Brain Development: Evidence of Gender Differences

  • Phyllis Anne Teeter EllisonEmail author
  • Amy Nelson
Part of the Issues of Diversity in Clinical Neuropsychology book series (ISSUESDIV)

Brain development may be one of the most exciting frontiers of the neurosciences, where neuroimaging, genomics, neurobehavioral, longitudinal, and animal research are converging for remarkable discoveries. New medical technologies allowing for structural and functional magnetic imaging (fMRI) and success in mapping the human genome have advanced our understanding of typical and atypical neurodevelopment, including gender differences from infancy into adolescence and adulthood. The impact of hormonal influences is being more thoroughly explored, particularly their influences on cognitive, executive functions, and emotional behavior. The past 15 years have yielded extraordinary findings on the brain–behavior relationship and provided avenues for further exploring the gene–behavior link across genders.

In the 1990s, the “Decade of the Brain” marked one of the most ambitious undertakings of scientists from the United States. Research findings from this remarkable decade included new...


Gray Matter Corpus Callosum Brain Development Ventricular Zone Fetal Alcohol Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adam, E., Klimes-Dougan, B., & Gunnar, M. R. (2007). Social regulation of the adrenocortical response to stress in infants, children and adolescents: implications for psychopathology and education. In D. Coch, K. Fischer, & G. Dawson (Eds.), Human behavior, learning, and the developing brain (pp. 264–304). New York: Guilford Press.Google Scholar
  2. Allen, L. S., & Gorski, R. A. (1991). Sexual dimorphism of the anterior commissure and Massa intermedia of the human brain. The Journal of Comparative Neurology, 312(1), 97–104.PubMedCrossRefGoogle Scholar
  3. Aylward, G. P. (2003). Neonatology, prematurity, NICU, and developmental issues. In M. C. Roberts (Ed.), Handbook of pediatric psychology (3rd ed., pp. 253–268). New York: Guilford Press.Google Scholar
  4. Babulas, V., Factor-Litvak, P., Goetz, R., Schaefer, C. A., & Brown, A. S. (2006). Prenatal exposure to maternal genital and reproductive infections and adult schizophrenia. American Journal of Psychiatry, 163, 927–929. Google Scholar
  5. Bartley, A. J., Jones, D. W., & Weinberger, D. R. (1997). Genetic variability of human Brain size and cortical gyral patterns. Brain, 120, 257–269.PubMedCrossRefGoogle Scholar
  6. Bear, M. F., Connors, B. W., & Paradiso, M. A. (2001). Neuroscience: exploring the brain (2nd ed.). Baltimore: Lippincott Williams & Wilkins.Google Scholar
  7. Belman, A. L., Ultmann, M. H., Horoupian, D., Lantos, G., Diamond, G., Dickson, D. W., & Rubinstein, A. (19986). CNS involvement in infants and children with AIDS. Annals of Neurology, 20, 405–406.Google Scholar
  8. Berk, L. E. (1989). Child development. Boston: Allyn and Bacon.Google Scholar
  9. Blakemore, C. (2000). Achievements and challenges of the decade of the brain. EuroBrain, 2(1), 1–6.Google Scholar
  10. Brodal, P. (1992). The central nervous system: structure and function. New York: Oxford Press.Google Scholar
  11. Brown, A. S., Begg, M. D., Gravenstein, S., Schaefer, C. A., Wyatt, R. J., Bresnahan, M., Babulas, V. P., & Susser, E. S. (2004). Serologic evidence of prenatal influenza in the etiology of schizophrenia. Archives of General Psychiatry, 61, 774–780. Google Scholar
  12. Caesar, P. (1993). Old and new facts about perinatal brain development. Journal of Child Psychology and Psychiatry, 34, 101–109.CrossRefGoogle Scholar
  13. Carlson, N. R. (2005). Foundations of physiological psychology (6th ed.). Boston: Allyn and Bacon.Google Scholar
  14. Chugnani, H. T. (1996) Neuroimaging of developmental nonlinearity and developmental Pathologies. In R. Thatcher, G. Reid Lyon, J. Rumsey, & N. Krasnegor (Eds.), Developmental neuroimaging: Mapping the development of the brain and behavior (pp. 187–195). San Diego: Academic Press.Google Scholar
  15. Chugani, H. T., Phelps, M. E., & Mazziotta, J. C. (1987). Positron emission tomography study of the human brain functional development. Annals of Neurology, 22, 487–497.PubMedCrossRefGoogle Scholar
  16. Dawson, G., Grofer Klinger, L., Pangiotides, H., Hill, D., Spieker, S., & Frey, K. (1992). Infants of mothers with depressive symptoms: Electrophysiological and behavioral findings related to attachment. Development and Psychopathology, 4, 67–80.CrossRefGoogle Scholar
  17. Dean, R. S., & Davis, A. S. (2007). Relative risk of perinatal complications in common childhood disorders. School Psychology Quarterly, 22, 13–25.CrossRefGoogle Scholar
  18. De Long, G. R. (1999). Autism: new data suggest a new hypothesis. Neurology, 52, 911–916.Google Scholar
  19. Dombrowski, S. C., Noonan, K., & Martin, R. P. (2007). Low birth weight and cognitive Outcomes: Evidence for a gradient relationship in an urban, poor, African American cohort. School Psychology Quarterly, 22, 26–43.CrossRefGoogle Scholar
  20. Filipek, P. A., Richelme, C., Kennedy, D. N., & Caviness, V.S. Jr. (1994). The young adult human brain: an MRI-bases morphometric analysis. Cerebral Cortex, 4(4), 344–360.PubMedCrossRefGoogle Scholar
  21. Fischer, K. W., & Rose, S. P. (1996) Dynamic growth cycles of brain and cognitive development. In R. Thatcher, G. Reid Lyon, J. Rumsey, & N. Krasnegor (Eds.), Developmental neuroimaging: Mapping the development of the brain and behavior (pp. 263–280). San Diego: Academic Press.Google Scholar
  22. Giedd, J. A. (2004). Structural magnetic imaging of the adolescent brain. In R. E. Dahl and L. P. Spear (Eds.), Adolescent brain development: Vulnerabilities and opportunities (pp. 77–85) Annals of the New York Academy of Sciences, 1021. New York: The New York Academy of Sciences.Google Scholar
  23. Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., Paus, T., Evans, A. C., & Rapoport, J. L. (1999). Brain development during childhood and adolescence: a longitudinal MRI study. Nature Neuroscience, 2(10), 861–863.PubMedCrossRefGoogle Scholar
  24. Giedd, J. N., Snell, J. W., Lange, N., Rajapakse, J. C., Casey, B. J., Kozuch, P. L., Vaituzis, A. C., Vauss, Y. C., Hamburger, S. D., Kaysen, D., & Rapoport, J. (1996). Quantitative magnetic resonance imaging in human brain development: ages 4–18. Cerebral Cortex, 6, 551–560.PubMedCrossRefGoogle Scholar
  25. Goldstein, J., Seidman, L. J., Horton, N. J., Makris, N., Kennedy, D. N., Caviness, V. S. Jr., Faraone, S., & Tsuang, M. T. (2001). Normal sexual dimorphism of the adult human brain assessed in vivo magnetic resonance imaging. Cerebral Cortex, 11, 490–497.PubMedCrossRefGoogle Scholar
  26. Graybiel, A. M., & Saka, E. (2004). The basal ganglia and the control of action. In M. S. Gazzaniga (Ed.), The cognitive neurosciences (3rd ed., pp. 495–510). Cambridge: MIT Press.Google Scholar
  27. Gur, R. C., Gunning-Dixon, F. M., Turetsky, B. I., Bilker, W. B., & Gur, R. E. (2002). Brain region and sex differences in age association with brain volume: MRI study of healthy young adults. American Journal of Geriatric Psychiatry, 10(1), 72–80.PubMedGoogle Scholar
  28. Gur, R. C., Turetsky, B. I., Matsui, M., Yan, M., Bilker, W., Hughett, P., & Gur, R. E. (1999). Sex differences in brain gray and white matter in healthy young adults: Correlations with cognitive performance. Journal of Neuroscience, 19(10), 4065–4072. Google Scholar
  29. Harasty, J., Double, K. L., Halliday, G. M., Kril, J. J., & McRitchie, D. A. (1997). Language-associated cortical regions are proportionally larger in the female brain. Archives of Neurology, 54, 171–176.PubMedGoogle Scholar
  30. Hier, D. L. (1979). Sex differences in hemispheric specialization: hypotheses for the excess of dyslexia in boys. Annals of Dyslexia, 29(1), 74–83.Google Scholar
  31. Hirshfield-Becker, D. A., Biederman, J., Faraone, S. V., Robin, J. A., Friedman, D., Rosenthal, J. M., et al. (2004). Pregnancy complications associated with childhood disorders. Depression and Anxiety, 19, 152–162.CrossRefGoogle Scholar
  32. Huttenlocher, P. (1979). Synaptic density in human frontal cortex: developmental changes and effects of aging. Brain Research, 163, 195–205.PubMedCrossRefGoogle Scholar
  33. Huttenlocher, P. (1994). Synaptogenesis in human cerebral cortex. In G. Dawson & K. W. Fisher (Eds.), Human behavior and the developing brain (pp. 137–152). New York: Guilford Press.Google Scholar
  34. Jacobs, B. L., van Praag, H., & Gage, F. H. (2000). Adult neurogenesis and psychiatry: A novel theory of depression. Molecular Psychiatry, 5, 262–269.PubMedCrossRefGoogle Scholar
  35. Kimura, D. (1987). Are men’s and women’s brains really different? Canadian Journal of Psychology, 28, 133–147.CrossRefGoogle Scholar
  36. Kolb, B., & Fantie, B. (1989). Development of the child’s brain and behavior. In C. R. Reynolds & E. F. Jansen (Eds.), Handbook of clinical child neuropsychology (pp. 17–40). New York: Plenum Press.Google Scholar
  37. Kolb, B., & Whishaw, I. Q. (2003). Fundamentals in human neuropsychology (5th ed.). New York: Worth Publications.Google Scholar
  38. Lenroot, R. K., & Giedd, J. N. (2007). The structural development of the human brain as measured longitudinally with magnetic resonance imaging. In D. Coch, K. Fischer, & G. Dawson (Eds.), Human behavior, learning, and the developing brain (pp.50–73). New York: Guilford Press.Google Scholar
  39. Linnet, K. M., Wisborg, K., Obel, C., Secher, N. J., Thomsen, P. H., Agerbo, E., et al., (2005). Smoking during pregnancy and the risk for hyperkinetic disorder in offspring. Pediatrics, 116, 462–467.PubMedCrossRefGoogle Scholar
  40. Milberger, S. Biederman, J., Faraone, S. V., Guite, J., & Tsuang, M. T. (1997). Pregnancy, delivery and infancy complications and attention deficit hyperactivity disorder: Issues of gene-environment interaction. Biological Psychiatry, 41, 65–75.PubMedCrossRefGoogle Scholar
  41. Minkoff, H. Deepak, N., Menez, R., & Firkig, S. (1987). Pregnancies resulting in infants With acquired immunodeficiency syndrome of AIDS-related complex: follow-up of mothers, children, and subsequently born siblings. Obstetrics and Gynecology, 69, 288–291.PubMedGoogle Scholar
  42. Mirescu, C., Peters, J. D., & Gould, E. (2004). Early life experience alters response of adult neurogenesis to stress. Nature Neuroscience, 7(8), 841–846.PubMedCrossRefGoogle Scholar
  43. National Institutes of Mental Health Authors. (2007). The National Institutes of Mental Health strategic plan.
  44. Nopoulos, P., Flaum, M., O’Leary, D., & Andreason, N. C. (2000). Sexual dimorphism in the human brain: Evaluation of tissue volume, tissue composition, and surface anatomy using magnetic resonance imaging. Psychiatric Research, 98, 1–13.CrossRefGoogle Scholar
  45. Penner, J. D., & Brown, A. S. (2007). Premorbid anomalies and risk of schizophrenia and Depressive disorders in a birth cohort exposed to prenatal rubella. School Psychology Quarterly, 22, 58–73.CrossRefGoogle Scholar
  46. Pliska, S. R. (2003). Neuroscience for the mental health clinician. New York: Guilford Press.Google Scholar
  47. Purpura, D. (1974). Dendritic spine “dysgenesis” and mental retardation. Science, 20, 1126–1128. Google Scholar
  48. Rakic, P. (1990). Principles of neural cell migration. Experientia, 46, 882–891.PubMedCrossRefGoogle Scholar
  49. Rapin, I. (1999). Autism in search of a home in the brain. Neurology, 52, 902–904.PubMedGoogle Scholar
  50. Reitan, R. M., & Wolfson, D. (1985). Neuroanatomy and neuropathology: A clinical guide for neuropsychologists. Tucson: Neuropsychology Press.Google Scholar
  51. Riikonen, R., Nokelainen, P., Valkonen, K., Kolehmainen, A., Kumpulainen, K., Kononen, M., Vanninen, R., & Kuikka, J. (2005). Deep serotonergic and dopaminergic structures in fetal alcoholic syndrome: a study of nor-beta-CIT-single-photon emission tomography and magnetic resonance imaging volumetry. Biological Psychiatry, 57, 1565–1572.PubMedCrossRefGoogle Scholar
  52. Schlaeper, T. E., Harris, G. J., Tien, A. Y., Peng, L., Lee, S., & Pearlson, G. D. (1995). Structural differences in the cerebral cortex of healthy female and male subjects: A magnetic resonance imaging study. Psychiatric Research: Neuroimaging, 61, 129–135.CrossRefGoogle Scholar
  53. Shepherd, G. M. (1994). Neurobiology (3rd ed). New York: Oxford University Press.Google Scholar
  54. Sowell, E. R., Peterson, B. S., Kan, E., Woods, R. P., Yoshii, J., Bansal, R. Xu, D., Zhu, H., Thompson, P. M., & Toga, A. W. (2007). Sex differences in cortical thickness mapped in 176 healthy individuals between 7 and 87 years of age. Cerebral Cortex, 17(7), 1550–1560.Google Scholar
  55. Spear, L. P. (2007). Brain development and adolescent behavior. In D. Coch, K. Fischer, & G. Dawson (Eds.), Human behavior, learning, and the developing brain (pp. 362–396). New York: Guilford Press.Google Scholar
  56. Teeter, P. A., & Semrud-Clikeman, M. (2007). Child clinical neuropsychology: Assessment and interventions for neuropsychiatric and neurodevelopmental disorders for childhood. New York: Springer Science+Business Media, LCC.Google Scholar
  57. Waber, D.P., DeMoor, C., Forbes, P.W., Almi, C.R., Botteron, K.N., Leonard, G., Milovan, D., Paus, T., Rumsey, J., & the Brain Development Cooperation Group. (2007), The NIH study of normal brain development: Performance of a population based sample of healthy children aged 6 to 18 years on a neuropsychological battery. Journal of the International Neuropsychological Society, 13, 1–18.CrossRefGoogle Scholar
  58. Weaver, I. C., Cervoni, N., Champagne, F. A., D’Alessio, A. C., Sharma, S., Seckl, J. R., et al. (2004). Epigenetic programming of maternal behavior. Nature Neuroscience, 7(8), 847–854.PubMedCrossRefGoogle Scholar
  59. Wilkerson, D. S., Volpe, A. G., Dean, R. S., & Titus, J. B. (2002). Prenatal complications as predictors of infantile autism. International Journal of Neuroscience, 112, 1085–1109.PubMedCrossRefGoogle Scholar
  60. Witelson, S. F. (1976). Sex and the single hemisphere: right hemisphere specialization for spatial processing. Science, 193, 425–427.PubMedCrossRefGoogle Scholar
  61. Witelson, S. (1989). Hand and sex differences in the isthmus and genu of the human corpus callosum. Brain, 112, 799–835.Google Scholar
  62. Witelson, S. F. (1990). Structural correlates of cognition in the human brain. In A. B. Scheiber & A. F. Wechsler (Eds.), Neurobiology of higher cognitive function (pp. 167–184). New York: Guilford Press.Google Scholar
  63. Witelson, S. F., Glezer, I. I., & Kigar, D. L. (1995). Women have greater density of neurons in posterior temporal cortex. Brain, 112, 799–835.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.University of Wisconsin-MilwaukeeAiken

Personalised recommendations