Neuroimaging in Women

  • Margaret Semrud-ClikemanEmail author
  • Jodene Goldenring Fine
  • Jesse Bledsoe
Part of the Issues of Diversity in Clinical Neuropsychology book series (ISSUESDIV)


With the advent of new technology for imaging, studies have begun exploring differences between the genders in neuropsychology and brain structure (Cairns, Malone, Johnston, & Cammock, 1985; Gur et al., 1995; Kulynych, Vladar, Jones, & Weinberger, 1994; Schlaepfer et al., 1995; Witelson & McCulloch, 1991). Initially, the studies utilized samples of psychiatric and neurological patients, and the emphasis was on the disease rather than on gender. In other cases, most of the samples were males, and females were excluded due to concerns about reproductive safety. For this reason, many studies were helpful in understanding the male brain and physiology, but were not helpful for women. Initially, it was believed that the findings for men would map onto what was present in the female brain. Differences in metabolism, hormones, responses to medication, and structures of both heart and brain have found this assumption to be faulty (Witelson & McCulloch, 1991). For this reason,...


Multiple Sclerosis Corpus Callosum Congenital Adrenal Hyperplasia Blood Oxygen Level Dependent Brain Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alivisatos, B., & Petrides, M. (1997). Functional activation of the human brain during mental rotation. Neuropsychologia, 35, 111–118.PubMedCrossRefGoogle Scholar
  2. Armstrong, E., Schleicher, A., Omran, H., Curtis, M., & Zilles, K. (1995). The ontogeny of human gyrification. Cerebral Cortex, 5, 56–63.PubMedCrossRefGoogle Scholar
  3. Artiges, E., Martinot, J.-L., Verdys, M., Attar-Levy, D., Mazoyer, B., & Tzourio, N. (2000). Altered hemispheric functional dominance during word generation in negative schizophrenia. Schizophrenia Bulletin, 26, 709–721.PubMedGoogle Scholar
  4. Ballmaier, M., O’Brien, J. T., Burton, E. J., Thompson, P. M., Rex, D. E., Narr, K. L., et al. (2004). Comparing gray matter loss profiles between dementia with Lewy bodies and Alzheimer’s disease using cortical pattern matching: diagnosis and gender effects. NeuroImage, 23, 325–335.PubMedCrossRefGoogle Scholar
  5. Baron-Cohen, S., Ring, H., Chitnis, X., Wheelwright, S., Gregory, L., Williams, S., et al. (2006). fMRI of parents of children with Asperger Syndrome: a pilot study Brain and Cognition, 61, 122–130.PubMedCrossRefGoogle Scholar
  6. Beaumont, J. G., Kenealy, P. M., & Rogers, M. J. C. (1999). The Blackwell dictionary of neuropsychology. Malden: Blackwell Publishers.Google Scholar
  7. Borod, J. C., Koff, E., Lorch, M. P., & Nicholas, M. (1986). The expression and perception of facial emotion in brain-damaged patients. Neuropsychologia, 24, 169–180.PubMedCrossRefGoogle Scholar
  8. Bryant, N. L., Buchanan, R. W., Vladar, K., Breier, A., & Rothman, M. (1999). Gender differences in temporal lobe structures of patients with schizophrenia: a volumetric MRI study. American Journal of Psychiatry, 156, 603–609.PubMedGoogle Scholar
  9. Cairns, U., Malone, S., Johnston, J., & Cammock, T. (1985). Sex differences in children’s group embedded Figures Test performance. Personality and Individual Differences, 6, 653–654.CrossRefGoogle Scholar
  10. Callen, D. J. A., Black, S. E., Caldwell, C. B., & Grady, C. L. (2004). The influence of sex on limbic volume and perfusion in AD. Neurobiology of Aging, 25, 761–770.PubMedCrossRefGoogle Scholar
  11. Castellanos, F. X., Giedd, J. N., Berquin, P. C., Walter, J. M., Sharp, W., Tran, T., et al. (2001). Quantitative brain magnetic resonance imaging in girls with attention-deficit/hyperactivity disorder. Archives of General Psychiatry, 58, 289–295.PubMedCrossRefGoogle Scholar
  12. Castellanos, F. X., Giedd, J. N., Marsh, S. D., Hamburger, S. D., Vaituzis, A. C., Dickstein, D. P., et al. (1996). Quantitative brain magnetic resonance imaging in attention-deficit hyperactivity disorder. Archives of General Psychiatry, 53, 607–616.PubMedGoogle Scholar
  13. Caviness, V. S., Kennedy, D. N., Bates, J. F., & Makris, N. (1996). The developing human brain: a morphometric profile. In R. W. Thatcher, G. Reid Lyon, J. Rumsey, & N. A. Krasnegor (Eds.), Developmental neuroimaging: mapping the development of brain and behavior (pp. 3–14). New York: Academic Press.Google Scholar
  14. Clark, A. S., Maclusky, N. J., & Goldman-Rakic, P. S. (1988). Androgen binding and metabolism in the cerebral cortex of the developing rhesus monkey. Endocrinology, 123, 932–940.PubMedCrossRefGoogle Scholar
  15. Cohen-Bendahan, C. C. C., Buitelaar, J. K., van Goozen, S. H. M., & Cohen-Kettenis, P. T. (2004). Prenatal exposure to testosterone and functional cerebral lateralization: a study in same-sex and opposite-sex twin girls. Psychoneuroendocrinology, 29, 911–916.PubMedCrossRefGoogle Scholar
  16. Cohen, R. M., Nordahl, T. E., Semple, W. E., & Pickar, D. (1999). The brain metabolic patterns of clozapine- and fluphenazine-treated female patients with schizophrenia: evidence of a sex effect. Neuropsychopharmacology, 21, 632–640.PubMedCrossRefGoogle Scholar
  17. Collinson, S. L., Mackay, C. E., James, A. C., Quested, D. J., Phillips, T., Roberts, N., et al. (2003). Brain volume, asymmetry and intellectual impairment in relation to sex in early-onset schizophrenia. British Journal of Psychiatry, 183, 114–120.PubMedCrossRefGoogle Scholar
  18. Cowell, P. E., Turetsky, B. I., Gur, R. C., Grossman, R. I., Shtasel, D. L., & Gur, R. E. (1994). Sex differences in aging of the human frontal and temporal lobes. The Journal of Neuroscience, 14, 4748–4755.PubMedGoogle Scholar
  19. Craig, M., Cutter, W., Norbury, R., & Myrphy, D. (2004). X chromosome, estrogen, and brain development: implications for schizophrenia. In M. S. Keshavan, J. L. Kennedy, & R. M. Murray (Eds.), Neurodevelopment and schizophrenia (pp. 330–346). New York: Cambridge University Press.CrossRefGoogle Scholar
  20. Crow, T. J. (1998). Schizophrenia as a transcallosal misconnection syndrome. Schizophrenia Research, 30, 111–114.PubMedCrossRefGoogle Scholar
  21. Davatzikos, C., & Resnick, S. M. (1998). Sex differences in anatomic measures of interhemispheric connectivity: correlations with cognition in women but not men. Cerebral Cortex, 8, 635–640.PubMedCrossRefGoogle Scholar
  22. Davatzikos, C., Shen, D., Gur, R. C., Wu, X., Liu, D., Fan, Y., et al. (2005). Whole-brain morphometric study of schizophrenia revealing a spatially complex set of focal abnormalities. Archives of General Psychiatry, 62, 1218–1227.PubMedCrossRefGoogle Scholar
  23. de Bellis, M. D., Keshavan, M. S., Beers, S. R., Hall, J., Frustaci, K., Masalehdan, A., et al. (2001). Sex differences in brain maturation during childhood and adolescence. Cerebral Cortex, 11, 552–557.PubMedCrossRefGoogle Scholar
  24. DeCarli, C. (2003). Defining mild cognitive impairment: prevalence, prognosis, etiology, and treatment. Lancet Neurology, 2, 15–21.PubMedCrossRefGoogle Scholar
  25. DeCarli, C., Massaro, J., Harvey, D., Hald, J., Tullberg, M., Au, R., et al. (2005). Measures of brain morphology and infarction in the Framingham heart study: establishing what is normal. Neurobiology of Aging, 26, 491–510.PubMedCrossRefGoogle Scholar
  26. Dekaban, A. S., & Sadowsky, D. (1978). Changes in brain weights during the span of human life: relation of brain weights to body heights and body weights. Annals of Neurology, 4, 345–356.PubMedCrossRefGoogle Scholar
  27. Eberling, J. L., Wu, C., Haan, M. N., Mungas, D., Buonocore, M., & Jagust, W. J. (2003). Preliminary evidence that estrogen protects against age-related hippocampal atrophy. Neurobiology of Aging, 24, 725–732.PubMedCrossRefGoogle Scholar
  28. Edland, S. D., Xu, Y., Plevak, M., O’Brien, P., Tangalos, E. G., Petersen, R. C., et al. (2002). Total intracranial volume: normative values and lack of association with Alzheimer’s disease. Neurology, 59, 272–274.PubMedGoogle Scholar
  29. Eikelenboom, M. J., Killestein, J., Uitdehaag, B. M., & Polman, C. H. (2005). Sex differences in proinflammatory cytokine profiles of progressive patients in multiple sclerosis. Multiple Sclerosis, 11, 520–523.PubMedCrossRefGoogle Scholar
  30. Erdogan, A. R., Dane, S., Dumlu Aydin, M., Ozdikici, M., & Diyarbakirli, S. (2004). Sex and handedness differences in size of cerebral ventricles of normal subjects. International Journal of Neuroscience, 114, 67–73.PubMedCrossRefGoogle Scholar
  31. Ernst, M., Cohen, R. M., Liebenauer, L. L., Jons, P. H., & Zametkin, A. J. (1997). Cerebral glucose metabolism in adolescent girls with attention-deficit/hyperactivity disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 36, 1399–1406.PubMedCrossRefGoogle Scholar
  32. Ernst, M., Liebenauer, L. L., King, A. C., Fitzgerald, G. A., Cohen, R. M., & Zametkin, A. J. (1994). Reduced brain metabolism in hyperactive girls. Journal of the American Academy of Child and Adolescent Psychiatry, 33, 858–868.PubMedCrossRefGoogle Scholar
  33. Filipek, P. A., & Blickman, J. G. (1992). Neurodiagnostic laboratory procedures: neuroimaging techniques. In R. B. David (Ed.), Pediatric neurology for the clinician (pp. 33–56). Norwalk: Appleton-Lang.Google Scholar
  34. Filipek, P. A., Kennedy, D. N., & Caviness, V. (1992). Neuroimaging in child neuropsychology. In I. Rapin & S. J. Segalowitz (Eds.), Handbook of neuropsychology, (Vol. 6, pp. 301–329). New York: Oxford Press.Google Scholar
  35. Filipek, P. A., Semrud-Clikeman, M., Steingard, R. J., Renshaw, P. F., Kennedy, D. N., & Biederman, J. (1997). Volumetric MRI analysis comparing subjects having attention-deficit hyperactivity disorder with normal controls. Neurology, 48, 589–601.PubMedGoogle Scholar
  36. Frederikse, M. E., Lu, A., Aylward, E., Barta, P., & Pearlson, G. (1999). Sex differences in the inferior parietal lobule. Cerebral Cortex, 9, 896–901.PubMedCrossRefGoogle Scholar
  37. Frost, J. A., Binder, J. R., Springer, J. A., Hammeke, T. A., Bellgowan, P. S. F., & Rao, S. (1999). Language processing is strongly left lateralized in both sexes. Evidence from functional MRI. Brain: A Journal of Neurology, 122, 199–208.Google Scholar
  38. Giedd, J. N., Blumenthal, J. D., Jeffries, N. O., Rajapakse, J. C., Vaituzis, A. C., Liu, H., et al. (1999). Development of the human corpus callosum during childhood and adolescence: a longitudinal MRI study. Progress in Neuro-Psychopharmacolology & Biological Psychiatry, 23, 571–588.CrossRefGoogle Scholar
  39. Giedd, J. N., Castellanos, F. X., Rajapakse, J. C., Vaituzis, A. C., & Rapoport, J. L. (1997). Sexual dimorphism of the developing human brain. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 21, 1185–1201.PubMedCrossRefGoogle Scholar
  40. Giedd, J. N., Rosenthal, M. A., Rose, A. B., Blumenthal, J. D., Molloy, E., Dopp, R. R., et al. (2004). Brain development in healthy children and adolescents: magnetic resonance imaging studies. In M. S. Keshavan (Ed.), Neurodevelopment and schizophrenia (pp. 35–43). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  41. Giedd, J. N., Snell, J. W., Lange, N., Rajapakse, J. C., Casey, B. J., Kozuch, P. L., et al. (1996). Quantitative magnetic resonance imaging of human brain development: ages 4–18. Cerebral Cortex, 6, 551–560.PubMedCrossRefGoogle Scholar
  42. Goldstein, J. M., Seidman, L. J., Horton, N. J., Makris, N., Kennedy, D. N., Caviness, V. S. Jr., et al. (2001). Normal sexual dimorphism of the adult human brain assessed by in vivo magnetic resonance imaging. Cerebral Cortex, 11, 490–497.PubMedCrossRefGoogle Scholar
  43. Goldstein, J. M., Seidman, L. J., Makris, N., Ahern, T., O’Brien, L. M., Caviness, J. V. S., et al. (2007). Hypothalamic abnormalities in schizophrenia: sex effects and genetic vulnerability. Biological Psychiatry, 61, 935–945.PubMedCrossRefGoogle Scholar
  44. Goldstein, J. M., Seidman, L. J., O’Brien, L. M., Horton, N. J., Kennedy, D. N., Makris, N., et al. (2002). Impact of normal sexual dimorphisms on sex differences in structural brain abnormalities in schizophrenia assessed by magnetic resonance imaging. Archives of General Psychiatry, 59, 154–164.PubMedCrossRefGoogle Scholar
  45. Gur, R. C., Gur, R. E., O’Brist, W. D., Hungerbuhler, J. P., Younklin, D., Rosen, A. D., et al. (1982). Sex and handedness differences in cerebral blood flow during rest and cognitive activity. Science, 217, 660–662.CrossRefGoogle Scholar
  46. Gur, R.C., Sara, R., Hagendoom, M., Marom, O., Hughett, P., Macy, L., et al. (2002). A method for obtaining 3-dimensional facial expressions and its standardization for use in neuro cognitive studies. Journal of Neuroscience Methods, 115, 137–143.Google Scholar
  47. Gur, R. C., Mozley, L. H., Mozley, P. D., Resnick, S. M., Karp, J. S., Alavi, A., et al. (1995). Sex differences in regional cerebral glucose metabolism during a resting state. Science, 267, 528–531.PubMedCrossRefGoogle Scholar
  48. Gur, R. C., Mozley, P. D., Resnick, S. M., Gottlieb, G. L., Kohn, M., Zimmerman, R., et al. (1991). Gender differences in age effect on brain atrophy measured by magnetic resonance imaging. PNAS, 88, 2845–2849.PubMedCrossRefGoogle Scholar
  49. Gur, R. C., Skolnick, B. E., & Gur, R. E. (1994). Effects of emotional discrimination tasks on cerebral blood flow: regional activation and its relation to performance. Brain and Cognition, 25, 271–286.PubMedCrossRefGoogle Scholar
  50. Gur, R. E., Cowell, P. E., Latshaw, A., Turetsky, B. I., Grossman, R. I., Arnold, S. E., et al. (2000). Reduced dorsal and orbital prefrontal gray matter volumes in schizophrenia. Archives of General Psychiatry, 57, 761–768.PubMedCrossRefGoogle Scholar
  51. Gur, R. E., Turetsky, B. I., Cowell, P. E., Finkelman, C., Maany, V., Grossman, R. I., et al. (2000). Temporolimbic volume reductions in schizophrenia. Archives of General Psychiatry, 57, 769–775.PubMedCrossRefGoogle Scholar
  52. Harasty, J., Double, K. L., Halliday, G. M., Kril, J. J., & McRitchie, D. A. (1997). Language-associated cortical regions are proportionally larger in the female brain. Archives of Neurology, 54, 171–176.PubMedGoogle Scholar
  53. Hatazawa, J., Brooks, R. A., Di Chiro, G., & Campbell, G. (1987). Global cerebral glucose utilization is independent of brain size: a PET study. Journal of Comparative Assistant Tomography, 11, 571–576.CrossRefGoogle Scholar
  54. Hauser, P., Dauphinais, I. D., Berrenttini, W., DeLisi, L. E., Gelernter, J., & Post, R. M. (1989). Corpus callosum dimensions measured by magnetic resonance imaging in bipolar affective disorder and schizophrenia. Biological Psychiatry, 26, 659–668.PubMedCrossRefGoogle Scholar
  55. Hebert, L. E., Scherr, P. A., McCann, J. J., Beckett, L. A., & Evans, D. A. (2001). Is the risk of developing Alzheimer’s disease greater for women than for men? American Journal of Epidemiology, 153, 132–136.PubMedCrossRefGoogle Scholar
  56. Hebert, L. E., Wilson, R. S., Gilley, D. W., Beckett, L. A., Scherr, P. A., Bennett, D. A., et al. (2000). Decline of language among women and men with Alzheimer’s disease. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 55, P354–P361.Google Scholar
  57. Highley, J. R., Esiri, M. M., McDonald, B., Cortina-Borja, M., Herron, B. M., & Crow, T. J. (1999). The size and fibre composition of the corpus callosum with respect to gender and schizophrenia: a post-mortem study. Brain, 122, 99–110.PubMedCrossRefGoogle Scholar
  58. Huttenlocher, P. R. (1990). Morphometric study of human cerebral cortex development. Neuropsychologia, 28, 517–527.PubMedCrossRefGoogle Scholar
  59. Hynd, G. W., & Semrud-Clikeman, M. (1989). Dyslexia and brain morphology. Psychological Bulletin, 106, 447–482.PubMedCrossRefGoogle Scholar
  60. Hynd, G. W., Semrud-Clikeman, M., Lorys, A. R., Novey, E. S., & Eliopulos, D. (1990). Brain morphology in developmental dyslexia and attention deficit disorder/hyperactivity. Archives of Neurology, 47, 919–926.PubMedGoogle Scholar
  61. Jack, C. R. Jr., Dickson, D. W., Parisi, J. E., Xu, Y. C., Cha, R. H., O’ Brien, P. C., et al. (2002). Antemortem MRI findings correlate with hippocampal neuropathology in typical aging and dementia. Neurology, 58, 750–757.PubMedGoogle Scholar
  62. Jernigan, T. L., Trauner, D. A., Hesselink, J. R., & Tallal, P. A. (1991). Maturation of human cerebrum observed in vivo during adolescence. Brain, 114, 2037–2049.PubMedCrossRefGoogle Scholar
  63. Jonides, J., Smith, E. E., Koeppe, R. A., & Awh, E. (1993). Spatial working memory in humans as revealed by PET. Nature, 363, 623–625.PubMedCrossRefGoogle Scholar
  64. Juottonen, K., Laakso, M. P., Insausti, R., Lehtovirta, M., Pitkänen, A., Partanen, K., et al. (1998). Volumes of the entorhinal and perirhinal cortices in Alzheimer’s disease. Neurobiology of Aging, 19, 15–22.PubMedCrossRefGoogle Scholar
  65. Kallai, J., Csatho, A., Kover, F., Makany, T., Nemes, J., Horvath, K., et al. (2005). MRI-assessed volume of the left and right hippocampi in females correlates with the relative length of the second and fourth fingers (the 2D:4D ratio). Psychiatry Research: Neuroimaging, 140, 199–210.PubMedGoogle Scholar
  66. Kelley, D. B. (1993). Androgens and brain development: possible contributions to developmental dyslexia. In A. M. Galaburda (Ed.), Dyslexia and development: Neurobiological aspects of extra-ordinary brains (pp. 21–41). Cambridge: Harvard University Press.Google Scholar
  67. Kidron, D., Black, S. E., Stanchev, P., Buck, B., Szalai, J. P., Parker, J., et al. (1997). Quantitative MR volumetry in Alzheimer’s disease: topographic markers and the effects of sex and education. Neurology, 49, 1504–1512.PubMedGoogle Scholar
  68. Kim, J. H. Y., Ellman, A., & Juraska, J. M. (1996). A re-examination of sex differences in axon density and number in the splenium of the rat corpus callosum. Brain Research, 740, 47–57.PubMedCrossRefGoogle Scholar
  69. Kohler, C. G., Turner, T. H., Bilker, W. B., Brensinger, C. M., Siegel, S. J., Kanes, S. J., et al. (2003). Facial emotion recognition in schizophrenia: intensity effects and error pattern. American Journal of Psychiatry, 160, 1768–1774.PubMedCrossRefGoogle Scholar
  70. Kulynych, J. J., Vladar, K., Jones, D. W., & Weinberger, D. R. (1994). Gender differences in the normal lateralization of the supratemporal cortex: MRI surface-rendering morphometry of Heschl’s gyrus and the planum temporale. Cerebral Cortex, 4, 107–118.PubMedCrossRefGoogle Scholar
  71. Lindsay, J., Laurin, D., Verreault, R., Hébert, R., Helliwell, B., Hill, G. B., et al. (2002). Risk factors for Alzheimer’s disease: a prospective analysis from the Canadian Study of Health and Aging. American Journal of Epidemiology, 156, 445–453.PubMedCrossRefGoogle Scholar
  72. Loranger, A. W. (1984). Sex difference in age at onset of schizophrenia. Archives of General Psychiatry, 41, 157–161.PubMedGoogle Scholar
  73. Luna, B., & Sweeney, J. A. (2004). Cognitive development: functional magnetic resonance imaging studies. In M. S. Keshavan (Ed.), Neurodevelopment and Schizophrenia (pp. 45–68). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  74. Lyketsos, C. G., Steele, C., Galik, E., Rosenblatt, A., Steinberg, M., Warren, A., et al. (1999). Physical aggression in dementia patients and its relationship to depression. American Journal of Psychiatry, 156, 66–71.PubMedGoogle Scholar
  75. Manning, J. T. (2002). Digit ratio: a pointer to fertility, behavior, and health. New Jersey: Rutgers University Press.Google Scholar
  76. Maquet, P., Lejeune, H., Pouthas, V., Bonnet, M., Casini, L., Macar, F., et al. (1996). Brain activation induced by estimation of duration: a PET study. NeuroImage, 3, 119–126.PubMedCrossRefGoogle Scholar
  77. Matsui, M., Gur, R. C., Turetsky, B. I., Yan, M. X. H., & Gur, R. E. (2000). The relation between tendency for psychopathology and reduced frontal brain volume in healthy people. Neuropsychiatry, Neuropsychology, & Behavioral Neurology, 13, 155–162.Google Scholar
  78. McEwen, B. S. (1983). Gonadal steroid influences on brain development and sexual differentiation. In R. Greep (Ed.), Reproductive Physiology (pp. 99–145). Baltimore: University Park.Google Scholar
  79. Mesulam, M. M. (1998). From sensation to cognition. Brain: A Journal of Neurology, 121, 1013–1052.Google Scholar
  80. Moffat, S. D., Szekely, C. A., Zonderman, A. B., Kabani, N. J., & Resnick, S. M. (2000). Longitudinal change in hippocampal volume as a function of apolipoprotein E genotype. Neurology, 55, 134–136.PubMedGoogle Scholar
  81. Molina, V., Sanz, J., Sarramea, F., Misiego, J. M., Benito, C., & Palomo, T. (2005). Association between excessive frontal cerebrospinal fluid and illness duration in males but not in females with schizophrenia. European Psychiatry, 20, 332–338.PubMedCrossRefGoogle Scholar
  82. Murphy, D. G., DeCarli, C., Daly, E., Haxby, J. V., Allen, G., White, B. J., et al. (1993). X-chromosome effects on female brain: a magnetic resonance imaging study of Turner’s syndrome. Lancet, 342, 1197–1200.PubMedCrossRefGoogle Scholar
  83. Narr, K. L., Thompson, P. M., Sharma, T., Moussai, J., Cannestra, A. F., & Toga, A. W. (2000). Mapping morphology of the corpus callosum in schizophrenia. Cerebral Cortex, 10, 40–49.PubMedCrossRefGoogle Scholar
  84. Nitrini, R., Buchpiguel, C. A., Caramelli, P., Bahia, V. S., Mathias, S. C., Nascimento, C. M. R., et al. (2000). SPECT in Alzheimer’s disease: features associated with bilateral parietotemporal hypoperfusion. Acta Neurologica Scandinavica, 101, 172–176.PubMedCrossRefGoogle Scholar
  85. Nopoulos, P., Flaum, M., O’Leary, D., & Andreasen, N. C. (2000). Sexual dimorphism in the human brain: evaluation of tissue volume, tissue composition and surface anatomy using magnetic resonance imaging. Psychiatry Research: Neuroimaging, 98, 1–13.PubMedCrossRefGoogle Scholar
  86. O’Keefe, J. A., Pedersen, E. B., Castro, J. A., & Handa, R. J. (1993). The ontogeny of estrogen receptors in heterochronic hippocampal and neocortical transplants an intrinsic developmental program. Brain Research: Developmental Brain Research, 75, 105–112.PubMedCrossRefGoogle Scholar
  87. Ott, B. R., Lapane, K. L., & Gambassi, G. (2000). Gender differences in the treatment of behavior problems in Alzheimer’s disease. SAGE Study Group. Systemic Assessment of Geriatric drug use via Epidemiology. Neurology, 54, 427–432.PubMedGoogle Scholar
  88. Parellada, E., Lomena, F., Catafau, A. M., Bernardo, M., Font, M., Fernandez-Egea, E., et al. (2004). Lack of sex differences in striatal dopamine D2 receptor binding in drug-naive schizophrenic patients: an IBZM-SPECT study. Psychiatry Research: Neuroimaging, 130, 79–84.PubMedCrossRefGoogle Scholar
  89. Passe, T. J., Jajagopalan, P., Tupler, L. A., Byrum, C. E., Macfall, J. R., & Ranga Rama Krishnan, K. (1997). Age and sex effects on brain morphology. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 21, 1231–1237.PubMedCrossRefGoogle Scholar
  90. Paulsen, J. S., Salmon, D. P., Thal, L. J., Romero, R., Weisstein-Jenkins, C., Galasko, D., et al. (2000). Incidence of and risk factors for hallucinations and delusions in patients with probable AD. Neurology, 54, 1965–1971.PubMedGoogle Scholar
  91. Pfefferbaum, A., Mathalon, D. H., Sullivan, E. V., Rawles, J. M., Zipursky, R. B., & Lim, K. O. (1994). A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Archives of Neurology, 51, 874–887.PubMedGoogle Scholar
  92. Pozzilli, C., Tomassini, V., Marinelli, F., Paolillo, A., Gasperini, C., & Bastianello, S. (2003). ‘Gender gap’ in multiple sclerosis: magnetic resonance imaging evidence. European Journal of Neurology, 10, 95–97.PubMedCrossRefGoogle Scholar
  93. Raine, A., Lencz, T., Bihrle, S., LaCasse, L., & Colletti, P. (2000). Reduced prefrontal gray matter volume and reduced autonomic activity in antisocial personality disorder. Archives of General Psychiatry, 57, 119–127.PubMedCrossRefGoogle Scholar
  94. Raine, A. U., Harrison, G. N., Reynolds, G. P., Sheard, C., et al. (1990). Structural and functional characteristics of the corpus callosum in schizophrenics, psychiatric controls, and normal controls: a magnetic resonance imaging and neuropsychological evaluation. Archives of General Psychiatry, 47, 1060–1064.PubMedGoogle Scholar
  95. Raz, N., Lindenberger, U., Rodrigue, K. M., Kennedy, K. M., Head, D., Williamson, A., et al. (2005). Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cerebral Cortex, 15, 1676–1689.PubMedCrossRefGoogle Scholar
  96. Reiss, A. L., Abrams, M. T., Singer, H. S., Ross, J. L., & Denckla, M. B. (1996). Brain development, gender and IQ in children. A volumetric imaging study. Brain, 119, 1763–1774.PubMedCrossRefGoogle Scholar
  97. Rose, A. B., Merke, D. P., Clasen, L. S., Rosenthal, M. A., Wallace, G. L., Vaituzis, A. C., et al. (2004). Effects of hormones and sex chromosomes on stress-influenced regions of the developing pediatric brain. Annals of the New York Academy of Sciences, 1032, 231–233.PubMedCrossRefGoogle Scholar
  98. Ruitenberg, A., Ott, A., van Swieten, J. C., Hofman, A., & Breteler, M. M. (2001). Incidence of dementia: does gender make a difference? Neurobiology of Aging, 22, 575–580.PubMedCrossRefGoogle Scholar
  99. Salat, D., Ward, A., Kaye, J. A., & Janowsky, J. S. (1997). Sex differences in the corpus callosum with aging. Neurobiology of Aging, 18, 191–197.PubMedCrossRefGoogle Scholar
  100. Schlaepfer, T. E., Harris, G. J., Tien, A. Y., Peng, L., Lee, S., & Pearlson, G. D. (1995). Structural differences in the cerebral cortex of healthy female and male subjects: an MRI study. Psychiatry Research: Neuroimaging, 61, 129–135.PubMedCrossRefGoogle Scholar
  101. Scholten, M. R. M., Aleman, A., Montagne, B., & Kahn, R. S. (2005). Schizophrenia and processing of facial emotions: sex matters. Schizophrenia Research, 78, 61–67.PubMedGoogle Scholar
  102. Schultz, R. T., Cho, N. K., Staib, L. H., Kier, L. E., Fletcher, J. M., Shaywitz, S. E., et al. (1994). Brain morphology in normal and dyslexic children: the influence of sex and age. Annals of Neurology, 35, 732–742.PubMedCrossRefGoogle Scholar
  103. Semrud-Clikeman, M., & Pliszka, S. R. (2006). Correction: volumetric MRI differences in treatment-naïve vs chronically treated children with ADHD. Neurology, 67, 1023–1027.PubMedCrossRefGoogle Scholar
  104. Shapleske, J., Rossell, S. L., Woodruff, P. W. R., & David, A. S. (1999). The planum temporale: a systematic, quantitative review of its structural, functional and clinical significance. Brain Research Reviews, 29, 26–49.PubMedCrossRefGoogle Scholar
  105. Shaywitz, B. A., Shaywitz, S. E., Pugh, K. R., Constable, R. T., Skudlarski, P., Fulbright, R. B., et al. (1995). Sex differences in the functional organization of the brain for language. Nature, 373, 607–609.PubMedCrossRefGoogle Scholar
  106. Sholl, S. A., & Kim, K. L. (1989). Estrogen receptors in the rhesus monkey brain during fetal development. Developmental Brain Research, 50, 189–196.PubMedCrossRefGoogle Scholar
  107. Smith, R., & Studd, J. W. (1992). A pilot study of the effect upon multiple sclerosis of the menopause, hormone replacement therapy and the menstrual cycle. Journal of the Royal Society of Medicine, 85, 612–613.PubMedGoogle Scholar
  108. Sommer, I. E. C., Ramsey, N. F., Mandl, R. C. W., & Kahn, R. S. (2003). Language lateralization in female patients with schizophrenia: an fMRI study. Schizophrenia Research, 60, 183–190.PubMedCrossRefGoogle Scholar
  109. Sowell, E. R., Trauner, D. A., Gamst, A., & Jernigan, T. L. (2002). Development of cortical and subcortical brain structures in childhood and adolescence: a structural MRI study. Developmental Medicine & Child Neurology, 44, 4–16.CrossRefGoogle Scholar
  110. Stein, D. G. (2001). Brain damage, sex hormones and recovery: a new role for progesterone and estrogen? Trends in Neuroscience, 24, 386–391.CrossRefGoogle Scholar
  111. Stein, D. G., & Hoffman, S. W. (2003). Estrogen and progesterone as neuroprotective agents in the treatment of acute brain injuries. Pediatric Rehabilitation, 6, 13–22.PubMedGoogle Scholar
  112. Takahashi, T., Kawasaki, Y., Kurokawa, K., Hagino, H., Nohara, S., Yamashita, I., et al. (2002). Lack of normal structural asymmetry of the anterior cingulate gyrus in female patients with schizophrenia: a volumetric magnetic resonance imaging study. Schizophrenia Research, 55, 69–81.PubMedCrossRefGoogle Scholar
  113. Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain. 3-Dimensional proportional system: an approach to cerebral imaging. New York: Thieme Medical Publishers.Google Scholar
  114. Tomassini, V., Onesti, E., Mainero, C., Giugni, E., Paolillo, A., Salvetti, M., et al. (2005). Sex hormones modulate brain damage in multiple sclerosis: MRI evidence. Journal of Neurology, Neurosurgery, and Psychiatry, 76, 272–275.PubMedCrossRefGoogle Scholar
  115. Torre, J. de la (Ed.). (1997). Cerebrovascular pathology in Alzheimer's disease: New York: New York Academy of Sciences.Google Scholar
  116. Vadlamudi, L., Hatton, R., Byth, K., Harasty, J., Vogrin, S., Cook, M. J., et al. (2006). Volumetric analysis of a specific language region – the planum temporale. Journal of Clinical Neuroscience, 13, 206–213.PubMedCrossRefGoogle Scholar
  117. Vukusic, S., & Confavreux, C. (2006). Pregnancy and multiple sclerosis: the children of PRIMS. Clinical Neurololgy and Neurosurgery, 108, 266–270.CrossRefGoogle Scholar
  118. Walder, D. J., Seidman, L. J., Makris, N., Tsuang, M. T., Kennedy, D. N., & Goldstein, J. M. (2007). Neuroanatomic substrates of sex differences in language dysfunction in schizophrenia: a pilot study. Schizophrenia Research, 90, 295–301.PubMedCrossRefGoogle Scholar
  119. Weatherby, S. J., Mann, C. L., Davies, M. B., Fryer, A. A., Haq, N., Strange, R. C., et al. (2000). A pilot study of the relationship between gadolinium-enhancing lesions, gender effect and polymorphisms of antioxidant enzymes in multiple sclerosis. Journal of Neurology, 247, 467–470.PubMedCrossRefGoogle Scholar
  120. Wendt, P. E., & Risberg, J. (1994). Cortical activation during visual spatial processing: relation between hemispheric asymmetry of blood flow and performance. Brain and Cognition, 24, 87–103.PubMedCrossRefGoogle Scholar
  121. Westerhausen, R., Kreuder, F., Dos Santos Sequeira, S., Walter, C., Woerner, W., Arne Wittling, R., et al. (2004). Effects of handedness and gender on macro and microstructure of the corpus callosum and its subregions: a combined high-resolution and diffusion-tensor MRI study. Cognitive Brain Research, 21, 418–426.PubMedCrossRefGoogle Scholar
  122. Winstein, C. J., Grafton, S. T., & Pohl, P. S. (1997). Motor task difficulty and brain activity: investigation of goal-directed reciprocal aiming using positron emission tomography. Journal of Neurophysiology, 77, 1581–1594.PubMedGoogle Scholar
  123. Witelson, S.F. (1989). Hand and sex differences in the isthnws and gene of the human corpus callosum. Brain, 112, 799–835. Google Scholar
  124. Witelson, S. F., Glezer, I. I., & Kigar, D. L. (1995). Women have greater density of neurons in posterior temporal cortex. Journal of Neuroscience, 15, 3418–3428.PubMedGoogle Scholar
  125. Witelson, S. F., & Kigar, D. L. (1988a). Anatomical development of the corpus callosum in humans: a review with reference to sex and cognition. In D. L. Molfese & S. J. Segalowitz (Eds.), Brain lateralization in children (pp. 35–57). New York: Guilford Press.Google Scholar
  126. Witelson, S. F., & Kigar, D. L. (1988b). Aysmmetry in brain function follows asymmetry in anatomical form: gross, microscope, postmortem and imaging studies. In F. Boller & J. Grafman (Eds.), Handbook of neuropsychology (Vol. 1, pp. 111–142). Amsterdam: Elsevier Science Publishers.Google Scholar
  127. Witelson, S. F., & Kigar, D. L. (2004). Sylvian fissure morphology and asymmetry in men and women: bilateral differences in relation to handedness in men. Journal of Comparative Neurology, 323, 326–340.CrossRefGoogle Scholar
  128. Witelson, S. F., & McCulloch, P. B. (1991). Premortem and postmortem measurement to study structure with function: a human brain collection. Schizophrenia Bulletin, 17, 583–591.PubMedGoogle Scholar
  129. Witelson, S. F., & Pallie, W. (1973). Left hemisphere specialization for language in the newborn: neuroanatomical evidence of asymmetry. Brain, 96, 641–646.PubMedCrossRefGoogle Scholar
  130. Wood, S. J., De Luca, C. R., Anderson, V., & Pantelis, C. (2004). Cognitive development in adolescence: cerebral underpinnings, neural trajectories, and the impact of aberrations. In M. S. Keshavan & J. L. Kennedy (Eds.), Neurodevelopment and Schizophrenia (pp. 69–88). New York: Cambridge University Press.CrossRefGoogle Scholar
  131. World Health Organization. (1975). Schizophrenia: a multinational study. Geneva: World Health Organization.Google Scholar
  132. Wright, I. C., Rabe-Hesketh, S., Woodruff, P. W. R., David, A. S., Murray, R. M., & Bullmore, E. T. (2000). Meta-Analysis of regional brain volumes in schizophrenia. American Journal of Psychiatry, 157, 16–25.PubMedGoogle Scholar
  133. Yotsutsuji, T., Saitoh, O., Suzuki, M., Hagino, H., Mori, K., Takahashi, T., et al. (2003). Quantification of lateral ventricular subdivisions in schizophrenia by high-resolution three-dimensional magnetic resonance imaging. Psychiatry Research: Neuroimaging, 122, 1–12.PubMedCrossRefGoogle Scholar
  134. Zametkin, A. J., Liebenauer, L. L., Fitzgerald, G. A., King, A. C., Minkunas, D. V., Herscovitch, P., et al. (1993). Brain metabolism in teenagers with attention-deficit hyperactivity disorder. Archives of General Psychiatry, 50, 333–340.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Margaret Semrud-Clikeman
    • 1
    Email author
  • Jodene Goldenring Fine
  • Jesse Bledsoe
  1. 1.MSU, E. LansingUSA

Personalised recommendations