Skip to main content

Medical andTechnological Application of Monodispersed Colloidal Silica Particles

  • Chapter
  • First Online:
Medical Applications of Colloids
  • 1652 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Werner Stöber, Arthur Fink, and Ernst Bohn; Controlled growth of monodisperse silica spheres in the micron size range; J. Colloid Interface Sci., 26 (1968) 62–69

    Article  Google Scholar 

  2. 2. Herbert Giesche; Hydrolysis of Silicon Alkoxides in Homogeneous Solutions; in: Fine Particles: Synthesis, Characterization, and Mechanism of Growth(Tadao Sugimoto, ed); Marcel Dekker, New York (2000) 126–146 (Chap. 2.1)

    Google Scholar 

  3. 3. Herbert Giesche; Synthesis of monodispersed silica powders. I. particle properties and reaction kinetics; J. Eur. Ceram. Soc., 14 (1994) 189–204

    Article  CAS  Google Scholar 

  4. 4. Herbert Giesche; Synthesis of monodispersed silica powders. II. Controlled growth reaction and continuous production process; J. Eur. Ceram. Soc., 14 (1994) 205–214

    Article  CAS  Google Scholar 

  5. 5. T. Matsoukas and E. Gulari; Dynamics of growth of silica particles from ammonia-catalyzed hydrolysis of tetra-ethyl-orthosilicate; J. Colloid Interface Sci., 124 (1988) 252–261

    Article  CAS  Google Scholar 

  6. 6. T. Matsoukas and E. Gulari; Monomer-addition growth with a slow initiation step: A growth model for silica particles from alkoxides; J. Colloid Interface Sci., 132 (1989) 13–21

    Article  CAS  Google Scholar 

  7. 7. G. H. Bogush, G. L. Dickstein, P. Lee, K. C. Zukoski, and C. F. Zukoski IV; Studies of the hydrolysis and polymerization of silicon alkoxides in basic alcohol solutions; in: Materials Research Society Symposium Proceedings, Vol. 121, Better Ceramics Through Chemistry III (Jeffrey Brinker C., Clark D. E. & Ulrich D. R., eds); Materials Research Society, Pittsburgh, PA (1988) 57–65

    Google Scholar 

  8. 8. G. H. Bogush and C. F. Zukoski IV; Studies of the kinetics of the precipitation of uniform silica particles through the hydrolysis and condensation of silicon alkoxides; J. Colloid Interface Sci., 142 (1991) 1–18

    Article  CAS  Google Scholar 

  9. 9. G. H. Bogush and C. F. Zukoski IV; Uniform silica particle precipitation: An aggregative growth model; J. Colloid Interface Sci., 142 (1991) 19–34

    Article  CAS  Google Scholar 

  10. 10. A. van Blaaderen, J. van Geest, and A. Vrij; Monodisperse colloidal silica spheres from tetraalkoxysilanes: Particle formation and growth mechanism; J. Colloid Interface Sci., 154 (1992) 481–501

    Article  Google Scholar 

  11. 11. G. H. Bogush, C. J. Brinker, P. D. Majors, and D. M. Smith; Evolution of surface area during the controlled growth of silica spheres; in: Materials Research Society Symposium Proceedings, Vol. 180: Better Ceramics Through Chemistry IV(Zelinski B. J. J., Jeffrey Brinker C., Clark D. E. & Ulrich D. R, eds); Materials Research Society, Pittsburgh, PA (1990) 491–494

    Google Scholar 

  12. 12. S. Coenen and C. G. De Kruif; Synthesis and growth of colloidal silica particles; J. Colloid Interface Sci., 124 (1988) 104–110

    Article  CAS  Google Scholar 

  13. 13. A. P. Philipse; Quantitative aspects of the growth of (charged) silica spheres; Colloid Polym. Sci., 266 (1988) 1174–1180

    Article  CAS  Google Scholar 

  14. 14. C. Kaiser, M. Hanson, H. Giesche, J. Kinkel, and K. K. Unger; Nonporous Silica Microsheres in the Micron and Submicron Range: Manufacture, Characterization and Application; in: Fine Particle Science and Technology From Micro to Nanoparticles, NATO AST Series (E. Pelizetti, ed); Klüwer Academic Publishers, Dordrecht, NL (1996) 71–84

    Chapter  Google Scholar 

  15. 15. Kangtaek Lee, Arun N. Sathyagal, Alon V. McCormick; A closer look at an aggregation model of the Stöber process; Colloids Surf. A: Physicochem. Eng. Asp., 144 (1998) 115–125

    Article  CAS  Google Scholar 

  16. 16. A. K. van Helden and A. Vrij; Contrast variation in light scatting: Silica spheres dispersed in apolar solvent mixtures; J. Colloid Interface Sci., 76 (1980) 418–433.

    Article  Google Scholar 

  17. 17. S. Emmett, S. D. Lubetkin, and B. Vincent; The growth of ordered sediments of monodispersed hydrophobic silica particles; Colloids Surf., 42 (1989) 139–153

    Article  CAS  Google Scholar 

  18. 18. K. Osseo-Asare and F. J. Arriagada; Synthesis of nanosize particles in reverse microemulsions; in: Ceramic Transactions, Vol. 12, Ceramic Powder Science III (Messing G. L., Hirano S.-i. & Hausner H., eds); The American Ceramic Society, Westerville, OH (1990) 3–16

    Google Scholar 

  19. 19. Kohji Yoshinaga; Surface modifications of inorganic particles; in: Fine Particles: Synthesis, Characterization, and Mechanism of Growth (Tadao Sugimoto, ed); Marcel Dekker, New York (2000) 626–646 (Chap. 12.1)

    Google Scholar 

  20. 20. Joachim N. Kinkel; Darstellung and Charakterisierung von Siliziumdioxidträgermaterialien zur Trennung von Biopolymeren durch Hochdruckflüssigchromatographie, Dissertation, Universität Mainz, Germany (1984)

    Google Scholar 

  21. 21. Michael A. Markovitz, Paul E. Schoen, Paul Kust, and Bruce P. Gaber; Surface acidity and basicity of functionalized silica particles; Colloids Surf. A: Physicochem. Eng. Asp., 150 (1999) 85–94

    Article  Google Scholar 

  22. 22. Gunter Büchel, Michael Grün, and Klaus K. Unger; Tailored syntheses of nanostructured silicas: Control of particle morphology, particle size and pore size; Supramol. Sci., 5 (1998) 2530–2539

    Google Scholar 

  23. 23. H. Giesche, K. K. Unger, U. Müller, and U. Esser; Hysteresis in nitrogen sorption and mercury porosimetry on mesoporous model adsorbents made of aggregated monodisperse silica spheres; Colloids Surf., 37 (1989) 93–113

    Article  Google Scholar 

  24. 24. S. Bukowiecki, B. Straube, and K. K. Unger; Pore structure analysis of close-packed silica spheres by means of nitrogen sorption and mercury porosimetry; in: Principles and Applications of Pore Structural Characterization (Haynes J. M. & Rossi-Doria P., eds); Arrowsmith, Bristol (1985) 43–55

    Google Scholar 

  25. 25. H. Giesche; Interpretation of hysteresis ‘fine-structure’ in mercury-porosimetry measurements; in: Materials Research Society Symposium Proceedings, Volume 371, Advances in Porous Materials (Komarneni S., Smith D. M. & Beck J. S., eds); Materials Research Society, Pittsburgh, PA (1995) 505–510

    Google Scholar 

  26. 26. D. M. Smith, T. E. Holt, D. P. Gallegos, and D. L. Stermer; Pore structure analysis via NMR, mercury porosimetry, and dynamic methods; in: Advances in Ceramics, Vol. 21, Ceramic Powder Science(Messing G. L., (Joe) Mazdiyasni K. S., McCauley J. W. & Haber R. A., eds); The American Ceramic Society, Columbus, OH (1987) 779–791

    Google Scholar 

  27. 27. Herbert Giesche, Mercury Porosimetry; in: Handbook of Porous Materials (F. Schüth and K.S.W. Sing, eds); Wiley-VCH, Weinheim (2002) 309–351 (Chap. 2.7)

    Google Scholar 

  28. 28. Y. Yin, Y. Lu, B. Gates, and Y. Xia; Template-assisted self-assembly: A practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures; J. Am. Chem. Soc., 123(36) (2001) 8718–8729

    Article  CAS  PubMed  Google Scholar 

  29. 29. Hiroshi Suzuki, Shigeyuki Takagi, Hideki Morimitsu, and Shin-ichi Hirano; Microstructure control of porous silica glass with monodispersed spherical silica particles; J. Ceram. Soc. Jpn., 100 (1992) 284–287

    Google Scholar 

  30. H. Giesche and K. K. Unger; Sintering of monodispersed silica, in: Ceramic Powder Processing Science, Proceedings of the Second International Conference, Berchtesgaden, 1988 (H. Hausner, G. L. Messing, & S. Hirano, eds.); Deutsche Keramische Gesellschaft, Köln (1989) 755-764

    Google Scholar 

  31. M. D. Sacks, T. S. Yeh, and S. D. Vora; Effect of green microstructure on sintering of model powder compacts, Ceramic Powder Processing Science, Proceedings of the Second International Conference, Berchtesgarden, FRG, 12-14 Oct 1988 (H. Hausner, G. L. Messing, and S. Hirano, eds.); Deutsche Keramische Gesellschaft, Köln (1989) 693-704

    Google Scholar 

  32. 32. Michael D. Sacks and Tseung-Yuen Tseng; Preparation of SiO2glass from model powder compacts. I. Formation and characterization of powders, suspensions, and green compacts; J. Am. Ceram. Soc., 67 (8) (1984) 526–532

    Article  CAS  Google Scholar 

  33. 33. Michael D. Sacks and Tseung-Yuen Tseng; Preparation of SiO2glass from model powder compacts. II. Sintering; J. Am. Ceram. Soc., 67 (8) (1984) 532–537

    Article  CAS  Google Scholar 

  34. Michael D. Sacks and Shailesh D. Vora; Preparation of SiO2 glass from model powder compacts. III Enhanced densification by sol infiltration, J. Am. Ceram. Soc., 71 (4) (1988) 245-249

    Google Scholar 

  35. 35. Michael D. Sacks, Gary W. Scheiffele, Nazim Bozkurt, and Ramesh Raghunathan; Fabrication of ceramics and composites by viscous and transient viscous sintering of composite particles; in: Ceramic Transactions, Ceramic Powder Science IV (Shin-ichi Hirano, Gary L. Messing, & Hans Hausner, eds.); The American Ceramic Society, Westerville, OH (1991) 437–455

    Google Scholar 

  36. 36. T. Shimohira, A. Makishima, K. Kotani, and M. Wakakuwa; Sintering of monodispersed amorphous silica particles; in: Proceedings of International Symposium of Factors in Densification and Sintering of Oxide and Non-Oxide Ceramics (S. Somiya & S. Saito, eds.); Tokyo Institute of Technology, Tokyo (1978) 119–127

    Google Scholar 

  37. 37. D. W. Johnson Jr., E. M. Rabinovich, J. B. MacChesney, and E. M. Vogel; Preparation of high-silica glasses from colloidal gels. II. Sintering; J. Am. Ceram. Soc., 66 (10) (1983) 688–693

    Article  CAS  Google Scholar 

  38. 38. Muhsin Ciftcioglu, Douglas M. Smith, and Steven B. Ross; Sintering studies on ordered monodisperse silica compacts: Effect of consolidation; Powder Technol., 69 (2) (1992) 185–193

    Article  CAS  Google Scholar 

  39. 39. Steven J. Milne, Mohammed Patel, and Eric Dickinson; Experimental studies of particle packing and sintering behaviour of monosize and bimodal spherical silica powders; J. Eur. Ceram. Soc., 11 (1) (1993) 1–7

    Article  CAS  Google Scholar 

  40. 40. Michael Freemantle; Opal chips: Photonic jewels; Chem. Eng. News, 79 (4), (2001) 55–58

    Article  Google Scholar 

  41. 41. Alvaro Blanco, Emmanuel Chomski, Serguei Gratchak, Marta Ibisate, Sajeev John, Stephen W. Leonard, Cefe Lopez, Francisco Meseguer, Hernan Miguez, Jessica P. Mondia, Geoffrey A. Ozin, Ovidiu Toader, and Henry M. van Driel; Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres; Nature, 405 (2000) 437–440

    Article  CAS  PubMed  Google Scholar 

  42. 42. San Ming Yang and Geoffrey A. Ozin; Opal chips: Vectorial growth of colloidal crystal patterns inside silicon wafers; Chem. Commun., 2000(24) (2000) 2507–2508

    Google Scholar 

  43. 43. Andreas Stein; Sphere templating methods for periodic porous solids; Microporous Mesoporous Mater., 44–45 (2001) 227–239

    Article  CAS  Google Scholar 

  44. 44. Preston B. Landon and R. Glosser; Self-assembly of spherical colloidal silica along the [100] direction of the FCC lattice and geometric control of crystallite formation; J. Colloid Interface Sci., 276 (2004) 92–96

    Article  CAS  PubMed  Google Scholar 

  45. 45. F. Meseguer, A. Blanco, H. Miguez, F. Garcia-Santamaria, M. Ibisate, and C. Lopez; Synthesis of inverse opals; Colloids Surf., 202 (2002) 281–290

    Article  CAS  Google Scholar 

  46. 46. V. N. Astratov, Yu. A. Vlasov, O. Z. Karimov, A. A. Kaplyanskii, Yu. G. Musikhin, N. A. Bert, V. N. Bogomolov, and A. V. Prokofiev; Photonic band gaps in 3D ordered FCC silica matrices; Phys. Lett. A, 222() (1996) 349–353

    Article  Google Scholar 

  47. 47. V. N. Bogomolov, A. V. Prokofiev, S. M. Samoilovich, E. P. Petrov, A. M. Kapitonov, and S. V. Gaponenko; Photonic band gap effect in a solid state cluster lattice; J. Luminescence, 72–74 (1997) 391–392

    Article  CAS  Google Scholar 

  48. 48. P. V. Braun and P. Wiltzius; Macroporous materials – Electrochemically grown photonic crystals; Curr. Opin. Colloid Interface Sci., 7(1–2) (2002) 116–123

    Article  CAS  Google Scholar 

  49. 49. Jes Broeng, Stig E. Barkou, Anders Bjarklev, Jonathan C. Knight, Tim A. Birks, and Philip St. J. Russell; Highly increased photonic band gaps in silica/air structures; Opt. Commn., 156(4–6), (1998) 240–244

    Article  CAS  Google Scholar 

  50. 50. S. V. Gaponenko, V. N. Bogomolov, E. P. Petrov, A. M. Kapitonov, A. A. Eychmueller, A. L. Rogach, I. I. Kalosha, F. Gindele, and U. Woggon; Spontaneous emission of organic molecules and semiconductor nanocrystals in a photonic crystal; J. Luminescence, 87–89 (2000) 152–156

    Article  CAS  Google Scholar 

  51. 51. Michail I. Samoilovich, Svetlana M. Samoilovich, Andrey V. Guryanov, Michail Yu. Tsvetkov; Artificial opal structures for 3D-optoelectronics; Microelectron. Eng., 69(2–4) (2003) 237–247

    Article  CAS  Google Scholar 

  52. 52. V. M. Shelekhina, O. A. Prokhorov, P. A. Vityaz, A. P. Stupak, S. V. Gaponenko, and N. V. Gaponenko; Towards 3D photonic crystals; Synth. Met., 124(1) (2001) 137–139

    Article  CAS  Google Scholar 

  53. 53. S. Tsunekawa, Yu. A. Barnakov, V. V. Poborchii, S. M. Samoilovich, A. Kasuya, and Y. Nishina; Characterization of precious opals: AFM and SEM observations, photonic band gap, and incorporation of CdS nano-particles; Microporous Mater., 8(–) (1997) 275–282

    Article  CAS  Google Scholar 

  54. 54. Yu. A. Vlasov, K. Luterova, I. Pelant, B. Hönerlage, and V. N. Astratov; Optical gain and lasing in a semiconductor embedded in a three-dimensional photonic crystal; J. Crystl. Growth, 184–185 (1998) 650–653

    Article  Google Scholar 

  55. 55. H. M. Yates, M. E. Pemble, H. Míguez, A. Blanco, C. López, F. Meseguer, and L. Vázquez; Atmospheric pressure MOCVD growth of crystalline InP in opals; J. Crystl. Growth, 193 (1–2) (1998) 9–15

    Article  CAS  Google Scholar 

  56. 56. Anvar A. Zakhidov, Ray H. Baughman, Ilyas I. Khayrullin, Igor A. Udod, Mikhail Kozlov, Nayer Eradat, Valy Z. Vardeny, Mihail Sigalas, and Rana Biswas; Three-dimensionally periodic conductive nanostructures: Network versus cermet topologies for metallic PBG; Synth. Met., 116(1–3) (2001) 419–426

    Article  CAS  Google Scholar 

  57. 57. Anvar A. Zakhidov, Ilyas I. Khayrullin, Ray H. Baughman, Zafar Iqbal, Katsumi Yoshino, Yoshiaki Kawagishi, and Satoshi Tatsuhara; CVD synthesis of carbon-based metallic photonic crystals; NanoStruct. Mater., 12 (1999) 1089–1095

    Article  Google Scholar 

  58. 58. Alfons van Blaaderen; From the de Broglie to visible wavelengths: Manipulating electrons and photons with colloids; MRS Bull., 23(10) (1998) 39–43

    Article  Google Scholar 

  59. 59. Chad E. Reese, Carol D. Guerrero, Jesse M. Weissman, Kangtaek Lee, and Sanford A. Asher; Synthesis of highly charged, monodisperse polystyrene colloidal particles for the fabrication of photonic crystals; J. Colloid Interface Sci., 232 (2000) 76–80

    Article  CAS  PubMed  Google Scholar 

  60. 60. Sanford A. Asher, John Holtz, Jesse Weissman, and Guisheng Pan; Mesoscopically periodic photonic-crystal materials for linear and nonlinear optics and chemical sensing; MRS Bull., 23(10), (1998) 44–50

    Article  CAS  Google Scholar 

  61. 61. J. W. Bender, N. J. Wagner; Reversible shear thickening in monodisperse and bidisperse colloidal dispersions; J. Rheol., 40 (1996) 899–916

    Article  CAS  Google Scholar 

  62. 62. J. F. Brady, J. F. Morris; Microstructure of strongly sheared suspensions and its impact on rheology and diffusion; J. Fluid Mech., 348 (1997) 103–139

    Article  CAS  Google Scholar 

  63. 63. J. F. Brady; The rheological behavior of concentrated colloidal dispersion; J. Chem. Phys., 99 (1993) 567–581

    Article  CAS  Google Scholar 

  64. 64. John F. Brady; Computer simulation of viscous suspensions; Chemical Eng. Sci., 56(9) (2001) 2921–2926

    Article  CAS  Google Scholar 

  65. 65. B. J. Maranzano, N. J. Wagner; The effects of interparticle interactions and particle size on reversible shear thickening: Hard sphere colloidal dispersions; J. Rheol., 45 (2001) 1205–1222

    Article  CAS  Google Scholar 

  66. 66. B. J. Maranzano, N. J. Wagner, G. Fritz, and O. Glatter; Surface charge of 3-(trimethoxysilyl)propyl methacrylate (TPM) coated Stöber silica colloids by zeta-phase analysis light scattering and small angle neutron scattering; Langmuir, 16 (2000) 10556–10558

    Article  CAS  Google Scholar 

  67. 67. B. J. Maranzano and N. J. Wagner; The effects of particle size on reversible shear thickening of concentrated colloidal dispersions; J. Chem. Phys., 114 (2001) 10514–10527

    Article  CAS  Google Scholar 

  68. 68. G. Fritz, B. J. Maranzano, N. J. Wagner, and N. Willenbacher; High frequency rheology of hard sphere colloidal dispersions measured with a torsional resonator; J. Non- Newtonian Fluid Mech., 102 (2002) 149–156

    Article  CAS  Google Scholar 

  69. 69. Cécile Gehin, Jacques Persello, Daniel Charraut, and Bernard Cabane; Electrorheological properties and microstructure of silica suspensions; J. Colloid Interface Sci., 273 (2004) 658–667

    Article  CAS  PubMed  Google Scholar 

  70. 70. Jae-Hyun So, Seung-Man Yang, Jae Chun Hyun; Microstructure evolution and rheological responses of hard sphere suspensions; Chem. Eng. Sci., 56 (2001) 2967–2977

    Article  Google Scholar 

  71. 71. Jae-Hyun So, Seung-Man Yang, Chongyoup Kim, and Jae Chun Hyun; Microstructure and rheological behaviour of electrosterically stabilized silica particle suspensions; Colloids Surf. A: Physicochem. Eng. Asp., 190 (2001) 89–98

    Article  CAS  Google Scholar 

  72. 72. Hans M. Wyss, Elena Tervoort, Lorenz P. Meier, Martin Müller, and Ludwig J. Gauckler; Relation between microstructure and mechanical behavior of concentrated silica gels; J. Colloid Interface Sci., 273 (2004) 455–462

    Article  CAS  PubMed  Google Scholar 

  73. 73. C. G. de Kruif, E. M. F. van Iersel, and A. Vrij; Hard sphere colloidal dispersions: Viscosity as a function of shear rate and volume fraction; J. Chem. Phys., 83 (1985) 4717–4725

    Article  CAS  Google Scholar 

  74. 74. J. C. v. der Werff and C. G. de Kruif; Hard-sphere colloidal dispersions: The scaling of rheological properties with particle size, volume fraction, and shear rate; J. Rheol., 33 (1989) 421–454

    Article  Google Scholar 

  75. 75. J. C. van der Werff, C. G. de Kruif, C. Blom, and J. Mellema; Linear viscoelastic behavior of dense hard-sphere dispersions; Phys. Rev. A, 39 () (1989) 795–807

    Article  Google Scholar 

  76. 76. Bruce J. Ackerson; Shear induced order and shear processing of model hard sphere suspensions; J. Rheol., 34() (1990) 553–590

    Article  Google Scholar 

  77. 77. D. Andrew R. Jones, Bruce Leary, and David V. Boger; The rheology of a concentrated colloidal suspension of hard spheres; J. Colloid Interface Sci., 147(2) (1991) 479–495

    Article  CAS  Google Scholar 

  78. David Andrew Ross Jones; Depletion flocculation of sterically-stabilized particles, PhD thesis, Bristol (1988)

    Google Scholar 

  79. L. Marshall and C. F. Zukoski IV; Flow of dispersion near close packing, Material Research Society Symposium, Vol. 155: Processing Science of Advanced Ceramics (I. A. Aksay, G. L. McVay, and D. R. Ulrich, eds.); Materials Research Society, Pittsburgh, PA (1989) 65-72

    Google Scholar 

  80. 80. Louise Marshall and Charles F. Zukoski IV; Experimental studies on the rheology of hard-sphere suspensions near the glass transition; J. Phys. Chem., 94() (1990) 1164–1171

    Article  CAS  Google Scholar 

  81. 81. P. N. Pusey and W. van Megen; Phase behaviour of concentrated suspensions of nearly hard colloidal spheres; Nature, 320 (1986) 340–342

    Article  Google Scholar 

  82. William B. Russel; Controlling the rheology of colloidal dispersions through the interparticle potential, Ceramic Transactions, Vol. 12, Ceramic Powder Science III (Garry L. Messing, Shin-ichi Hirano, and Hans Hausner, eds.); The American Ceramic Society, Westerville, Ohio (1990) 361-373

    Google Scholar 

  83. 83. Joachim Wagner, Tina Autenrieth, and Rolf Hempelmann; Core shell particles consisting of cobalt ferrite and silica as model ferrofluids [CoFe2O4-SiO2core shell particles]; J. Magn. Magn. Mater., 252 (2002) 4–6

    Article  CAS  Google Scholar 

  84. 84. K. K. Unger, G.Jilge, Janzen R., Giesche H., and Kinkel J. N.; Non-porous microparticulate supports in high- performance liquid chromatography of biopolymers - concepts, realization and prospects; Chromatographia, 22 (1986) 379–80.

    Article  CAS  Google Scholar 

  85. 85. K. K. Unger, O. Jilge, J. N. Kinkel, and M. T. W. Hearn; Evaluation of advanced silica packings for the separation of biopolymers by high-performance liquid chromatography. II. Performance of non-porous monodisperse 1.5-μm Silica beads in the separation of proteins by reversed-phase gradient elution high-performance liquid; J. Chromatogr. A, 359 (1986) 61–72

    Article  CAS  Google Scholar 

  86. 86. G. Jilge, R. Janzen, H. Giesche, K. K. Unger, J. N. Kinkel, and M. T. W. Hearn; Evaluation of advanced silica packings for the separation of biopolymers by high-performance liquid chromatography. III. Retention and selectivity of proteins and peptides in gradient elution on non-porous monodisperse 1.5- μm reversed-phase silicas; J. Chromatogr. A, 397 (1987) 71–80

    Article  CAS  Google Scholar 

  87. 87. R. Janzen, K. K. Unger, H. Giesche, J. N. Kinkel, and M. T. W. Hearn; Evaluation of advanced silica packings for the separation of biopolymers by high-performance liquid chromatography. IV. Mobile phase and surface-mediated effects on recovery of native proteins in gradient elution on non-porous, monodisperse 1.5-μm reversed-phase silicas; J. Chromatogr. A, 397 (1987) 81–89

    Article  CAS  Google Scholar 

  88. 88. R. Janzen, K. K. Unger, H. Giesche, J. N. Kinkel, and M. T. W. Hearn; Evaluation of advanced silica packings for the separation of biopolymers by high-perforamnce liquid chromatography. V. Performance of non-porous monodisperse 1.5- μm bonded silicas in the separation of proteins by hydrophobic-interaction chromatography; J. Chromatogr. A, 397 (1987) 91–97

    Article  CAS  Google Scholar 

  89. 89. B. Anspach, K. K. Unger, J. Davies, and M. T. W. Hearn; Affinity chromatography with triazine dyes immobilized onto activated non-porous monodisperse silicas; J. Chromatogr. A, 457 (1988) 195–204

    Article  CAS  Google Scholar 

  90. 90. G. Jilge, K. K. Unger, U. Esser, H. -J. Schäfer, G. Rathgeber, and W. Müller; Evaluation of advanced silica packings for the separation of biopolymers by high-performance liquid chromatography. VI. Design, chromatographic performance and application of non-porous silica-based anion exchangers; J. Chromatogr. A, 476 (1989) 37–48

    Article  CAS  Google Scholar 

  91. 91. H. Giesche, K. K. Unger, U. Esser, B. Eray, U. Trüdinger, and J. N. Kinkel; Packing technology, column bed structure and chromatographic performance of 1–2-μm non-porous silicas in high-performance liquid chromatography; J. Chromatogr. A, 465() (1989) 39–57

    Article  CAS  Google Scholar 

  92. 92. F. B. Anspach, A. Johnston, H.-J. Wirth, K. K. Unger, and M. T. W. Hearn; High-performance liquid chromatography of amino acids, peptides and proteins. XCII. Thermodynamic and kinetic investigations on rigid and soft affinity gels with varying particle and pore sizes; J. Chromatogr. A, 476 (1989) 205–225

    Article  CAS  Google Scholar 

  93. 93. M. Hanson, K. K. Unger, and G. Schomburg; Non-porous polybutadiene-coated silicas as stationary phases in reversed- phase chromatography; J. Chromatogr. A, 517 (1990) 269–284

    Article  CAS  Google Scholar 

  94. 94. G. Stegeman, R. Oostervink, J. C. Kraak, H. Poppe, and K. K. Unger; Hydrodynamic chromatography of macromolecules on small spherical non-porous silica particles; J. Chromatogr. A, 506 (1990) 547–561

    Article  CAS  Google Scholar 

  95. 95. F. B. Anspach, A. Johnston, H.-J. Wirth, K. K. Unger, and M. T. W. Hearn; High-performance liquid chromatography of amino acids, peptides and proteins. XCV. Thermodynamic and kinetic investigations on rigid and soft affinity gels with varying particle and pore sizes: Comparison of thermodynamic parameters and the adsorption behaviour of proteins evaluated from bath and frontal analysis experiments; J. Chromatogr. A, 499 (1990) 103–124

    Article  CAS  Google Scholar 

  96. 96. H. J. Wirth, K. K. Unger, and M. T. W. Hearn; High- performance liquid chromatography of amino acids, peptides and proteins. CIX. Investigations on the relation between the ligand density of Cibacron Blue immobilized porous and non-porous sorbents and protein-binding capacities and association constants; J. Chromatogr. A, 550 (1991) 383–395

    Article  CAS  Google Scholar 

  97. 97. Michael Hanson and Klaus K. Unger, Colin T. Mant, and Robert S. Hodges; Polymer-coated reversed-phase packings with controlled hydrophobic properties. I. Effect on the selectivity of protein separations; J. Chromatogr. A, 599(1–2), (1992) 65–75

    Article  CAS  Google Scholar 

  98. 98. Michael Hanson, Klaus K. Unger, Renaud Denoyel, and Jean Rouquerol; Interactions of lysozyme with hydrophilic and hydrophobic polymethacrylate stationary phases in reversed phase chromatography (RPC); J. Biochem. Biophys. Methods, 29(3–4) (1994) 283–294

    Article  CAS  PubMed  Google Scholar 

  99. 99. Béatrice de Collongue-Poyet, Claire Vidal-Madjar, Bernard Sebille, and Klaus K. Unger; Study of conformational effects of recombinant interferon γ-adsorbed on a non- porous reversed-phase silica support; J. Chromatogr. B: Biomed. Sci. Appl., 664(1), (1995) 155–161

    Article  CAS  Google Scholar 

  100. 100. Michael Hanson, Klaus K. Unger, Colin T. Mant, and Robert S. Hodges; Optimization strategies in ultrafast reversed-phase chromatography of proteins; TrAC Trends Anal. Chem., 15(2), (1996) 102–110

    CAS  Google Scholar 

  101. 101. T. Issaeva, A. Kourganov, K. Unger; Super-high-speed liquid chromatography of proteins and peptides on non-porous Micra NPS-RP packings; J. Chromatogr. A, 846 (1999) 13–23

    Article  CAS  Google Scholar 

  102. 102. K. Wagner, K. Racaityte, K.K. Unger, T. Miliotis, L.E. Edholm, R. Bischoff, G. Marko-Varga; Protein mapping by two- dimensional high performance liquid chromatography; J. Chromatogr. A, 893 (2000) 293–305

    Article  CAS  PubMed  Google Scholar 

  103. 103. B. A. Grimes, S. Ludtke, K. K. Unger, A. I. Liapis; Novel general expressions that describe the behavior of the height equivalent of a theoretical plate in chromatographic systems involving electrically-driven and pressure-driven flows; J. Chromatogr. A, 979 (2002) 447–466

    Article  CAS  PubMed  Google Scholar 

  104. 104. A. van Blaaderen and A. Vrij; Synthesis and characterization of colloid dispersions of fluorescent, monodispersed silica spheres; Langmuir, 8 (1992) 2921–2931

    Article  Google Scholar 

  105. 105. J. D. Wells, L. K. Koopal, and A. de Keizer; Monodisperse, nonporous, spherical silica particles; Colloids Surf. A: Physicochem. Eng. Asp., 166 (2000) 171–176

    Article  CAS  Google Scholar 

  106. 106. Howard A. Ketelson, Robert Pelton, and Michael A. Brook; Surface and colloidal properties of hydrosilane-modified Stöber silica; Colloids Surf. A: Physicochem. Eng. Asp., 132 (1998) 229–239

    Article  CAS  Google Scholar 

  107. 107. Hoon Choi and I-Wei Chen; Surface-modified silica colloid for diagnostic imaging; J. Colloid Interface Sci., 258 (2003) 435–437

    Article  CAS  Google Scholar 

  108. 108. Yoshio Kobayashi, Kiyoto Misawa, Masaki Kobayashi, Motohiro Takeda, Mikio Konno, Masanobu Satake, Yoshiyuki Kawazoe, Noriaki Ohuchi, and Atsuo Kasuya; Silica-coating of fluorescent polystyrene microspheres by a seeded polymerization technique and their photo-bleaching property; Colloids Surf. A: Physicochem. Eng. Asp., 242 (2004) 47–52

    Article  CAS  Google Scholar 

  109. 109. Yinhan Gong, Yanqiao Xiang, Bingfang Yue, Guoping Xue, Jerald S. Bradshaw, Hian Kee Lee, and Milton L. Lee; Application of diaza-18-crown-6-capped b-cyclodextrin bonded silica particles as chiral stationary phases for ultrahigh pressure capillary liquid chromatography; J. Chromatogr. A, 1002 (2003) 63–70

    Article  CAS  PubMed  Google Scholar 

  110. 110. Mitsuhiro Nakamura, Kouseki Hirade, Tadashi Sugiyama, and Yoshihiro Katagiri; High-performance liquid chromatographic assay of zonisamide in human plasma using a non- porous silica column; J. Chromatogr. B, 755 (2001) 337–341

    Article  CAS  Google Scholar 

  111. 111. J.J. Kirkland, F.A. Truszkowski, C.H. Dilks Jr., and G.S. Engel; Superficially porous silica microspheres for fast high-performance liquid chromatography of macromolecules; J. Chromatogr. A, 890 (2000) 3–13

    Article  CAS  PubMed  Google Scholar 

  112. 112. Duš an Berek, Son Hoai Nguyen, and Gérard Hild; Molecular characterization of block copolymers by means of liquid chromatography: I. Potential and limitations of full adsorption–desorption procedure in separation of block copolymers; Eur. Polym. J., 36(6) (2000) 1101–1111

    Article  CAS  Google Scholar 

  113. 113. Klaus Rissler; Separation of polyesters by gradient reversed-phase high-performance liquid chromatography on a 1.5 μm non-porous column; J. Chromatogr. A, 871 (2000) 243–258

    Article  CAS  PubMed  Google Scholar 

  114. 114. Anja P. Kohne and T. Welsch; Coupling of a microbore column with a column packed with non-porous particles for fast comprehensive two-dimensional high-performance liquid chromatography; J. Chromatogr. A, 845 (1999) 463–469

    Article  Google Scholar 

  115. 115. Wen-Chien Lee; Protein separation using non-porous sorbents; J. Chromatogr. B, 699 (1997) 29–45

    Article  CAS  Google Scholar 

  116. 116. Fabrice Mangani, Genevieve Luck, Christophe Fraudeau, and Eric Verette; On-line column-switching high-performance liquid chromatography analysis of cardiovascular drugs in serum with automated sample clean-up and zone-cutting technique to perform chiral separation; J. Chromatogr. A, 762 (1997) 235–241

    Article  CAS  PubMed  Google Scholar 

  117. 117. E. Venema, J. C. Kraak, H. Poppe, and R. Tijssen; Packed-column hydrodynamic chromatography using 1-μm non- porous silica particles; J. Chromatogr. A, 740(2) (1996) 159–167

    Article  CAS  Google Scholar 

  118. 118. Wen-Chien Lee and Chien-Yi Chuang; Performance of pH elution in high-performance affinity chromatography of proteins using non-porous silica; J. Chromatogr. A, 721(1) (1996) 31–39

    Article  Google Scholar 

  119. 119. Qi-Ming Mao, Ian G. Prince, and Milton T. W. Hearn; High-performance liquid chromatography of amino acids, peptides and proteins. CXXXIX. Impact of operating parameters in large-scale chromatography of proteins; J. Chromatogr. A, 691(1–2) (1995) 273–283

    Article  CAS  PubMed  Google Scholar 

  120. 120. Vittorio Brizzi and Danilo Corradini; Rapid analysis of somatostatin in pharmaceutical preparations by HPLC with a micropellicular reversed-phase column; J. Pharm. Biomed. Anal., 12(6) (1994) 821–824

    Article  Google Scholar 

  121. 121. Q. M. Mao, R. Stockmann, I. G. Prince, and M. T. W. Hearn; High-performance liquid chromatography of amino acids, peptides and proteins. CXXVI. Modeling of protein adsorption with non-porous and porous particles in a finite bath; J. Chromatogr. A, 646(1) (1993) 67–80

    Article  CAS  Google Scholar 

  122. 122. Gerrit Stegeman, Johan C. Kraak, and Hans Poppe; Dispersion in packed-column hydrodynamic chromatography; J. Chromatogr. A, 634(2) (1993) 149–159

    Article  CAS  Google Scholar 

  123. 123. Noriyuki Nimura, Hiroko Itoh, Toshio Kinoshita, Norikazu Nagae, and Mitsugu Nomura; Fast protein separation by reversed-phase high-performance liquid chromatography on octadecylsilyl-bonded non-porous silica gel: Effect of particle size of column packing on column efficiency; J. Chromatogr. A, 585(2) (1991) 207–211

    Article  CAS  Google Scholar 

  124. 124. K. C. Vrancken, L. de Coster, P. van der Voort, and P. J. Grobert; J. Colloid Interface Sci., 170 (1995) 71

    Article  CAS  Google Scholar 

  125. 125. H. Ben Ouda, H. Hommel, A. P. Legrand, H. Balard, and E. Papirer; J. Colloid Interface Sci., 122 (1988) 441

    Article  Google Scholar 

  126. 126. K. Bridger and B. Vincent; Eur. Polym.J., 16 (1980) 1017

    Article  Google Scholar 

  127. 127. R. D. Badley, W. T. Ford, F. J. McEnroe, and R. A. Assink; Surface modification of colloidal silica; Langmuir, 6 (1990) 792

    Article  CAS  Google Scholar 

  128. Christian Kaiser; Dissertation, Universität Mainz, Germany (1996)

    Google Scholar 

  129. Ch. Kaiser, G. Buechel, S. Luedtke, I. Lauer, and K. K. Unger; Processing of microporous/mesoporous submicron-size silica spheres by means of a template-supported synthesis, Characterization of Porous Solids IV(B. Mc Enaney, T. J. Mays, J. Rouquerol, F. Rogriguez-Reinoso, K.S.W. Sing, & K.K. Unger, eds;The Royal Society of Chemistry, London (1997) 406-412

    Google Scholar 

  130. M. Grün, G. Büchel, D. Kumar, K. Schumacher, B. Bidlingmaier, and K. K. Unger; Rational design, tailored synthesis and characterisation of ordered mesoporous silicas in the micron and submicron size range, in Characterization of Porous Solids V (K. K. Unger, G. Kreysa and J. P. Baselt, eds), Stud. Surf. Sci. Catal. 128; Elsevier, Amsterdam (2000) 155

    Google Scholar 

  131. 131. K. K. Unger, D. Kumar, M. Grün, G. Büchel, S. Lüdtke, Th. Adam, K. Schumacher, and S. Renker; Synthesis of spherical porous silicas in the micron and submicron size range – Challenges and opportunities for miniaturized high-resolution chromatographic and electrokinetic separations; J. Chromatogr. A 892 (2000) 47–55

    Article  CAS  PubMed  Google Scholar 

  132. 132. Yurong Ma, Limin Qi, Jiming Ma, Yongqing Wu, Ou Liu, and Humin Cheng; Large-pore mesoporous silica spheres: Synthesis and application in HPLC; Colloids Surf. A: Physicochem. Eng. Asp., 229 (2003) 1–8

    Article  CAS  Google Scholar 

  133. 133. R. Vacassy, R. J. Flatt, H. Hofmann, K. S. Choi, and K. S. Singh; Synthesis of microporous silica spheres; J. Colloid Interface Sci., 227(2) (2000) 302–315

    Article  CAS  PubMed  Google Scholar 

  134. 134. Shoji Kaneko, Hiroshi Saitoh, Yoshio Maejima, and Motoshi Nakamura; Adsorption characteristics of organic dyes in aqueous solutions on mixed-oxide gels silica-containing mixed- oxide gels; Anal. Lett., 22 (6) (1989) 1631–1641

    Article  CAS  Google Scholar 

  135. Francoise M. Winnik and Barkev Keoshkerian (Xerox); Ink jet inks containing colored silica particles, US Pat. 4,877,451 (1989)

    Google Scholar 

  136. 136. Francoise M. Winnik, Barkev Keoshkerian, J. Roderick Fuller, and Peter G. Hostra; New water-dispersible silica- based pigments: Synthesis and characterization; Dyes Pigments, 14(2) (1990) 101–112

    Article  CAS  Google Scholar 

  137. 137. H. Giesche and E. Matijevic; Well defined pigments. I. monodispersed silica-acid dyes systems; Dyes Pigments; 17 (1991) 323–340

    Article  Google Scholar 

  138. 138. T. Jesionowski; Synthesis of organic-inorganic hybrids via adsorption of dye on an aminosilane-functionalised silica surface; Dyes Pigments, 55(2–3) (2002) 133–141

    Article  CAS  Google Scholar 

  139. 139. Teofil Jesionowski, Monika Pokora, Modzimierz Tylus, Aleksandra Dec, and Andrzej Krysztafkiewicz; Effect of N-2- (aminoethyl)-3-aminopropyltrimethoxysilane surface modification and C.I. Acid Red 18 dye adsorption on the physicochemical properties of silica precipitated in an emulsion route, used as a pigment and a filler in acrylic paints; Dyes Pigments, 57(1) (2003) 29–41

    Article  CAS  Google Scholar 

  140. 140. S. Eiden-Assmann, B. Lindlar, and G. Maret; Synthesis and characterization of colloidal fluorescent mesoporous silica particles; J. Colloid Interface Sci., 271(1) (2004) 120–123

    Article  CAS  PubMed  Google Scholar 

  141. 141. Marjan Bele, Olavi Siiman, and Egon Matijevic; Preparation and flow cytometry of uniform silica-fluorescent dye microspheres; J. Colloid Interface Sci., 254 (2002) 274–282

    Article  CAS  Google Scholar 

  142. 142. Wan Peter Hsu, Rongchi Yu, and Egon Matijevic; Well- defined colloidal pigments. II. Monodispersed inorganic spherical particles containing organic dyes; Dyes Pigments; 19 (1992) 179–201

    Article  Google Scholar 

  143. 143. W. P. Hsu, R. Yu, E. Matijevic; Paper whiteners. I. Titania coated silica; J. Colloid Interface Sci., 156 (1993) 56–65

    Article  CAS  Google Scholar 

  144. 144. Qunyan Li and Peng Dong; Preparation of nearly monodisperse multiply coated submicrospheres with a high refractive index; J. Colloid Interface Sci., 261 (2003) 325–329

    Article  CAS  PubMed  Google Scholar 

  145. 145. Xiao-an Fu and Syed Qutubuddin; Preparation and characterization of titania nanocoating on monodisperse silica particles; Colloids Surf., 186 (2001) 245–250

    Article  Google Scholar 

  146. 146. X. Gao, K. M. Yu, K. Y. Tam, and S. C. Tsang; Colloidal stable silica encapsulated nano-magnetic composite as a novel bio-catalyst carrier; Chem. Commun., 24 (2003) 2998–2999

    Article  CAS  Google Scholar 

  147. Jinquan Cao, Yongxian Wang, Junfeng Yu, Jiaoyun Xia, Chunfu Zhang, Duanzhi Yin, and Urs O. Häfeli; Preparation and radiolabeling of surface-modified magnetic nanoparticles with rhenium-188 for magnetic targeted radiotherapy, J. Magn. Magn. Mater., in press

    Google Scholar 

  148. 148. J. F. Chen, H. M. Ding, J. X. Wang, and L. Shao; Preparation and characterization of porous hollow silica nanoparticles for drug delivery applications; Biomaterials, 25(4) (2004) 723–727

    Article  CAS  PubMed  Google Scholar 

  149. 149. F. Caruso, R. A. Caruso, and H. Mohwald; Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating; Science, 282(5391) (1998) 1111–1114

    Article  CAS  PubMed  Google Scholar 

  150. 150. C. Charnay, S. Begu, C. Tourne-Peteilh, L. Nicole, D. A. Lerner, and J. M. Devoisselle; Inclusion of ibuprofen in mesoporous templated silica: Drug loading and release property; Eur. J. Biopharm., 57(3) (2004) 533–540

    Article  CAS  Google Scholar 

  151. 151. H. Xu, F. Yan, E. E. Monson, and R. Kopelman; Roomtemperature preparation and characterization of poly(ethylene glycol)-coated silica nanoparticles for biomedical applications; J. Biomed. Mater. Res., 66(4) (2003) 870–879

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Giesche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Giesche, H. (2008). Medical andTechnological Application of Monodispersed Colloidal Silica Particles. In: Matijevic, E. (eds) Medical Applications of Colloids. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76921-9_5

Download citation

Publish with us

Policies and ethics