et al. (2005). A role for pancreatic polypeptide in the regulation of gastric emptying and short-term metabolic control. The Journal of Clinical Endocrinology and Metabolism, 90, 5241–5246PubMedCrossRefGoogle Scholar
  65. Schwartz, M. W., Sipols, A. J., Marks, J. L., Sanacora, G., White, J. D., Scheurink, A., et al. (1992). Inhibition of hypothalamic neuropeptide y gene expression by insulin. Endocrinology, 130, 3608–3616PubMedCrossRefGoogle Scholar
  66. Simonen, R. L., Perusse, L., Rankinen, T., Rice, T., Rao, D. C., & Bouchard, C. (2002). Familial aggregation of physical activity levels in the quebec family study. Medicine and Science in Sports and Exercise, 34, 1137–1142PubMedCrossRefGoogle Scholar
  67. Simonen, R. L., Rankinen, T., Perusse, L., Rice, T., Rao, D. C., Chagnon, Y., et al. (2003). Genome-wide linkage scan for physical activity levels in the quebec family study. Medicine and Science in Sports and Exercise, 35, 1355–1359PubMedCrossRefGoogle Scholar
  68. Stanley, S., Wynne, K., McGowan, B., & Bloom, S. (2005). Hormonal regulation of food intake. Physiological Reviews, 85, 1131–1158PubMedCrossRefGoogle Scholar
  69. Track, N. S., McLeod, R. S., & Mee, A. V. (1980). Human pancreatic polypeptide: Studies of fasting and postprandial plasma concentrations. Canadian Journal of Physiology and Pharmacology, 58, 1484–1489PubMedGoogle Scholar
  70. Tschop, M., Castaneda, T. R., Joost, H. G., Thone-Reineke, C., Ortmann, S., Klaus, S., et al. (2004). Physiology: Does gut hormone pyy3–36 decrease food intake in rodents? Nature, 430(6996)Google Scholar
  71. Tschop, M., Smiley, D. L., & Heiman, M. L. (2000). Ghrelin induces adiposity in rodents. Nature, 407(6806), 908–913PubMedCrossRefGoogle Scholar
  72. Turton, M. D., O'Shea, D., Gunn, I., Beak, S. A., Edwards, C. M., Meeran, K., et al. (1996). A role for glucagon-like peptide-1 in the central regulation of feeding. Nature, 379(6560), 69–72PubMedCrossRefGoogle Scholar
  73. Verdich, C., Flint, A., Gutzwiller, J. P., Naslund, E., Beglinger, C., Hellstrom, P. M., et al. (2001). A meta-analysis of the effect of glucagon-like peptide-1 (7–36) amide on ad libitum energy intake in humans. The Journal of Clinical Endocrinology and Metabolism, 86, 4382–4389PubMedCrossRefGoogle Scholar
  74. West, D. B., Fey, D., & Woods, S. C. (1984). Cholecystokinin persistently suppresses meal size but not food intake in free-feeding rats. American Journal of Physiology, 246(5 Pt 2), R776–R787PubMedGoogle Scholar
  75. Wilding, J. P. (2002). Neuropeptides and appetite control. Diabetic Medicine, 19, 619–627PubMedCrossRefGoogle Scholar
  76. Winnicki, M., Accurso, V., Hoffmann, M., Pawlowski, R., Dorigatti, F., Santonastaso, M., et al. (2004). Physical activity and angiotensin-converting enzyme gene polymorphism in mild hypertensives. American Journal of Medical Genetics, 125, 38–44CrossRefGoogle Scholar
  77. Woods, S. C., Decke, E., & Vasselli, J. R. (1974). Metabolic hormones and regulation of body weight. Psychological Reviews, 81, 26–43CrossRefGoogle Scholar
  78. Woods, S. C., Lotter, E. C., McKay, L. D., & Porte, D., Jr. (1979). Chronic intracer-ebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature, 282(5738), 503–505PubMedCrossRefGoogle Scholar
  79. World Health Organization. (1997). Obesity: Preventing and managing the global epidemic. Geneva: WHOGoogle Scholar
  80. Wortley, K. E., Chang, G. Q., Davydova, Z., Fried, S. K., & Leibowitz, S. F. (2004). Cocaine- and amphetamine-regulated transcript in the arcuate nucleus stimulates lipid metabolism to control body fat accrual on a high-fat diet. Regulatory Peptides, 117, 89–99PubMedCrossRefGoogle Scholar
  81. Yamada, K., Wada, E., Santo-Yamada, Y., & Wada, K. (2002). Bombesin and its family of peptides: Prospects for the treatment of obesity. European Journal of Pharmacology, 440(2–3), 281–290PubMedCrossRefGoogle Scholar
  82. Young, L. R., & Nestle, M. (2002). The contribution of expanding portion sizes to the US obesity epidemic. American Journal of Public Health, 92, 246–249PubMedCrossRefGoogle Scholar
  83. Zarjevski, N., Cusin, I., Vettor, R., Rohner-Jeanrenaud, F., & Jeanrenaud, B. (1993). Chronic intracerebroventricular neuropeptide-y administration to normal rats mimics hormonal and metabolic changes of obesity. Endocrinology, 133, 1753–1758PubMedCrossRefGoogle Scholar
  84. Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L., & Friedman, J. M. (1994). Positional cloning of the mouse obese gene and its human homologue. Nature, 372(6505), 425–432PubMedCrossRefGoogle Scholar
  85. Zhang, J. V., Ren, P. G., Avsian-Kretchmer, O., Luo, C. W., Rauch, R., Klein, C., et al. (2005). Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin 's effects on food intake. Science, 310(5750), 996–999PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • David Fields
    • 1
  • Higgins Paul
    • 2
  1. 1.University of Oklahoma Health Science CenterOklahoma City
  2. 2.Southwest Foundation for Biomedical ResearchSan Antonio

Personalised recommendations