Skip to main content

Transport, Deposition and Removal of Fine Particles - Biomedical Applications

  • Chapter
  • First Online:
Medical Applications of Colloids

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmadi, G. (1970). Analytical Prediction of Turbulent Dispersion of Finite Size Particle. Ph.D. Thesis, Purdue University.

    Google Scholar 

  2. 2. Ahmadi, G. and Goldschmidt, V.W. (1971). Motion of Particle in a Turbulent Fluid – The Basset History Term. J. Appl. Mec. Trans. ASME, Vol. 38, pp. 561–563.

    Article  Google Scholar 

  3. Ahmadi, G. and Joseph, R. (2007). Simulations of Pulsatile Blood Flow in the Abdominal Aorta with Newtonian and Non-Newtonian Models. Comput. Biol. Med. (submitted for publication).

    Google Scholar 

  4. 4. Ahmadi, G. and Smith, D.H. (1998). Particle Transport and Deposition in a Hot-Gas Cleanup Pilot Plant. Aerosol Sci. Technol., Vol. 29, pp. 183–205.

    Article  Google Scholar 

  5. 5. Ahmadi, G. and Chen, Q. (1998). Dispersion and Deposition of Particles in a Turbulent Pipe Flow with Sudden Expansion. J. Aerosol Sci., Vol. 29, pp. 1097–1116.

    Article  Google Scholar 

  6. 6. Ahmed, A.M. and Elghobashi, S.E. (2000). On the mechanisms of modifying the structure of turbulent homogeneous shear flows by dispersed particles. Phys. Fluids, Vol. 12, pp. 2906–2930.

    Article  Google Scholar 

  7. 7. Aidun, C.K. and Qi, D. (1998). A New Method for Analysis of the Fluid Interaction with a Deformable Membrane. J. Stat. Phys., Vol. 90, pp. 145–158.

    Article  Google Scholar 

  8. 8. Aidun, C.K. and Ding, E.-J. (2003). Dynamics of Particle Sedimentation in a Vertical Channel: Period-Doubling Bifurcation and Chaotic State. Phys. Fluids, Vol. 15, pp. 1612–1621.

    Article  CAS  Google Scholar 

  9. 9. Akool, E-S., Kleinert, H., Hamada, F.M.A., Abdelwahab, M.H., Förstermann, U., Pfeilschifter, J., and Eberhardt, W. (2003). Nitric Oxide Increases the Decay of Matrix Metalloproteinase 9 mRNA by Inhibiting the Expression of mRNA-Stabilizing Factor HuR. Mol. Cell Biol., Vol. 23, pp. 4901–4916.

    Article  CAS  Google Scholar 

  10. 10. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J.D. (1989). Molecular Biology of the Cell, Garland Publishing, New York/London.

    Google Scholar 

  11. 11. Artoli, A.M., Hoekstra, A.G., and Sloot, P.M.A. (2006). Mesoscopic Simulations of Systolic Flow in the Human Abdominal Aorta. J. Biomech., Vol. 39, pp. 873–884.

    Article  Google Scholar 

  12. 12. Arnason, G. (1982). Measurements of Particle Dispersion in Turbulent Pipe Flow. Ph.D. Thesis, Washington State University, Pullman, WA.

    Google Scholar 

  13. 13. Asgharian, B. and Ahmadi, G. (1998) Effect of Fiber Geometry on Deposition in Small Airways of the Lung. Aerosol Sci. Technol., Vol. 29, pp. 459–474.

    Article  Google Scholar 

  14. 14. Asgharian, B. and Yu, C.P. (1988). Deposition of Inhaled Fibrous Particles in the Human Lung. J. Aerosol Med., Vol. 1, pp. 37–50.

    Article  Google Scholar 

  15. 15. Asgharian, B. and Yu, C. P. (1989). Deposition of Fibers in the Rat Lung. J. Aerosol Sci., Vol. 20, pp. 355–366.

    Article  Google Scholar 

  16. 16. Asgharian, B. and Anjilvel, S. (1994). Inertial and Gravitational Deposition of Particles in a Square Cross Section Bifurcating Airway. Aerosol Sci. Technol., Vol. 20, pp. 177–193.

    Article  Google Scholar 

  17. 17. Asgharian, B., Price, O.T., and Hofmann, W. (2006). Prediction of Particle Deposition in the Human Lung Using Realistic Models of Lung Ventilation. J. Aerosol Sci., Vol. 37, pp. 1209–1221.

    Article  CAS  Google Scholar 

  18. 18. Balashazy, I. (1994). Simulation of Particle Trajectories in Bifurcating Tubes. J. Comput. Phys., Vol. 110, pp. 80–88.

    Article  Google Scholar 

  19. 19. Balashazy, I. and Hofmann, W. (1993). Particle Deposition in Airway Bifurcations: I. Inspiratory Flow. J. Aerosol Sci., Vol. 24, pp. 745–772.

    Article  Google Scholar 

  20. 20. Balashazy, I. and Hofmann, W. (1993). Particle Deposition in Airway Bifurcations: II. Expiratory Flow. J. Aerosol Sci., Vol. 24, pp. 773–786.

    Article  Google Scholar 

  21. 21. Balashazy, I., Hofmann, W., and Heistracher, T. (1999). Computation of Local Enhancement Factors for the Quantification of Particle Deposition Patterns in Airway Bifurcations. J. Aerosol Sci., Vol. 30, pp. 185–203.

    Article  Google Scholar 

  22. 22. Baron, P.A., Deye, G.J., and Fernback, J. (1994). Length Separation of Fibers. Aerosol Sci. Technol., Vol. 21, pp. 79–192.

    Article  Google Scholar 

  23. 23. Baron, P.A. (2001). Measurement of Airborne Fibers: A Review. Ind. Health, Vol. 39, pp. 39–50.

    Article  Google Scholar 

  24. 24. Baron, P.A., Sorensen, C.M., and Brockmann, J.B. (2001). Nonspherical Particle Measurements: Shape Factors, Fractals, and Fibers. In Aerosol Measurement, 2nd Ed, Edited by Baron, P.A. and Willeke, K., Wiley-Interscience, New York.

    Google Scholar 

  25. 25. Baron, P.A., Deye, G., Aizenberg, V., and Castranova, V. (2002). Generation of Size-Selected Fibers for a Nose-Only Inhalation Toxicity Study. Ann. Occup. Hyg, Vol. 46, Suppl. 1, pp. 186–190.

    Google Scholar 

  26. 26. Berger, S.A. and Jou, L.-D. (2000). Flows in Stenotic Vessels. Ann. Rev. Fluid Mech., Vol. 32, pp. 347–382.

    Article  Google Scholar 

  27. 27. Brenner, H. (1961). The Slow Motion of a Sphere through a Viscous Fluid Towards a Plane Surface. Chem. Eng. Sci., Vol. 16, pp. 242–251.

    Article  Google Scholar 

  28. 28. Brooke, J.W., Kontomaris, K., Hanratty, T.J., and McLaughlin, J.B. (1992). Turbulent deposition and trapping of aerosols at a wall. Phys. Fluids A, Vol. 4, pp. 825–834.

    Article  Google Scholar 

  29. 29. Brooks, D.E. and Seaman, G.V.F. (1973). Effect of Neutral Polymers on Electrokinetic Potential of Cells and Other Charged Particles. I. Models for the Zeta Potential Increase. J. Colloid Interface Sci., Vol. 43, pp. 670–686.

    Article  Google Scholar 

  30. 30. Brooks, D.E. (1973). Effect of Neutral Polymers on Electrokinetic Potential of Cells and Other Charged Particles. II. Model for Effect of Adsorbed Polymer on Diffuse Double Layer. J. Colloid Interface Sci., Vol. 43, pp. 687–699.

    Article  Google Scholar 

  31. 31. Buerk, D.E. (2001). Can We Model Nitric Oxide Biotransport? A Survey of Mathematical Models for a Simple Diatomic Molecule with Surprisingly Complex Biological Activities. Ann. Rev. Biomed. Eng., Vol. 3, pp. 109–143.

    Article  Google Scholar 

  32. 32. Calabrese, R.V. and Middleman, S. (1979). The Dispersion of Discrete Particles in a Turbulent Fluid Field. AIChE J., Vol. 25, pp. 1025–1035.

    Article  Google Scholar 

  33. 33. Cai, H. and Harrison, D.G. (2000). Endothelial Dysfunction in Cardiovascular Diseases: The Role of Oxidant Stress. Circ. Res., Vol. 87, pp. 840–844.

    Article  Google Scholar 

  34. 34. Cao, J. and Ahmadi, G. (1995). Gas-Particle Two-Phase Turbulent Flow in a Vertical Duct. Int. J. Multiphase Flow, Vol. 21, pp. 1203–1228.

    Article  Google Scholar 

  35. 35. Cao, J. and Ahmadi, G. (1996). Gravity Granular Flows Down an Inclined Bumpy Chute. J. Fluid Mech., Vol. 316, pp. 197–221.

    Article  Google Scholar 

  36. 36. Cao, J. and Ahmadi, G. (2000). Gas-Particle Two-Phase Turbulent Flows in Horizontal and Vertical Ducts. Int. J. Eng. Sci., Vol. 38, pp. 1961–1981.

    Article  Google Scholar 

  37. 37. Caro, C.G. and Nerem, R.M. (1973). Common Carotid Artery Transport of 14C-4-Cholesterol Between Serum and Wall in the Perfused Dog. Circ. Res., Vol. 32, pp. 187–205.

    Article  Google Scholar 

  38. 38. Chaffey, C., Brenner, H., and Mason, S.G. (1965). Particle Motions in Sheared Suspensions, Part 18: Wall Migration (Theoretical). Rheol. Acta, Vol. 4, pp. 64–72.

    Article  Google Scholar 

  39. 39. Chaffey, C.E. and Brenner, H. (1967). A Second-Order Theory for Shear Deformation of Drops. J. Colloid Interface Sci., Vol. 24, pp. 258–269.

    Article  Google Scholar 

  40. 40. Chan, T.L. and Schreck, R.M. (1980). Effect of the Laryngeal Jet in the Human Trachea and Upper Bronchial Airways. J. Aerosol Sci., Vol. 11, pp. 447–459.

    Article  Google Scholar 

  41. Chang, I-S. and Ahmadi, G. (2007). Pneumonic Alveolar Cavity Transport and Deposition during Inhalation. Comput. Biol. Med. (Submitted for publication).

    Google Scholar 

  42. 42. Chen, C.P. and Wood, P.E. (1985). A turbulence Closure Model for Dilute Gas-Particle Flows. Can. J. Chem. Eng., Vol. 63, pp. 349–360.

    Article  Google Scholar 

  43. 43. Chen, B.T., Yeh, H.C., and Johnson, N.F. (1996). Design and use of a virtual impactor and an electrical classifier for generation of test fiber aerosols with narrow size distributions. J. Aerosol Sci., Vol. 27, pp. 83–94.

    Article  Google Scholar 

  44. 44. Chen, S. and Doolen, G.D. (1998). Lattice Boltzmann Method for Fluid Flows. Ann. Rev. Fluid Mech., Vol. 30, pp. 329–364.

    Article  Google Scholar 

  45. 45. Chen, H.H. and Wang, D.L. (2004). Nitric Oxide Inhibits Matrix Metalloproteinase-2 Expression via the Induction of Activating Transcription Factor 3 in Endothelial Cells. Mol. Pharmacol., Vol. 65, pp. 1130–1140.

    Article  Google Scholar 

  46. 46. Cheng, Y.S. (2003). Aerosol Deposition in the Extrathoracic Region. Aerosol Sci. Technol., Vol. 37, pp. 659–671.

    Article  Google Scholar 

  47. 47. Cheng, Y.S., Su, Y.F., Yeh, H.C., and Swift, D.L. (1993). Deposition of Thoron Progeny in Human Head Airways. Aerosol Sci. Technol., Vol. 18, pp. 359–375.

    Article  Google Scholar 

  48. 48. Cheng, Y.S., Yamada, Y., Yeh, H.C., and Swift, D.L. (1988) Diffusional Deposition of Ultrafine Aerosols in a Human Nasal Cast. J. Aerosol Sci., Vol. 19, pp. 741–751.

    Article  Google Scholar 

  49. 49. Cheng, Y.S., Yeh, H.C., Guilmette, R.A., Simpson, S.Q., Cheng, K.H., and Swift, D.L. (1996). Nasal Deposition of Ultrafine Particles in Human Volunteers and Its Relationship to Airway Geometry. Aerosol Sci. Technol., Vol. 25, pp. 274–291.

    Article  Google Scholar 

  50. 50. Cheng, Y.S., Zhou, Y., and Chen, B.T. (1999). Particle Deposition in a Cast of Human Oral Airways. Aerosol Sci. Technol., Vol. 31, pp. 286–300.

    Article  Google Scholar 

  51. 51. Cherukat, P. and McLaughlin, J.B. (1990). Wall-Induced Lift on a Sphere. Int. J. Multiphase Flow, Vol. 16, pp. 899–907.

    Article  Google Scholar 

  52. 52. Cherukat, P. and McLaughlin, J.B., and Graham, A.L. (1994). The inertial Lift on a Rigid Sphere Translating in a Linear Shear Flow Field. Int. J. Multiphase Flow, Vol. 20, pp. 339–353.

    Article  Google Scholar 

  53. 53. Chowdhury, S.J. and Ahmadi, G. (1992). Int. J. Nonlinear Mech., Vol. 27, pp. 705–718.

    Article  Google Scholar 

  54. 54. Cleaver, J.W. and Yates, B. (1975). A Sublayer Model for Deposition of Particles from Turbulent Flows. Chem. Eng. Sci., Vol. 30, pp. 983–992.

    Article  Google Scholar 

  55. 55. Clift, R., Grace, J.R., and Weber, M.E. (1978). Drops and Particles, Academic Press, New York.

    Google Scholar 

  56. 56. Cohen, B.S., Sussman, R.G., and Lippmann, M. (1990). Ultrafine Particle Deposition in a Human Tracheobronchial Cast. Aerosol Sci. Technol., Vol. 12, pp. 1082–1091.

    Article  Google Scholar 

  57. 57. Cohen, B.S. and Asgharian, B. (1990). Deposition of Ultrafine Particles in the Upper Airways: An Empirical Analysis. J. Aerosol Sci., Vol. 21, pp. 789–797.

    Article  Google Scholar 

  58. 58. Cokelet, G.R. and Goldsmith, H.L. (1991). Decreased Hydrodynamic Resistance in the Two-Phase Flow of Blood through Small Vertical Tubes at Low Flow Rates. Circ. Res., Vol. 68, pp. 1–17.

    Article  Google Scholar 

  59. 59. Cokelet, G.R., Brown, J.R., Codd, S.L., and Seymour, J.D. (2005). Magnetic Resonance Microscopy Determined Velocity and Hematocrit Distributions in a Couette Viscometer. Biorheology, Vol. 42, pp. 385–399.

    Google Scholar 

  60. Collins, L.R. (2000). Reynolds Number Scaling of Preferential Concentration of Particles in Isotropic Turbulence. AIChE Annual Meeting, Los Angeles, CA.

    Google Scholar 

  61. 61. Comer, J.K., Kleinstreuer, C., Hyun, S., and Kim, C.S. (2000). Aerosol Transport and Deposition in Sequentially Bifurcation Airways. ASME J. Biomech. Eng., Vol. 122, pp. 152–158.

    Article  Google Scholar 

  62. 62. Cooper, D.W. (1986). Particle Contamination and Microelectronics Manufacturing: An Introduction. Aerosol Sci. Technol., Vol. 5, pp. 287–299.

    Article  Google Scholar 

  63. Corn, M. (1976). In Air Pollution, Edited by Stren, A.C., Academic Press, New York.

    Google Scholar 

  64. 64. Corrsin, S. and Lumley, J.L. (1956). On the Equation of Motion for a Particle in Turbulent Fluid. Appl. Sci. Res., Vol. 6, pp. 114–116.

    Article  Google Scholar 

  65. 65. Cox, R. G. and Brenner, H. (1967). The Slow Motion of a Sphere through a Viscous Fluid Towards a Plane Surface. II. Small Gap Widths, Including Inertial Effects. Chem. Eng. Sci., Vol. 22, pp. 1753–1777.

    Article  Google Scholar 

  66. 66. Crowe, C.T. (1982). REVIEW – Numerical Models for Dilute Gas-Particle Flows. J. Fluid Eng. Trans. ASME, Vol. 104, pp. 297–303.

    Article  Google Scholar 

  67. 67. Crowe, C.T. (1986). Two-Fluid vs. Trajectory Model: Range of Applicability. Gas-Solid Flows, ASME FED, Vol. 35, pp. 91–96.

    Google Scholar 

  68. 68. Csanady, G.T. (1963). Turbulent Diffusion of Heavy Particles in the Atmosphere. J. Atmos. Sci., Vol. 20, pp. 201–208.

    Article  Google Scholar 

  69. 69. Dandy, D.S. and Dwyer, H.A. (1990). A Sphere in Shear Flow at Finite Reynolds Number: Effect of Shear on Particle Lift, Drag and Heat Transfer. J. Fluid Mech., Vol. 216, pp. 381–410.

    Article  Google Scholar 

  70. 70. Davies, C.N. (1966). Aerosol Science, Academic Press, London.

    Google Scholar 

  71. 71. Davies, P.F. (1988). Endothelial Cells, Hemodynamic Stress, and the Localization of Atherosclerosis. CRC Press, Boca Raton.

    Google Scholar 

  72. 72. Davies, P.F. (1995). Flow-Mediated Endothelial Mechanotransduction. Physiol. Rev., Vol. 75, pp. 519–560.

    Article  Google Scholar 

  73. 73. Derjaguin, B.V., Muller, V.M., and Toporov, Y.P.T. (1975). Effect of Contact Deformation on the Adhesion of Particles. J. Colloid Interface Sci., Vol. 53, pp. 314–326.

    Article  Google Scholar 

  74. 74. Dewey, C.F., Jr., Bussolari, S.R., Gimbrone, M.A., Jr., and Davies, P.F. (1981). The Dynamic Response of Vascular Endothelial Cells to Fluid Shear Stress. J. Biomech. Eng., Vol. 103, pp. 177–185.

    Article  Google Scholar 

  75. 75. Ding, E.-J. and Aidun, C.K. (2003). Extension of the Lattice-Boltzmann Method for Direct Simulation of Suspended Particles Near Contact. J. Stat. Phys., Vol. 112, pp. 685–708.

    Article  Google Scholar 

  76. 76. Ding, E.-J. and Aidun, C.K. (2006). Cluster Size Distribution and Scaling for Spherical Particles and Red Blood Cells in Pressure-Driven Flows at Small Reynolds Number. Phys. Rev. Lett., Vol. 96, pp. 204502-1-4.

    Article  CAS  Google Scholar 

  77. 77. De Keulenaer, G.W. (1998). Oscillatory and Steady Laminar Shear Stress Differentially Affect Human Endothelial Redox State: Role of a Superoxide-Producing NADH Oxidase. Circ. Res., Vol. 82, 1094–1101.

    Article  Google Scholar 

  78. 78. DuPin, M.M., Halliday, I., and Care, C.M. (2006). A Multi-Component Lattice Boltzmann Scheme: Towards the Mesoscale Simulation of Blood Flow. Med. Eng. Phys., Vol. 28, pp. 13–18.

    Article  Google Scholar 

  79. 79. Drolet, F. and Vinals, J. (1998). Fluid Flow Induced by a Random Acceleration Field. Microgr. Sci. Technol., Vol. 11, pp. 64–68.

    Google Scholar 

  80. 80. Druzhinin, O.A. and Elghobashi, S.E. (1999). A Lagrangian-Eulerian mapping solver for direct numerical simulation of a bubble-laden homogeneous turbulent shear flow using the two-fluid formulation. J. Comput. Phys., Vol. 154, pp. 174–196.

    Article  Google Scholar 

  81. 81. Druzhinin, O.A. and Elghobashi, S.E. (1999). On the decay rate of isotropic turbulence laden with microparticles. Phys. Fluids, Vol. 11, pp. 602–610.

    Article  Google Scholar 

  82. Druzhinin, O.A. and Elghobashi, S.E. (2000). Direct numerical simulation of a three-dimensional spatially-developing bubble-laden mixing layer with two-way coupling. J. Fluid Mech.

    Google Scholar 

  83. 83. Drust, F., Milojevic, D., and Schonung, B. (1984). Appl. Math. Model., Vol. 8, pp. 101– 115.

    Article  Google Scholar 

  84. Eaton, J.K. (2000). Attenuation of Gas Turbulence by a Nearly Stationary Dispersion of Solid Particles. Fifth Microgravity Fluid Physics and Transport Phenomena Conference, Cleveland.

    Google Scholar 

  85. 85. Elghobashi, S. and Abou-Arab, T.W. (1983). A Two-Equation Turbulence Model for Two-Phase Flows. Phys. Fluids, Vol. 26, pp. 931–938.

    Article  Google Scholar 

  86. 86. Elghobashi, S. and Trusdell, G.C. (1992). Direct Simulation of Particle Dispersion in a Decaying Isotropic Turbulence. J. Fluid Mech., Vol. 242, pp. 655–700.

    Article  Google Scholar 

  87. 87. Ellison, J., Ahmadi, G., and Grodsinsky, C. (1995). Stochastic Model for Microgravity Excitation. ASCE J. Aerospace Eng., Vol. 8, pp. 100–106.

    Article  Google Scholar 

  88. 88. Ellison, J., Ahmadi, G., Regel, L., and Wilcox, W. (1995). Particle Motion in a Liquid Under g-Jitter Excitation. Microgr. Sci. Technol., Vol. 8, pp. 140–147.

    Google Scholar 

  89. 89. Ellison, J., Ahmadi, G., and Grodsinsky, C. (1997). Stochastic Response of Passive Vibration Control Systems to g-jitter Excitation. Microgr. Sci. Technol., Vol. 10, pp. 2–12.

    Google Scholar 

  90. 90. Evans, E.A. and Skalak, R. (1980). Mechanics and Thermodynamics of Biomembranes, CRC Press, Boca Raton.

    Google Scholar 

  91. 91. Fåhraeus, R. (1929). The Suspension Stability of the Blood. Physiol. Rev., Vol. 9, pp. 241– 274.

    Article  Google Scholar 

  92. 92. Fåhraeus, R. and Lindqvist, T. (1931). The Viscosity of Blood in Narrow Capillary Tubes. Am. J. Physiol., Vol. 96, pp. 562–568.

    Google Scholar 

  93. 93. Fan, F.G. and Ahmadi, G. (1993). A Sublayer Model for Turbulent Deposition of Particles in Vertical Ducts with Smooth and Rough Surfaces. J. Aerosol Sci., Vol. 24, pp. 45–64.

    Article  Google Scholar 

  94. 94. Fan, F.G. and Ahmadi, G. (1994). On the Sublayer Model for Turbulent Deposition of Particles in Presence of Gravity and Electric Fields. Aerosol Sci. Technol., Vol. 21, pp. 49–71.

    Article  Google Scholar 

  95. 95. Fan, F.G. and Ahmadi, G. (1995a). Dispersion of Ellipsoidal Particles in an Isotropic Pseudo-Turbulent Flow Field. ASME J. Fluid Eng., Vol. 117, pp. 154–161.

    Article  Google Scholar 

  96. 96. Fan, F. and Ahmadi, G. (1995b). A Sublayer Model for Wall Deposition of Ellipsoidal Particles in Turbulent Stream. J. Aerosol Sci., Vol. 25, pp. 813–840.

    Article  Google Scholar 

  97. 97. Fan, F. and Ahmadi, G. (2000). Wall Deposition of Small Ellipsoids from Turbulent Air Flow – A Brownian Dynamics Simulation. J. Aerosol Sci., Vol. 31, pp. 1205–1229.

    Article  Google Scholar 

  98. Faxen, H. (1923). Die Bewegung einer starren Kugel längs der Achse eines mit zäher Flüssigkeit gefüllten Rohres. Arkiv. Mat. Astron. Fys., Vol. 17, No. 27.

    Google Scholar 

  99. 99. Fernandez de la Mora, J. and Friedlander, S.K. (1982). Aerosol and Gas Deposition to Fully Rough Surfaces: Filtration Model for Blade-Shaped Elements. Int. J. Heat Mass Transfer, Vol. 25, pp. 1725–1735.

    Article  Google Scholar 

  100. 100. Fichman, M., Gutfinger, C., and Pnueli, D. (1988). A Model for Turbulent Deposition of Aerosols. J. Aerosol Sci., Vol. 19, pp. 123–136.

    Article  Google Scholar 

  101. FLUENTâ„¢ User's Guide. (2001). Computational Fluid Dynamic Software, Version 6.0.12, Fluent, New Hampshire.

    Google Scholar 

  102. 102. Friedlander, S.K. (1977). Smoke, Dust and Haze – Fundamentals of Aerosol Behaviour, Wiley, New York.

    Google Scholar 

  103. 103. Friedlander, S.K. and Johnstone, H.F. (1957). Deposition of Suspended Particles from Turbulent Gas Streams. Ind. Eng. Chem., Vol. 49, pp. 1151–1156.

    Article  Google Scholar 

  104. 104. Frisch, U., Hasslacher, B., Pomeau, Y. (1986). Lattice-Gas Automata for the Navier-Stokes Equation. Phys. Rev. Lett., Vol. 56, 1505–1508.

    Article  Google Scholar 

  105. 105. Fuchs, N.A. (1964). The Mechanics of Aerosols, Pergamon Press, Oxford.

    Google Scholar 

  106. 106. Fung, Y.C. (1993). Biomechanics, Mechanical Properties of Living Tissues, 2nd Ed, Springer-Verlag, Berlin.

    Google Scholar 

  107. 107. Gallily, I. and Eisner, A.D. (1979). On the Orderly Nature of the Motion of Non-Spherical Aerosol Particles. I. Deposition from a Laminar Flow. J. Colloid Interface Sci., Vol. 68, pp. 320–337.

    Article  Google Scholar 

  108. 108. Giddens, D.P., Zarins, C.K., and Glagov, S. (1993). The Role of Fluid Mechanics in the Localization and Detection of Atherosclerosis. J. Biomech. Eng., Vol. 115, pp. 588–594.

    Article  Google Scholar 

  109. 109. Goldman, A.J., Cox, R.G., and Brenner, H. (1967a). Slow Viscous Motion of a Sphere Parallel to a Plane Wall. I. Motion Through a Quiescent Fluid. Chem. Eng. Sci., Vol. 22, pp. 637–651.

    Article  Google Scholar 

  110. 110. Goldman A.J., Cox, R.G., and Brenner, H. (1967b). Slow Viscous Motion of a Sphere Parallel to a Plane Wall. II. Couette Flow. Chem. Eng. Sci., Vol. 22, pp. 653–660.

    Article  Google Scholar 

  111. 111. Goldschmidt, V., Householder, M.K., Ahmadi, G., and Chuang, S.C. (1972). Turbulent Diffusion of Small Particles Suspended in Turbulent Jets. Prog. Heat Mass Transfer, Vol. 6, pp. 487–508.

    Google Scholar 

  112. 112. Goldsmith, H.L. and Mason, S.G. (1962). The Flow of Suspensions through Tubes. I. Single Spheres, Rods, and Discs. J. Colloid Sci., Vol. 17, pp. 448–476.

    Article  Google Scholar 

  113. 113. Goldsmith, H.L. (1971). Deformation of Human Red Cells in Tube Flow. Biorheology, Vol. 7, pp. 235–242.

    Article  Google Scholar 

  114. 114. Goldsmith, H.L. and Marlow, J. (1972). Flow Behavior of Erythrocytes I. Rotation and Deformation in Dilute Suspensions. Proc. R. Soc. Lond. B, Vol. 182, pp. 351–384.

    Article  Google Scholar 

  115. 115. Goldsmith, H.L. and Skalak, R. (1975). Hemodynamics. Ann. Rev. Fluid Mech., Vol. 7, pp. 213–247.

    Article  Google Scholar 

  116. 116. Gosman, A.D. and Ioannides, E. (1983). Aspects of Computer Simulation of Liquid-Fueled Combustors. J. Energy, Vol. 7, pp. 482–490.

    Article  Google Scholar 

  117. 117. Gradon, L., Grzybowski, P., and Pilacinski, W. (1988). Analysis of Motion and Deposition of Fibrous Particles on a Single Filter Element. Chem. Eng. Sci., Vol. 43, pp. 1253– 1259.

    Article  Google Scholar 

  118. 118. Griendling, K.K. and Harrison, D.G. (2001). Out, Damned Dot: Studies of the NADPH Oxidase in Atherosclerosis. J. Clin. Invest., Vol. 108, pp. 1423–1424.

    Article  Google Scholar 

  119. Groszmann, D. E., et al. (1998). Decoupling the Roles of Inertia and Gravity on Particle Dispersion. Proceeding of the Fourth Microgravity Fluid Physics & Transport Phenomena Conference, NASA Lewis Research Center, Cleveland, OH, pp. 117–118.

    Google Scholar 

  120. 120. Hahn, I., Scherer P.W., and Mozell M.M. (1993). Velocity Profiles Measured for Airflow through A Large-Scale Model of the Human Nasal Cavity. J. Appl. Physiol., Vol. 75, pp. 2273–2287.

    Article  Google Scholar 

  121. 121. Hall, D. (1988). Measurements of the Mean Force on a Particle Near a Boundary in Turbulent Flow. J. Fluid Mech., Vol. 187, pp. 451–466.

    Article  Google Scholar 

  122. 122. Hamaker, H.C. (1937). The London–van der Waals Attraction Between Spherical Particles. Physica, Vol. 4, pp. 1058–1072.

    Article  Google Scholar 

  123. 123. Harrison, D., Griendling, K.K., Landmesser, U., Hornig, B., and Dexler, H. (2003). Role of Oxidative Stress in Atherosclerosis. Am. J. Cardiol., Vol. 91, pp. 7A–11A.

    Article  Google Scholar 

  124. 124. He, C. and Ahmadi, G. (1998). Particle Deposition with Themophoresis in Laminar and Turbulent Duct Flows. Aerosol Sci. Technol., Vol. 29, pp. 525–546.

    Article  Google Scholar 

  125. 125. He, C. and Ahmadi, G. (1999). Particle Deposition in a Nearly Developed Turbulent Duct Flow with Electrophoresis. J. Aerosol Sci., Vol. 30, pp. 739–758.

    Article  Google Scholar 

  126. Hetsroni, Haber, G.S., Brenner, H., and Greenstein, T. (1971). A Second-Order Theory for a Deformable Drop Suspended in a Long Conduit. In Progress in Heat and Mass Transfer, Vol. 6, Edited by Hetsroni, G., Pergamon, Oxford/New York, pp. 591–612.

    Google Scholar 

  127. 127. Heyder, J., Gabhart, J., Rudolf, G., Schiller, C.F., and Stahlhofen, W. (1986). Deposition of Particles in the Human Respiratory Tract in the Size Range 0.005μm. J. Aerosol Sci., Vol. 17, pp. 811–825.

    Article  Google Scholar 

  128. 128. Hidy, G. M. (1984). Aerosols, an Industrial and Environmental Science, Academic Press, New York.

    Google Scholar 

  129. 129. Hinds, W.C. (1982). Aerosol Technology, Properties, Behavior, and Measurement of Airborne Particles, Wiley, New York.

    Google Scholar 

  130. 130. Hinze, J. O. (1975). Turbulence, McGraw Hill, New York.

    Google Scholar 

  131. 131. Hoppel, W.A. and Frick, G.M. (1986). Ion-aerosol attachment coefficients and the steady-state charge distribution on aerosol in a bipolar environment. Aerosol Sci. Technol., Vol. 5, pp. 1–21.

    Article  Google Scholar 

  132. Hwang, N.H.C., Gross, D.R., and Patel, D.J. (Eds.) (1978). Quantitative Cardiovascular Studies: Clinical and Research Applications of Engineering Principles, University Park Press, Baltimore, pp. 289–351.

    Google Scholar 

  133. 133. Ibrahim, A.H., Dunn, P.F., and Brach, R.M. (2003). Microparticle Detachment from Surfaces Exposed to Turbulent Air Flow: Controlled Experiments and Modeling. J. Aerosol Sci., Vol. 34, pp. 765–782.

    Article  CAS  Google Scholar 

  134. 134. Jan, K.-M. and Chien, S. (1973a). Role of Surface Electric Charge on Red Blood-Cell Interactions. J. Gen. Physiol., Vol. 61, pp. 638–654.

    Article  Google Scholar 

  135. 135. Jan, K.-M. and Chien, S. (1973b). Influence of Ionic Composition of Fluid Medium on Red-Cell Aggregration. J. Gen. Physiol., Vol. 61, pp. 655–668.

    Article  Google Scholar 

  136. 136. Johnson, K.L., Kendall, K., and Roberts, A.D. (1971). Surface Energy and the Contact of Elastic Solids. Proc. R. Soc. Lond. A, Vol. 324, pp. 301–313.

    Article  Google Scholar 

  137. 137. Johnson, J.R. and Schroter, R.C. (1979). Deposition of Particles in Model Airways. J. Appl. Physiol., Vol. 47, pp. 947–953.

    Article  Google Scholar 

  138. Jurewicz, J.T. and Stock, D.E. (1976). ASME WAM, Paper No. 76-WA/PE-33.

    Google Scholar 

  139. 139. Kaazempur-Mofrad, M.R., Isasi, A.G., Younis, H.F., Chan, R.C., Hinton, D.P., Sukhova, G., Lamuraglia, G.M., Lee, R.T., and Kamm, R.D. (2004). Characterization of the Atherosclerotic Carotid Bifurcation using MRI, Finite Element Modeling, and Histology. Ann. Biomed. Eng., Vol. 32, pp. 932– 946.

    Article  Google Scholar 

  140. 140. Kamm, R.D. (2002). Cellular Fluid Mechanics. Ann. Rev. Fluid Mech., Vol. 34, pp. 211–232.

    Article  Google Scholar 

  141. 141. Karnis, A. and Mason, S.G. (1967). Particle Motions in Sheared Suspensions. J. Colloid Interface Sci., Vol. 24, pp. 161–169.

    Article  Google Scholar 

  142. 142. Karino, T. and Goldsmith, H.L. (1980). Disturbed Flow in Models of Branching Vessels. Trans. Am. Soc. Artif. Internal Organs, Vol. 26, pp. 500–506.

    Google Scholar 

  143. 143. Karino, T. and Goldsmith, H.L. (1984). Role of Blood Cell-Wall Interactions in Thrombogenesis and Atherosclerosis: A Microrheological Study. Biorheology, Vol. 21, pp. 587–601.

    Article  Google Scholar 

  144. 144. Karino, T., Asakura, T., and Mabuchi, S. (1988). Role of Hemodynamic Factors in Atherogenesis. Adv. Exp. Med. Biol., Vol. 242, pp. 51–57.

    Article  Google Scholar 

  145. 145. Kelly, J.T., Prasad, A.K., and Wexler, A.S. (2000). Detailed Flow Patterns in The Nasal Cavity. J. Appl. Physiol., Vol. 89, pp. 323–337.

    Article  Google Scholar 

  146. 146. Kelly, J.T., Asgharian, B., Kimbell, J.S., Wong, B.A. (2004). Particle Deposition in Human Nasal Airway Replicas Manufactured by Different Methods. II. Ultrafine Particles. Aerosol Sci. Technol., Vol. 38, pp. 1072–1079.

    Article  CAS  Google Scholar 

  147. 147. Keyhani, K., Scherer, P.W., and Mozell, M.M. (1995) Numerical Simulation of Airflow in the Human Nasal Cavity. J. Biomech. Eng., Vol. 117, pp. 429–441.

    Article  Google Scholar 

  148. 148. Kim, C.S. and Fisher, D.M. (1999). Deposition of Aerosol Particles in Successively Bifurcating Airways Models. Aerosol Sci. Technol., Vol. 31, pp. 198–220.

    Article  Google Scholar 

  149. 149. Kim, C.S., Fisher, D.M., Lutz, D.J., and Gerrity, T.R. (1994). Particle Deposition in Bifurcating Airway Models with Varying Airway Geometry. J. Aerosol Sci., Vol. 25, pp. 567–581.

    Article  Google Scholar 

  150. 150. Kim, C.S. and Iglesias, A.J. (1989). Deposition of Inhaled Particles in Bifurcating Airways Models. I. Inspiratory Deposition. J. Aerosol Med., Vol. 2, pp. 1–14.

    Article  Google Scholar 

  151. 151. Kimbell, J.S. (2001). Computational Fluid Dynamics of the Extrathoracic Airways, Medical Applications of Computer Modelling: The Respiratory System, WIT Press, United Kingdom.

    Google Scholar 

  152. 152. Krushkal, E.M. and Gallily, I. (1984). On the Orientation Distribution Function of Non-Spherical Aerosol Particles in a General Shear Flow. I. The Laminar Case. J. Colloid Interface Sci., Vol. 99, pp. 141–152.

    Article  Google Scholar 

  153. 153. Ku, D.N. (1997). Blood Flow in Arteries. Annu. Rev. Fluid Mech., Vol. 29, 399–434.

    Article  Google Scholar 

  154. 154. Ku, D.N., Giddens, D.P., Phillips, D.J., and Strandress, D.E., Jr. (1985a). Hemodynamics of the Normal Human Carotid Bifurcation: In Vitro and In Vivo Studies. Ultrasound Med. Biol., Vol. 11, pp. 13–26.

    Article  Google Scholar 

  155. 155. Ku, D.N., Giddens, D.P., Zarins, C.K., and Glagov, S. (1985b). Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation. Positive Correlation between Plaque Location and Low Oscillating Shear Stress. Arterioscler. Thromb. Vasc. Biol., Vol. 5, pp. 293–302.

    Google Scholar 

  156. 156. Kvasnak, W. and Ahmadi, G. (1995). Fibrous Particle Deposition in a Turbulent Channel Flow – An Experimental Study. Aerosol Sci. Technol., Vol. 23, pp. 641–652.

    Article  Google Scholar 

  157. 157. Kvasnak, W. and Ahmadi, G. (1996). Deposition of Ellipsoidal Particles in Turbulent Duct Flows. Chem. Eng. Sci., Vol. 51, pp. 5137–5148.

    Article  Google Scholar 

  158. 158. Kvasnak, W., Ahmadi, G., Bayer, R., and Gaynes, M.A. (1993). Experimental Investigation of Dust Particle Deposition in a Turbulent Channel Flow. J. Aerosol Sci., Vol. 24, pp. 795–815.

    Article  Google Scholar 

  159. 159. Lane, D.D. and Stukel, J.J. (1978). Aerosol Deposition on a Flat Plate. Aerosol Sci., Vol. 9, pp. 191–197.

    Article  Google Scholar 

  160. 160. Launder, B.E., Reece, G.J., Rodi, W. (1975). Progress in Development of a Reynolds-Stress Turbulence Closure, J. Fluid Mech., Vol. 68, pp. 537–566.

    Article  Google Scholar 

  161. 161. Lawless, P.A. (1996). Particle Charging Bounds, Symmetry Relations, and an Analytic Charging Rate Model for the Continuum Regime. J. Aerosol Sci., Vol. 27, pp. 191–215.

    Article  Google Scholar 

  162. 162. Leal, L.G. (1980). Particle Motions in a Viscous Fluid. Annu. Rev. Fluid Mech., Vol. 12, pp. 435–476.

    Article  Google Scholar 

  163. 163. Lee, S.L. and Durst, F. (1982). On the Motion of Particles in Turbulent Duct Flows. Int. J. Multiphase Flow, Vol. 8, pp. 125–146.

    Article  Google Scholar 

  164. 164. Leighton, D.T. and Acrivos, A. (1985). The Lift on a Small Sphere Touching a Plane in the Presence of a Simple Shear Flow. Z. Angew. Math. Phys., Vol. 36, pp. 174–178.

    Article  Google Scholar 

  165. 165. Lerman, A. (1979). Geochemical Processes, Wiley, New York.

    Google Scholar 

  166. 166. Levich, V. (1962). Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  167. 167. Li, A. and Ahmadi, G. (1992). Dispersion and Deposition of Spherical Particles from Point Sources in a Turbulent Channel Flow, Aerosol Sci. Technol., Vol. 16, pp. 209–226.

    Google Scholar 

  168. 168. Li, A. and Ahmadi, G. (1993). Deposition of Aerosol on Surfaces in a Turbulent Channel Flow. Int. J. Eng. Sci., Vol. 31, pp. 435–451.

    Article  Google Scholar 

  169. 169. Li, A. and Ahmadi, G. (1993). Computer Simulation of Deposition of Aerosols in a Turbulent Channel Flow With Rough Walls. Aerosol Sci. Technol., Vol. 18, pp. 11–24.

    Article  Google Scholar 

  170. 170. Li, A. and Ahmadi, G. (1993). Aerosol Particle Deposition with Electrostatic Attraction in a Turbulent Channel Flow. J. Colloid Inteface Sci., Vol. 158, pp. 476–482.

    Article  Google Scholar 

  171. 171. Li, A., Ahmadi, G., Bayer, R., and Gaynes, M.A. (1994). Aerosol Particle Deposition in an Obstructed Turbulent Duct Flow. J. Aerosol Sci., Vol. 25, pp. 91–112.

    Article  Google Scholar 

  172. 172. Li, A. and Ahmadi, G. (1995). Computer Simulation of Particle Deposition in the Upper Tracheobronchial Tree. Aerosol Sci. Technol., Vol. 23, pp. 201–223.

    Article  Google Scholar 

  173. 173. Liu, B.Y.H. and Agarwal, J.K. (1974). J. Aerosol Sci., Vol. 5, pp. 145–155.

    Article  Google Scholar 

  174. 174. Liu, B.Y.H. and Kapadia, H. (1978). Combined Field and Diffusion Charging of Aerosol Particles in the Continuum Regime. J. Aerosol Sci., Vol. 9, pp. 227–242.

    Article  Google Scholar 

  175. 175. Luft, J.H. (1966). Fine Structures of Capillary and Endocapillary Layer as Revealed by Ruthenium Red. Fed. Proc., Vol. 25, pp. 1773–1783.

    Google Scholar 

  176. 176. Maugis, D. and Pollock, H.M. (1984). Surface Forces, Deformation and Adherence at Metal Microcontact. Acta Met., Vol. 32, pp. 1323–1334.

    Article  Google Scholar 

  177. 177. Martonen, T.B., Yang, Y., and Xue, Z.Q. (1994). Effects of Carinal Ridge Shapes on Lung Airstreams. Aerosol Sci. Technol., Vol. 21, pp. 119–136.

    Article  Google Scholar 

  178. 178. Martonen, T.B., Zhang, Z., and Lessmann, R.C. (1993). Fluid Dynamics of the Human Larynx and Upper Tracheobronchial Airways. Aerosol Sci. Technol., Vol. 19, pp. 133–156.

    Article  Google Scholar 

  179. 179. Martonen, T.B., Zhang, Z., Yue, G., and Musante, C.J. (2003). Fine Particle Deposition within Human Nasal Airways. Inhal. Toxicol., Vol. 15, pp. 283–303.

    Article  Google Scholar 

  180. 180. Marshall, J.R. (1998). Electrostructural Phase Changes in Charged Particulate Clouds: Planetary and Astrophysical Implications. LPSC, Vol. 29, pp. 1132.

    Google Scholar 

  181. 181. Maxey, M.R. (1987). The Gravitational Settling of Aerosol Particle in Homogeneous Turbulence and Random Flow Fields. J. Fluid Mech., Vol. 174, pp. 441–445.

    Article  Google Scholar 

  182. 182. Maxey, M.R. and Riley, J.J. (1983). Equation of Motion for a Small Rigid Sphere in a Nonuniform Flow. Phys. Fluid., Vol. 26, pp. 883–889.

    Article  Google Scholar 

  183. 183. Mazaheri, A.R. and Ahmadi, G. (2002). Inspiratory Particle Deposition in the Upper Three Airway bifurcation. 21st Annual Conference of the American Association for Aerosol Research, AAAR 2002, Charlotte, NC.

    Google Scholar 

  184. 184. Mazaheri, A.R. and Ahmadi, G. (2003). Inspiratory Particle Deposition in the Upper Three Airway bifurcation. 21st Annual Conference of the American Association for Aerosol Research, AAAR 2002, Charlotte, NC.

    Google Scholar 

  185. 185. Mazaheri, A.R. and Ahmadi, G. (2004). Modeling Inspiratory Particle Deposition. ASME Heat Transfer/Fluid Engineering Summer Conference, Charlotte, NC.

    Google Scholar 

  186. 186. McCoy, D. D. and Hanratty, T.J. (1977). Rate of Deposition of Droplets in Annular Two-Phase Flow. Int. J. Multiphase Flow, Vol. 3, pp. 319–331.

    Article  Google Scholar 

  187. 187. McLaughlin, J.B. (1989). Aerosol Particle Deposition in Numerically Simulated Channel Flow. Phys. Fluids A, Vol. 7, pp. 1211–1224.

    Article  Google Scholar 

  188. 188. McLaughlin, J.B. (1991). Inertial Migration of a Small Sphere in Linear Shear Flows. J. Fluid Mech., Vol. 224, pp. 261–274.

    Article  Google Scholar 

  189. 189. McLaughlin, J.B. (1993). The Lift on a Small Sphere in Wall-Bounded Linear Shear Flows. J. Fluid. Mech., Vol. 246, pp. 249–265.

    Article  Google Scholar 

  190. 190. Mei, R. (1992). An Approximate Expression for the Shear Lift Force on a Spherical Particle at Finite Reynolds Number. Int. J. Multiphase Flow, Vol. 18, pp. 145–147.

    Article  Google Scholar 

  191. 191. McLaughlin, J.B. (1994). Numerical Computation of Particles-Turbulence Interaction. Int. J. Multiphase Flow, Vol. 20, pp. 211–232.

    Article  Google Scholar 

  192. 192. Meiselman, H.J., Merrill, E.W., Salzman, E., Gilliland, E.R., Pelletier, G.A. (1967). Effect of Dextran on Rheology of Human Blood – Low Shear Viscometry. J. Appl. Physiol., Vol. 22, pp. 480–486.

    Article  Google Scholar 

  193. 193. Mercer, T.T. (1973). Aerosol Technology in Hazard Evaluation of Airborne Particles, Academic Press, New York.

    Google Scholar 

  194. 194. Modarress, D., Wuerer, J., and Elghobashi, S. (1984). Chem. Eng. Commun., Vol. 28, pp. 341–354.

    Article  Google Scholar 

  195. 195. Mollinger, A.M. and Nieuwstadt, F.T.M. (1996). Measurement of the Lift Force on a Particle Fixed to the Wall in the Viscous Sublayer of a Fully Developed Turbulent Boundary Layer. J. Fluid Mech., Vol. 216, pp. 285–306.

    Article  Google Scholar 

  196. 196. Mulivor, A.W. and Lipowsky, H.H. (2004). Inflammation- and Ischemia-Induced Shedding of Venular Glycocalyx. Am. J. Physiology Heart Circ. Physiol., Vol. 286, pp. H1672–H1680.

    Article  Google Scholar 

  197. 197. Nerem, R.M. (1985). Atherosclerosis: Hemodynamics, Vascular Geometry, and the Endothelium. Biorheology, Vol. 21, pp. 565–569.

    Article  Google Scholar 

  198. 198. Nerem, R.M. and Girard, P.R. (1990). Hemodynamic Influences on Vascular Endothelial Biology. Toxicol. Pathol., Vol. 18, pp. 572–582.

    Google Scholar 

  199. 199. Nerem, R.M. (1993). Hemodynamics and Vascular Endothelial Biology. J. Cardiovasc. Pharmacol., Vol. 21, pp. S6–S10.

    Article  Google Scholar 

  200. 200. Norris, R. (1869). On the Laws and Principles Concerned in the Aggregation of Blood-Corpuscles Both Within and Without the Vessels. Proc. R. Soc. Lond., Vol. 17, pp. 429–436.

    Article  Google Scholar 

  201. 201. Ounis, H. and Ahmadi, G. (1989). Motions of Small Rigid Spheres in a Simulated Random Velocity Field. ASCE J. Eng. Mech., Vol. 115, pp. 2107–2121.

    Article  Google Scholar 

  202. 202. Ounis, H. and Ahmadi, G. (1990). Analysis of Dispersion of Small Spherical Particles in a Random Velocity Field. ASME J. Fluid Eng., Vol. 112, pp. 114–120.

    Article  Google Scholar 

  203. 203. Ounis, H. and Ahmadi, G. (1990). A Comparison of Brownian and Turbulent Diffusions. Aerosol Sci. Technol., Vol. 13, pp. 47–53.

    Article  Google Scholar 

  204. 204. Ounis, H. and Ahmadi, G. (1991). Motions of Small Particles in Simple Shear Flow Field under Microgravity Condition. Phys. Fluids A, Vol. 3, pp. 2559–2570.

    Article  Google Scholar 

  205. 205. Ounis, H., Ahmadi, G., and McLaughlin, J.B. (1991a). Brownian Diffusion of Submicron Particles in the Viscous Sublayer. J. Colloid Interface Sci., Vol. 143, pp. 266–277.

    Article  Google Scholar 

  206. 206. Ounis, H., Ahmadi, G., and McLaughlin, J.B. (1991b). Dispersion and Deposition of Brownian Pericles from Point Sources a Simulated Turbulent Channel flow. J. Colloid interface Sci., Vol. 147, pp. 233–250.

    Article  Google Scholar 

  207. 207. Ounis, H., Ahmadi, G., and McLaughlin, J.B. (1993). Brownian Particle Deposition in a Directly Simulated Turbulent Channel Flow. Phys. Fluids A, Vol. 5, pp. 1427–1432.

    Article  Google Scholar 

  208. 208. Owen, P.R. (1960). Aerodynamic Capture of Particles. Pergamon, Oxford, p. 8.

    Google Scholar 

  209. 209. Papavergos, P.G. and Hedley, A.B. (1984). Particle Deposition Behavior from Turbulent Flow. Chem. Eng. Res. Des., Vol. 62, pp. 275–295.

    Google Scholar 

  210. 210. Peters, M.H., Cooper, D.W, and Miller, R.J. (1989). J. Aerosol Sci., Vol. 20, pp. 123–136.

    Article  Google Scholar 

  211. 211. Pope, S.B. and Chen, Y.L. (1990). Phys. Fluids, Vol. 2, pp. 1437–1449.

    Article  Google Scholar 

  212. 212. Pope, S.B. (1991). Ann. Rev. Fluid Mech., Vol. 26, pp. 23–63.

    Article  Google Scholar 

  213. 213. Pozrikidis, C. (1990). The Axisymmetric Deformation of a Red Blood Cell in Uniaxial Straining Flow. J. Fluid Mech., Vol. 216, pp. 231–254.

    Article  Google Scholar 

  214. 214. Pozrikidis, C. (1992). The Axisymmetric Deformation of a Red Blood Cell in Uniaxial Straining Flow. J. Fluid Mech., Vol. 216, pp. 231–254.

    Article  Google Scholar 

  215. Pozrikidis, C. (Ed.) (2003). Modeling and Simulation of Capsules and Biological Cells, Chapman and Hall/CRC Mathematical Biology and Medicine Series, Boca Raton.

    Google Scholar 

  216. 216. Pozrikidis, C. (2002). A Practical Guide to Boundary Element Methods with the Software Library BEMLIB, Chapman and Hall/CRC Mathematical Biology and Medicine Series, Boca Raton.

    Book  Google Scholar 

  217. 217. Reeks, M.W. (1977). On the Dispersion of Small Particles Suspended in an Isotropic Turbulent Flow. J. Fluid Mech., Vol. 83, pp. 529–546.

    Article  Google Scholar 

  218. 218. Reeks, M.W. and Mckee, S. (1984). The Dispersive Effect of Basset History Forces on Particle Motion in a Turbulent Flow. Phys. Fluid, Vol. 27, pp. 1573–1582.

    Article  Google Scholar 

  219. 219. Riley, J.J. and Corrsin, S. (1974). The Relation of Turbulent Diffusivities to Lagrangian Velocity Statistics for the Simplest Shear Flow. J. Geophys. Res., Vol. 79, pp. 1768–1771.

    Article  Google Scholar 

  220. 220. Riley, J.J. and Patterson, G.S., Jr. (1974). Diffusion Experiments with Numerically Integrated Isotropic Turbulence. Phys. Fluid, Vol. 17, pp. 292–297.

    Article  Google Scholar 

  221. 221. Rizk, M.A. and Elghobashi, S.E. (1985). The Motion of a Spherical Particle Suspended in a Turbulent Flow near a Plane Wall. Phys. Fluids, Vol. 20, pp. 806–817.

    Article  Google Scholar 

  222. 222. Rouhiainen, P.O. and Stachiewiz, J.W. (1970). On the Deposition of Small Particles from Turbulent Streams. J. Heat Transfer, Vol. 92, pp. 169–177.

    Article  Google Scholar 

  223. 223. Raabe, O.G., Yeh, H.C., Schum G.M., and Phalen, R.F. (1976). Tracheobronchial Geometry: Human, Dog, Rat and Hamster, LF53, Lovelace Foundation Report, New Mexico.

    Google Scholar 

  224. 224. Skalak, R., Tozeren, A., Zarda, P.R., and Chien, S. (1973). Strain Energy Function of Red Blood Membranes. Biophys. J., Vol. 13, pp. 245–264.

    Article  Google Scholar 

  225. 225. Skalak, R., Ozkaya, N., and Skalak, T.C. (1989). Biofluid Mechanics. Ann. Rev. Fluid Mech., Vol. 21, pp. 167–204.

    Article  Google Scholar 

  226. 226. Squire, J.M., Chew, M., Nneji, G., Neal, C., Barry, J., and Michel, C. (2001). Quasi-Periodic Substructure in the Microvessel Endothelial Glycocalyx: A Possible Explanation for Molecular Filtering? J. Struct. Biol., Vol. 136, pp. 239–255.

    Article  Google Scholar 

  227. 227. Takeshita, S., Inoue, N., Ueyama, T., Kawashima, S., and Yokoyama, M. (2000). Shear Stress Enhances Glutathione Peroxidase Expression in Endothelial Cells. Biochem. Biophys. Res. Commun., Vol. 273, pp. 66–71.

    Article  CAS  Google Scholar 

  228. 228. Tanganelli, P., et al. (1993). Distributions of Lipid and Raised Lesions in Aortas of Young People of Different Geographic Origins (WHO-ISFC PBDAY Study). World Health Organization-International Society and Federation of Cardiology. Pathobiological Determinants of Atherosclerosis in Youth. Arterioscler. Thromb., Vol. 13, pp. 1700–1710.

    Article  Google Scholar 

  229. 229. Tarbell, J.M. (2003). Mass Transport in Arteries and the Localization of Atherosclerosis. Ann. Rev. Biomed. Eng., Vol. 5, pp. 79–118.

    Article  CAS  Google Scholar 

  230. 230. Saffman, P.G. (1965). The Lift on a Small Sphere in a Slow Shear Flow. J. Fluid Mech., Vol. 22, pp. 385–400.

    Article  Google Scholar 

  231. 231. Saffman, P.G. (1968). Corrigendum to the Lift on a Small Sphere in a Slow Shear Flow. J. Fluid Mech., Vol. 31, p. 264.

    Google Scholar 

  232. 232. Schamberger, M. R., Peters, J. E., and Leong, K. H. (1990). Collection of Prolate Spheroidal Aerosol Particles by Charged Spherical Collectors. J. Aerosol Sci., Vol. 21, pp. 539–554.

    Article  Google Scholar 

  233. 233. Schreck, S., Sullivan, K.J., Ho, C.M., and Chang, H.K. (1993). Correlations Between Flow Resistance and Geometry in a Model Of The Human Nose. J. Appl. Physiol., Vol. 75, pp. 1767–1775.

    Article  Google Scholar 

  234. 234. Sehmel, G.A. (1973). Particle Eddy Diffusities and Deposition Velocities for Isothermal Flow and Smooth Surfaces. J. Aerosol Sci., Vol. 4, pp. 125–138.

    Article  Google Scholar 

  235. 235. Seinfeld, J.H. (1986). Atmospheric Chemistry and Physics of Air Pollution, Wiley, New York.

    Google Scholar 

  236. 236. Shapiro, M. and Goldenberg, M. (1993). Deposition of Glass Fiber Particles from Turbulent Air Flow in a Pipe. J. Aerosol Sci., Vol. 24, pp. 65–87.

    Article  Google Scholar 

  237. 237. Shams, M., Ahmadi, G., and Rahimzadeh, H. (2000). A Sublayer Model for Deposition of Nano- and Micro-Particles in Turbulent Flows. Chem. Eng. Sci., Vol. 55, pp. 6097–6107.

    Article  Google Scholar 

  238. 238. Scherer, P.W., Keyhani, K., Mozell, M.M. (1994). Nasal Dosimetry Modeling for Humans. Inhal. Toxicol., Vol. 6, pp. 85–97.

    Google Scholar 

  239. 239. Snyder, W.H. and Britter, R.E. (1987). Atmos. Environ., Vol. 21, pp. 735–751.

    Google Scholar 

  240. 240. Snyder, W.H. and Lumley, J.L. (1971). Some Measurements of Particle Velocity Autocorrelation Functions in a Turbulent Flow. J. Fluid Mech., Vol. 48, pp. 41–71.

    Article  Google Scholar 

  241. 241. Soltani, M. and Ahmadi, G. (1995). Direct Numerical Simulation of Particle Entrainment in Turbulent Channel Flow. Phys. Fluid A, Vol. 7, pp. 647–657.

    Article  Google Scholar 

  242. 242. Soltani, M., Ahmadi, G., Ounis, H., and McLaughlin, J.B. (1998). Direct Numerical Simulation of Charged Particle Deposition in a Turbulent Channel Flow. Int. J. Multiphase Flow, Vol. 24, pp. 77–92.

    Article  Google Scholar 

  243. 243. Soltani, M. and Ahmadi, G. (2000). Direct Numerical Simulation of Curly Fibers in Turbulent Channel Flow. Aerosol Sci. Technol., Vol. 33, pp. 392–418.

    Article  Google Scholar 

  244. 244. Spurny, K.R. (1986). Physical and Chemical Characterization of Individual Airborne Particles, Wiley, New York.

    Google Scholar 

  245. 245. Squires, K.D. and Eaton, J.K. (1991). On the preferential concentration of solid particles in turbulent. Phys. Fluid A, Vol. 3, pp. 1169–1178.

    Article  Google Scholar 

  246. 246. Stapleton, K.W., Guentsch, E., Hoskinson, M.K., and Finlay, W.H. (2000). On the Suitability of \({\rm k}\hbox{--}\overline{\omega}\) Turbulence Modeling for Aerosol Deposition in the Mouth and Throat: A Comparison with Experiment. J. Aerosol Sci., Vol. 31, pp. 739–749.

    Article  Google Scholar 

  247. Strong J. C. and Swift D.L. (1987). Deposition of Ultrafine Particles in a Human Nasal Cast. Proceedings of the First Conference of Aerosol Society, Loughborogh University of Technology, Loughborogh, pp. 109–112.

    Google Scholar 

  248. 248. Subramaniam, R.P., Richardson, R.B., Morgan, K.T., Kimbell, J.S., and Guilmette, R.A. (1998). Computational Fluid Dynamics Simulations of Inspiratory Airflow in the Human Nose and Nasopharynx. Inhal. Toxicol., Vol. 10, pp. 91–120.

    Article  Google Scholar 

  249. 249. Swift, D.L. and Proctor, D.F. (1977). Access of Air to the Respiratory Tract. In Respiratory Defense Mechanisms, Part 1, Edited by Brian, J.D., Proctor, D.F., and Reid, L.M., Dekker, New York, pp. 63–93.

    Google Scholar 

  250. 250. Swift, D.L., Montassier, N., Hopke, P.K., Karpen-Hayes, K., Cheng, Y.S., Su, Y.F., Yeh, H.C., and Strong, J.C. (1992a). Inspiratory Deposition of Ultrafine Particles in Human Nasal Replicate Casts. J. Aerosol Sci., Vol. 23, pp. 65–72.

    Article  Google Scholar 

  251. 251. Swift, D.L., Montassier, N., Hopke, P.H., Karpen-Hayes K., Cheng, Y.S., Su, Y.F., Yeh, H.C., and Strong, J.C. (1992b). Inspiratory Deposition of Ultrafine Particles in Human Nasal Replicate Cast. J. Aerosol Sci., Vol. 23, pp. 65–72.

    Article  Google Scholar 

  252. 252. Swift, D.L. and Strong, J.C. (1996). Nasal Deposition of Ultrafine 218Po Aerosols in Human Subjects. J. Aerosol Sci., Vol. 27, pp. 1125–1132.

    Article  Google Scholar 

  253. 253. Tavoularis, S. and Corrsin, S. (1985). Effects of Shear on the Turbulent Diffusivity Tensor. Int. J. Heat Transfer, Vol. 28, pp. 265–274.

    Article  Google Scholar 

  254. 254. Tchen, C.M. (1947). Mean Value and Correlation Problems Connected with the Motion of Small Particles Suspended in a Turbulent Field. Ph.D. Thesis, University of Delft, Martinus Nijhoff, Hague.

    Google Scholar 

  255. 255. Thomson, D.J. (1987). Criteria for the Selection of Stochastic Models of Particle Trajectories in Turbulent Flows. J. Fluid Mech., Vol. 180, pp. 529–556.

    Article  Google Scholar 

  256. 256. Tian, L., Ahmadi, G., Mazaheri, A., Hopke, P.K., and Cheng, S.-Y. (2005). Particle Deposition in 3-D Asymmetric Human Lung Bifurcations. 79th ACS Colloid and Surface Science Symposium, Clarkson University, Potsdam, NY.

    Google Scholar 

  257. Trinh, E.H. (1998). Acoustic Streaming in Microgravity: Flow Stability and Mass and Heat Transfer Enhancement. Proceeding of the Fourth Microgravity Fluid Physics and Transport Phenomena Conference, NASA Lewis, Cleveland, OH, pp. 117–118.

    Google Scholar 

  258. 258. Twomey, S. (1976). Atmospheric Aerosols, Elsevier, Amsterdam.

    Google Scholar 

  259. 259. Upchurch, G.J., Ford, J.W., Weiss, S.J., Knipp, B.S., Peterson, D.A., Thompson, R.W., Eagleton, M.J., Broady, A.J., Proctor, M.C., and Stanley, J.C. (2001). Nitric Oxide Inhibition Increases Metalloproteinase-9 Expression by Rat Aortic Smooth Muscle Cells in Vitro. J. Vasc. Surg., Vol. 34, pp. 76–83.

    Article  Google Scholar 

  260. 260. Vincent, J.H. (1995). Aerosol Science for Industrial Hygienists, Pergamon, Oxford, UK.

    Google Scholar 

  261. 261. Vink, H. and Dulling, B.R. (1996). Identification of Distinct Luminal Domains for Macromolecules, Erythrocytes, and Leukocytes within Mammalian Capillaries. Circ. Res., Vol. 79, pp. 581–589.

    Article  Google Scholar 

  262. 262. Vink, H. and Duling, B.R. (2000). Capillary Endothelial Surface Layer Selectively Reduces Plasma Solute Distribution Volume. Am. J. Physiol. Heart Circ. Physiol., Vol. 278, pp. H285–H289.

    Article  Google Scholar 

  263. 263. Wang, L.-P. and Stock, D.E. (1992). Stochastic Trajectory Models for Turbulent Diffusion: Monte-Carlo Process versus Markov Chains. Atmos. Environ., Vol. 26, pp. 1599–1607.

    Article  Google Scholar 

  264. 264. Wang, L.-P. and Stock, D.E. (1993). Dispersion of Heavy Particles by Turbulent Motion. J. Atmos. Sci., Vol. 50, pp. 1897–1913.

    Article  Google Scholar 

  265. 265. Wang, Q., Squires, K.D., Chen, M., and McLaughlin, J.B. (1994). On the Role of the Lift Force in Turbulence Simulations of Particle Deposition. Int. J. Multiphase Flow, Vol. 23, pp. 749–763.

    Article  Google Scholar 

  266. 266. Wang, Z., Hopke, P., Baron, P., Ahmadi, G., Cheng, Y., Deye, G., and Su, W.-C. (2005). Fiber Classification and the Influence of Average Air Humidity. Aerosol Sci. Technol., Vol. 39, pp. 1056–1063.

    Article  CAS  Google Scholar 

  267. 267. Weibel, E.R. (1963). Morphometry of the Human Lung, Academic Press, New York.

    Book  Google Scholar 

  268. 268. Womersley, J.R. (1975). An Elastic Tube Theory of Pulse Transmission and Oscillatory Flow in Mammalian Arteries, Wright Air Development Center, Wright-Patterson Air Force Base, OH.

    Google Scholar 

  269. 269. Wood, N.B. (1981). A Simple Method for Calculation of Turbulent Deposition to Smooth and Rough Surfaces. J. Aerosol Sci., Vol. 12, pp. 275–290.

    Article  Google Scholar 

  270. 270. Wood, N.B. (1981). The Mass Transfer of Particles and Acid Vapour to Cooled Surfaces. J. Inst. Energy, Vol. 76, pp. 76–93.

    Google Scholar 

  271. 271. Yaglom, A.M. and Kader, B.A. (1974). Heat and Mass Transfer Between a Rough Wall and Turbulent Fluid Flow at High Reynolds and Peclet Numbers. J. Fluid Mech., Vol. 62, pp. 601–623.

    Article  Google Scholar 

  272. 272. Yu, G., Zhang, Z., and Lessmann, R. (1998). Fluid Flow and Particle Diffusion in the Human Upper Respiratory System. Aerosol Sci. Technol., Vol. 2, pp. 146–158.

    Article  Google Scholar 

  273. 273. Zahmatkesh, I., Abouali, O., and Ahmadi, G. (2006). Numerical Simulation of Turbulent Airflow and Particle Deposition in Human Upper Oral Airway. FEDSM2006-98309, ASME Second Joint U.S.–European Fluids Engineering Summer Meeting, Miami, FL.

    Google Scholar 

  274. 274. Zamankhan, P., Ahmadi, G., Wang, Z., Hopke, P.K., Su, W.-C., Cheng, Y.-S., and Leonard, D., (2006). Airflow and Deposition of Nano-Particles in Human Nasal Cavity. Aerosol Sci. Technol., Vol. 40, pp. 463–476.

    Article  CAS  Google Scholar 

  275. 275. Zhang, H. and Ahmadi, G. (2000). Aerosol Particle Transport and Deposition in Vertical and Horizontal Turbulent Duct Flows. J. Fluid Mech., Vol. 406, pp. 55–80.

    Article  Google Scholar 

  276. 276. Zhang, H., Ahmadi, G., Fan, F.-G., and McLaughlin, J.B. (2001a). Ellipsoidal Particles Transport and Deposition in Turbulent Channel Flows. Int. J. Multiphase Flows, Vol. 27, pp. 971–1009.

    Article  Google Scholar 

  277. 277. Zhang, Z. and Kleinstreuer, C. (2002). Modeling of Low Reynolds Number Turbulent Flows in Locally Constricted Conduits: A Comparison Study. AIAA J., Vol. 41, pp. 831–840.

    Article  Google Scholar 

  278. 278. Zhang, Z. and Kleinstreuer, C. (2004). Airflow Structures and Nano-Particle Deposition in a Human Upper Airway Model. J. Comput. Phys., Vol. 198, pp. 178–210.

    Article  Google Scholar 

  279. 279. Zhang, Z., Kleinstreuer, C., and Kim, C.S. (2001b). Flow Structure and Particle Transport in a Triple Bifurcation Airway Model. J. Fluid Eng. Trans. ASME, Vol. 123, pp. 320–330.

    Article  Google Scholar 

  280. 280. Zhang, Z., Kleinstreuer, C., and Kim, C.S. (2002). Micro-Particle Transport and Deposition in a Human Oral Airway Model. J. Aerosol Sci., Vol. 33, pp. 1635–1652.

    Article  Google Scholar 

  281. 281. Zhang, Z., Kleinstreuer, C., Donohue, J.F., and Kim, C.S. (2005). Comparison of Micro- and Nano-Size Particle Depositions in a Human Upper Airway Model. J Aerosol Sci., Vol. 36, pp. 211–233.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The financial support of National Science Foundation as part of the Combined Research and Curriculum Development Project is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goodarz Ahmadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ahmadi, G., McLaughlin, J. (2008). Transport, Deposition and Removal of Fine Particles - Biomedical Applications. In: Matijevic, E. (eds) Medical Applications of Colloids. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76921-9_4

Download citation

Publish with us

Policies and ethics