Advertisement

Application of Genetic Epidemiology to Understanding Pediatric Obesity

  • Robert Mair
  • Stephen T. Mcgarvey
Part of the Issues in Clinical Child Psychology book series (ICCP)

The prevalence of overweight in children and adolescents has increased significantly over the last two decades in the United States, especially in families of lower social status and ethnic minorities (Ogden, Flegal, Carroll, & Johnson, 2002). Childhood obesity has also been increasing globally due to rapid changes in diet and physical activity with economic development, generally referred to as the nutrition transition (Popkin & Gordon-Larsen, 2004). While the temporal increases in childhood overweight are ultimately attributable to macrolevel changes in childhood energy budgets—such as family socioeconomic factors, food quality and pricing, the built environment, and organized and unstructured activity patterns—genetic variation very likely plays an important role in increasing susceptibility to childhood obesity. Because of the rise in childhood obesity in the United States and throughout the world, there is a clear need for genetic studies of pediatric obesity among representative families and the detection of more subtle genetic influences that operate in interaction with the modern obesogenic childhood environment.

The purpose of this chapter is to provide a concise review of genetic epidemiology studies of body size, weight, and obesity among children and adolescents. Although most of the published studies in this age group focus on uncommon monogenic obesity syndromes, we emphasize the concept of genetic susceptibility and the multifactorial determination of pediatric obesity, and thus are somewhat selective in the papers we describe. The review suggests that research is just beginning to assess the complex nature of genetic predispositions to childhood obesity, and that future pediatric obesity studies will detect increasingly subtle genetic influences, gene and environment interactions, and gene-gene interactions.

Keywords

Quantitative Trait Locus Childhood Obesity European Ancestry Genetic Epidemiology Pediatric Obesity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arashiro, R., Katsuren, K., Fukuyama, S., & Ohta, T. (2003). Effect of Trp64Arg mutation of the beta3-adrenergic receptor gene and C161T substitution of the peroxisome proliferator activated receptor gamma gene on obesity in Japanese children. Pediatrics International, 45, 135–141PubMedCrossRefGoogle Scholar
  2. Atwood, L. D., Heard-Costa, N. L., Cupples, L. A., Jaquish, C. E., Wilson, P. W., & D'Agostino, R. B. (2002). Genomewide linkage analysis of body mass index across 28 years of the Framingham heart study. American Journal of Human Genetics 71, 1044–1050PubMedCrossRefGoogle Scholar
  3. Bell, C. G., Walley, A. J., & Froguel, P. (2005a). The genetics of human obesity. Nature Reviews of Genetics, 6, 221–234CrossRefGoogle Scholar
  4. Bell, C. G., Meyre, D., Samson, C., Boyle, C., Lecoeur, C., Tauber, M., et al. (2005b). Association of melanin-concentrating hormone receptor 1 5′ polymorphism with early-onset extreme obesity. Diabetes, 54, 3049–3055CrossRefGoogle Scholar
  5. Blangero, J., & Almasy, L. (1997). Multipoint oligogenic linkage analysis of quantitative traits. Genetic Epidemiology, 14, 959–964PubMedCrossRefGoogle Scholar
  6. Bouatia-Naji, N., Meyre, D., Lobbens, S., Seron, K., Fumeron, F., Balkau, B., et al. (2006). ACDC/adiponectin polymorphisms are associated with severe childhood and adult obesity. Diabetes, 55, 545–550PubMedCrossRefGoogle Scholar
  7. Challis, B. G., Pritchard, L. E., Creemers, J. W., Delplanque, J., Keogh, J. M., Luan, J., et al. (2002). A missense mutation disrupting a dibasic prohormone processing site in pro-opiomelanocortin (POMC) increases susceptibility to early-onset obesity through a novel molecular mechanism. Human Molecular Genetics, 15, 1997–2004CrossRefGoogle Scholar
  8. Chen, W., Li, S., Cook, N. R., Rosner, B. A., Srinivasan, S. R., Boerwinkle, E., et al. (2004). An autosomal genome scan for loci influencing longitudinal burden of body mass index from childhood to young adulthood in white sibships: The Bogalusa heart study. International Journal of Obesity and Related Metabolic Disorders, 28, 462–469PubMedCrossRefGoogle Scholar
  9. Dubern, B., Clement, K., Pelloux, V., Froguel, P., Girardet, J. P., Guy-Grand, B., et al. (2001). Mutational analysis of melanocortin-4 receptor, agouti-related protein, and alpha-melanocyte-stimulating hormone genes in severely obese children. Journal of Pediatrics, 139, 204–209PubMedCrossRefGoogle Scholar
  10. Farooqi, I. S. (2005). Genetic and hereditary aspects of childhood obesity. Best practice & Research Clinical Endocrinology & Metabolism, 19, 359–374CrossRefGoogle Scholar
  11. Farooqi, I. S., Keogh, J. M., Yeo, G. S., Lank, E. J., Cheetham, T., & O'Rahilly, S. (2003). Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. The New England Journal of Medicine, 348, 1085–1095PubMedCrossRefGoogle Scholar
  12. Farooqi, I. S., Yeo, G. S., Keogh, J. M., Aminian, S., Jebb, S. A., Butler, G., et al. (2000). Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. The Journal of Clinical Investigation, 106, 271–279PubMedCrossRefGoogle Scholar
  13. Feng, N., Adler-Wailes, D., Elberg, J., Chin, J. Y., Fallon, E., Carr, A., et al. (2003). Sequence variants of the POMC gene and their associations with body composition in children. Obesity Research, 11, 619–624PubMedCrossRefGoogle Scholar
  14. Ghoussaini, M., Meyre, D., Lobbens, S., Charpentier, G., Clement, K., Charles, M. A., et al. (2005). Implication of the Pro12Ala polymorphism of the PPAR-gamma 2 gene in type 2 diabetes and obesity in the French population. BioMed central Medical Genetics, 22, 11–15CrossRefGoogle Scholar
  15. Guizar-Mendoza, J. M., Amador-Licona, N., Flores-Martinez, S. E., Lopez-Cardona, M. G., Ahuatzin-Tremary, & R., Sanchez-Corona, J. (2005). Association analysis of the Gln223Arg polymorphism in the human leptin receptor gene, and traits related to obesity in Mexican adolescents. Journal of Human Hypertension, 19, 341–346PubMedCrossRefGoogle Scholar
  16. Hamann, A., Munzberg, H., Buttron, P., Busing, B., Hinney, A., Mayer, H., et al. (1999). Missense variants in the human peroxisome proliferator-activated receptor-gamma2 gene in lean and obese subjects. European Journal of Endocrinology, 141, 90–92PubMedCrossRefGoogle Scholar
  17. Heo, M, Leibel, R. L., Fontaine, K. R., Boyer, B. B., Chung, W. K., Koulu, M., et al. (2002). A meta-analytic investigation of linkage and association of common leptin receptor (LEPR) polymorphisms with body mass index and waist circumference. International Journal of Obesity and Related Metabolic Disorders, 26, 640–646PubMedCrossRefGoogle Scholar
  18. Herbert, A., Gerry, N. P., McQueen, M. B., Heid, I. M., Pfeufer, A., Illig, T., et al. (2006). A common genetic variant is associated with adult and childhood obesity. Science, 312, 279–283PubMedCrossRefGoogle Scholar
  19. Heude, B., Dubois, S., Charles, M. A., Deweirder, M., Dina, C., Borys, J. M., et al. (2004). VNTR polymorphism of the insulin gene and childhood overweight in a general population. Obesity Research 12, 499–504PubMedCrossRefGoogle Scholar
  20. Heude, B., Petry, C. J., Pembrey, M., Dunger, D. B., & Ong, K. (2006). The insulin gene VNTR: associations and interactions with childhood body fat mass and insulin secretion in normal children. Journal of Clinical Endocrinology Metabolism, 91, 11–15CrossRefGoogle Scholar
  21. Hinney, A., Lentes, K. U., Rosenkranz, K., Barth, N., Roth, H., Ziegler, A., et al. (1997). Beta 3-adrenergic-receptor allele distributions in children, adolescents and young adults with obesity, underweight or anorexia nervosa. Intetnational Journal of Obesity and Related Metabolic Disorders, 21, 224–230CrossRefGoogle Scholar
  22. Hinney, A., Schmidt, A., Nottebom, K., Heibult, O., Becker, I., Ziegler, A., et al. (1999). Several mutations in the melanocortin-4 receptor gene including a nonsense and a frameshift mutation associated with dominantly inherited obesity in humans. Journal of Clinical Endocrinology & Metabolism, 84, 1483–1486CrossRefGoogle Scholar
  23. Lander, E., & Kruglyak, L. (1995). Genetic dissection of complex traits: Guidelines for interpreting and reporting linkage results. Nature Genetics, 11, 241–247PubMedCrossRefGoogle Scholar
  24. Le Fur, S., Le Stunff, C., Dos Santos, C., & Bougneres, P. (2004). The common -866 G/A polymorphism in the promotor of uncoupling protein 2 is associated with increased carbohydrate and decreased lipid oxidation in juvenile obesity. Diabetes, 53, 235–239PubMedCrossRefGoogle Scholar
  25. Le Stunff, C., Fallin, D., & Bougneres, P. (2001). Paternal transmission of the very common class I INS VNTR alleles predisposes to childhood obesity. Nature Genetics, 29, 96–99PubMedCrossRefGoogle Scholar
  26. Le Stunff, C., Fallin, D., Schork, N. J., & Bougneres, P. (2000a). The insulin gene VNTR is associated with fasting insulin levels and development of juvenile obesity. Nature Genetics, 26, 444–446CrossRefGoogle Scholar
  27. Le Stunff, C., Le Bihan, C., Schork, N. J., & Bougneres, P. (2000b). A common promotor variant of the leptin gene is associated with changes in the relationship between serum leptin and fat mass in obese girls. Diabetes, 49, 2196–2200CrossRefGoogle Scholar
  28. Masud, S., Ye, S., & SAS Group. (2003). Effect of the peroxisome proliferator activated receptor-gamma gene Pro12Ala variant on body mass index: A meta-analysis. Journal of Medical Genetics, 40, 773–780PubMedCrossRefGoogle Scholar
  29. Meyre, D., Boutin, P., Tounian, A., Deweirder, M., Aout, M., Jouret, B., et al. (2005). Is glutamate decarboxylase 2 (GAD2) a genetic link between low birth weight and subsequent development of obesity in children? Journal of Clinical Endocrinology & Metabolism, 90, 2384–2390CrossRefGoogle Scholar
  30. Meyre, D., Bouatia-Naji, N., Tounian, A., Samson, C., Lecoeur, C., Vatin, V., et al. (2005). Variants of ENPP1 are associated with childhood and adult obesity and increase the risk of glucose intolerance and type 2 diabetes. Nature Genetics, 37, 863–867PubMedCrossRefGoogle Scholar
  31. Meyre, D., Lecoeur, C., Delplanque, J., Francke, S., Vatin, V., Durand, E., et al. (2004). A genome-wide scan for childhood obesity-associated traits in French families shows significant linkage on chromosome 6q22.31–q23.2. Diabetes, >53, 803–811PubMedCrossRefGoogle Scholar
  32. Miraglia Del Giudice, E., Cirillo, G., Nigro, V., Santoro, N., D'Urso, L., Raimondo, P., et al. (2002). Low frequency of melanocortin-4 receptor (MC4R) mutations in a Mediterranean population with early-onset obesity. International Journal of Obesity and Related Metabolic Disorders, 26, 647–651PubMedCrossRefGoogle Scholar
  33. Ochoa, M. C., Marti, A., Azcona, C., Chueca, M., Oyarzabal, M., Pelach, R., et al. (2004). Gene-gene interaction between PPAR gamma 2 and ADR beta 3 increases obesity risk in children and adolescents. International Journal of Obesity and Related Metabolic Disorders, 28 (Suppl 3): S37–S41PubMedCrossRefGoogle Scholar
  34. Ogden, C. L., Flegal, K. M., Carroll. M. D., & Johnson, C. L. (2002). Prevalence and trends in overweight among US children and adolescents, 1999–2000. The Journal of American Medical Association, 288, 1728–32CrossRefGoogle Scholar
  35. Ong, K. K., Petry, C. J., Barratt, B. J., Ring, S., Cordell, H. J., Wingate, D. L., Avon Longitudinal Study of Pregnancy and Childhood Study Team. (2004). Maternal-fetal interactions and birth order influence insulin variable number of tandem repeats allele class associations with head size at birth and childhood weight gain. Diabetes, 53, 1128–1133PubMedCrossRefGoogle Scholar
  36. Park, H. S., Kim, Y., & Lee, C. (2005). Single nucleotide variants in the beta2-adrenergic and beta3-adrenergic receptor genes explained 18.3% of adolescent obesity variation. Journal of Human Genetics, 50, 365–369PubMedCrossRefGoogle Scholar
  37. Petrone, A., Zavarella, S., Caiazzo, A., Leto, G., Spoletini, M., Potenziani, S., et al. (2006). The promoter region of the adiponectin gene is a determinant in modulating insulin sensitivity in childhood obesity. Obesity, 14, 1498–1504PubMedCrossRefGoogle Scholar
  38. Pihlajamaki, J., Vanhala, M., Vanhala, P., & Laakso, M. (2004). The Pro12Ala polymorphism of the PPAR gamma 2 gene regulates weight from birth to adulthood. Obesity Research, 12, 187–190PubMedCrossRefGoogle Scholar
  39. Popkin, B. M., & Gordon-Larsen, P. (2004). The nutrition transition: worldwide obesity dynamics and their determinants. International Journal of Obesity and Related Metabolic Disorders, 28 (Suppl 3): S2–9PubMedCrossRefGoogle Scholar
  40. Rankinen, T., Zuberi, A., Chagnon, Y. C., Weisnagel, S. J., Argyropoulos, G., Walts, B., et al. (2006). The human obesity gene map: The 2005 update. Obesity Research, 14, 529–644CrossRefGoogle Scholar
  41. Saar, K., Geller, F., Ruschendorf, F., Reis, A., Friedel, S., Schauble, N., et al. (2003). Genome scan for childhood and adolescent obesity in German families. Pediatrics, 111, 321–327PubMedCrossRefGoogle Scholar
  42. Tafel, J., Branscheid, I., Skwarna, B., Schlimme, M., Morcos, M., Algenstaedt, P., et al. (2004). Variants in the human beta 1-, beta 2-, and beta 3-adrenergic receptor genes are not associated with morbid obesity in children and adolescents. Diabetes, Obesity and Metabolism, 6, 452–455PubMedCrossRefGoogle Scholar
  43. Teare, M., & Barrett, J. H. (2005). Genetic linkage studies. Lancet, 366, 1036–44CrossRefGoogle Scholar
  44. Thorsby, P. M., Berg, J. P., Birkeland, K. I. (2005). Insulin gene variable number of tandem repeats is associated with increased fat mass during adolescence in non-obese girls. Scandinavian Journal of Clinical & Laboratory Investigation, 65, 163–168CrossRefGoogle Scholar
  45. Ukkola, O., Ravussin, E., Jacobson, P., Perusse, L., Rankinen, T., Tschop, M., et al. (2002). Role of ghrelin polymorphisms in obesity based on three different studies. Obesity Research, 10, 782–791PubMedCrossRefGoogle Scholar
  46. Urhammer, S. A., Hansen, T., Borch-Johnsen, K., & Pedersen, O. (2000). Studies of the synergistic effect of the Trp/Arg64 polymorphism of the beta3-adrenergic receptor gene and the -3826 A>G variant of the uncoupling protein-1 gene on features of obesity and insulin resistance in a population-based sample of 379 young Danish subjects. Journal of Clinical Endocrinology & Metabolism, 85, 3151–3154CrossRefGoogle Scholar
  47. Vivenza, D., Rapa, A., Castellino, N., Bellone, S., Petri, A., Vacca, G., et al. (2004). Ghrelin gene polymorphisms and ghrelin, insulin, IGF-I, leptin and anthropometric data in children and adolescents. European Journal of Endocrinology, 151, 127–133PubMedCrossRefGoogle Scholar
  48. Voorhoeve, P. G., van Rossum, E. F., Te Velde, S. J., Koper, J. W., Kemper, H. C., Lamberts, S. W., et al. (2006). Association between an IGF-I gene polymorphism and body fatness: Differences between generations. European Journal of Endocrinology, 154, 379–388PubMedCrossRefGoogle Scholar
  49. Xinli, W., Xiaomei, T., Meihua, P., & Song, L. (2001). Association of a mutation in the beta3-adrenergic receptor gene with obesity and response to dietary intervention in Chinese children. Acta Paediatrica, 90, 1233–1237PubMedCrossRefGoogle Scholar
  50. Wells, J. C. (2006). The evolution of human fatness and susceptibility to obesity: An ethological approach. Biological Reviews of the Cambridge Philosophical Society, 81, 183–205PubMedCrossRefGoogle Scholar
  51. Yanovski, J. A., Diament, A. L., Sovik, K. N., Nguyen, T. T., Li, H., Sebring, N. G., et al. (2000). Associations between uncoupling protein 2, body composition, and resting energy expenditure in lean and obese African American, white, and Asian children. American Journal of Clinical Nutrition, 71, 1405–1420PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Robert Mair
    • 1
  • Stephen T. Mcgarvey
    • 1
  1. 1.Brown UniversityProvidence

Personalised recommendations