Autoimmune Diseases, Aging and the CD4+ Lymphocyte: Why Does Insulin-Dependent Diabetes Mellitus Start in Youth, but Rheumatoid Arthritis Mostly at Older Age?

  • Jacek M. Witkowski
Part of the Medical Intelligence Unit book series (MIUN)


Autoimmune diseases still sometimes called ‘autoaggression’, result from the impaired and inappropriate reaction of the immune system to self antigens and cause cell and tissue damage and acute or chronic inflammatory processes. However, many profoundly different pathologies are collected together under the common designation ‘autoimmune diseases’. From the biogerontological viewpoint, the important point, of course, is whether any of the autoimmune diseases occurs more frequently in the elderly than in young people. It is established knowledge that the incidence of autoimmunity increases in the elderly. However, only certain defined autoimmune diseases, of which the most characteristic (and commonest) example would be rheumatoid arthritis (RA), follow this pattern. Reciprocally, other autoimmune disease with age-related prevalence, such as insulin-dependent diabetes mellitus (IDDM), are typical for children and young adults. It has to be stressed that the age-dependence of both these examples (and others) is clearly not absolute. There are many examples of RA occurring in young adults or even teenagers; in fact, some studies are describing semi-separate ‘diseases’ of juvenile rheumatoid arthritis, early onset RA and late onset RA, with the latter being the most frequent 1–7. On the other hand, IDDM is observed also in the middle-aged and elderly 8–10. This suggests that although the underlying mechanism(s) of these and other autoimmune diseases is inappropriate recognition of self, inducing pathological immune reactions, the mechanisms leading to the immune attack are different.


Rheumatoid Arthritis Human Leukocyte Antigen Glutamic Acid Decarboxylase Juvenile Rheumatoid Arthritis IDDM Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Flato B, Lien G, Smerdel A et al. Prognostic factors in juvenile rheumatoid arthritis: a case-control study revealing early predictors and outcome after 14.9 years. J Rheumatol 2003; 30:386.PubMedGoogle Scholar
  2. 2.
    Ansell BM. Juvenile rheumatoid arthritis, juvenile chronic arthritis and juvenile spondyloarthropathies. Curr Opin Rheumatol 1992; 4:706.PubMedGoogle Scholar
  3. 3.
    Tsokos GC, Inghirami G, Pillemer SR et al. Immunoregulatory aberrations in patients with polyarticular juvenile rheumatoid arthritis. Clin Immunol Immunopathol 1988; 47:62.PubMedCrossRefGoogle Scholar
  4. 4.
    Le Parc JM. [Inflammatory arthritis of the elderly]. Rev Prat 2005; 55:2115.PubMedGoogle Scholar
  5. 5.
    Calvo-Alen J, Corrales A, Sanchez-Andrada S et al. Outcome of late-onset rheumatoid arthritis. Clin Rheumatol 2005; 24:485.PubMedCrossRefGoogle Scholar
  6. 6.
    Fulop TJr, Larbi A et al. Ageing, autoimmunity and arthritis: Perturbations of TCR signal transduction pathways with ageing—a biochemical paradigm for the ageing immune system. Arthritis Res Ther 2003; 5:290.PubMedCrossRefGoogle Scholar
  7. 7.
    Mazneva LM, Vasiľeva EV, Timofeeva EB et al. [Clinico-immunological study of rheumatoid arthritis in middle-aged and elderly patients]. Ter Arkh 1987; 59:56.PubMedGoogle Scholar
  8. 8.
    Harris MI, Robbins DC. Prevalence of adult-onset IDDM in the US population. Diabetes Care 1994; 17:1337.PubMedCrossRefGoogle Scholar
  9. 9.
    Mizota M, Uchigata Y, Moriyama S et al. Age-dependent association of HLA-A24 in Japanese IDDM patients. Diabetologia 1996; 39:371.PubMedCrossRefGoogle Scholar
  10. 10.
    Sanjeevi CB, Gambelunghe G, Falorni A et al. Genetics of latent autoimmune diabetes in adults. Ann N Y Acad Sci 2002; 958:107.PubMedGoogle Scholar
  11. 11.
    Ott PA, Dittrich MT, Herzog BA et al. T-cells recognize multiple GAD65 and proinsulin epitopes in human type 1 diabetes, suggesting determinant spreading. J Clin Immunol 2004; 24:327.PubMedCrossRefGoogle Scholar
  12. 12.
    Durinovic-Bello I, Boehm BO, Ziegler AG. Predominantly recognized proinsulin T helper cell epitopes in individuals with and without islet cell autoimmunity. J Autoimmun 2002; 18:55.PubMedCrossRefGoogle Scholar
  13. 13.
    Semana G, Gausling R, Jackson RA et al. T-cell autoreactivity to proinsulin epitopes in diabetic patients and healthy subjects. J Autoimmun 1999; 12:259.PubMedCrossRefGoogle Scholar
  14. 14.
    Rudy G, Stone N, Harrison LC et al. Similar peptides from two beta cell autoantigens, proinsulin and glutamic acid decarboxylase, stimulate T-cells of individuals at risk for insulin-dependent diabetes. Mol Med 1995; 1:625.PubMedGoogle Scholar
  15. 15.
    Rathmann S, Rajasalu T, Rosinger S et al. Preproinsulin-specific CD8+ T-cells secrete IFNgamma in human type 1 diabetes. Ann NY Acad Sci 2004; 1037:22–5.:22.PubMedCrossRefGoogle Scholar
  16. 16.
    Kim SK, Tarbell KV, Sanna M et al., Prevention of type I diabetes transfer by glutamic acid decarboxylase 65 peptide 206-220-specific T-cells. Proc Natl Acad Sci USA 2004; 101:14204.PubMedCrossRefGoogle Scholar
  17. 17.
    Reijonen H, Mallone R, Heninger AK et al. GAD65-specific CD4+ T-cells with high antigen avidity are prevalent in peripheral blood of patients with type 1 diabetes. Diabetes 2004; 53:1987.PubMedCrossRefGoogle Scholar
  18. 18.
    Ou D, Metzger DL, Wang X et al. beta-cell antigen-specific CD56(+) NKT-cells from type 1 diabetic patients: autoaggressive effector T-cells damage human CD56(+) beta cells by HLA-restricted and nonHLA-restricted pathways. Hum Immunol 2002; 63:256.PubMedCrossRefGoogle Scholar
  19. 19.
    Quinn A, McInerney MF, Sercarz EE. MHC class I-restricted determinants on the glutamic acid decarboxylase 65 molecule induce spontaneous CTL activity. J Immunol 2001; 167:1748.PubMedGoogle Scholar
  20. 20.
    Ou D, Mitchell LA, Metzger DL et al. Cross-reactive rubella virus and glutamic acid decarboxylase (65 and 67) protein determinants recognised by T-cells of patients with type I diabetes mellitus. Diabetologia 2000; 43:750.PubMedCrossRefGoogle Scholar
  21. 21.
    Roep, BO. T-cell responses to autoantigens in IDDM. The search for the Holy Grail. Diabetes 1996; 45:1147.PubMedCrossRefGoogle Scholar
  22. 22.
    Petersen JS, Hejnaes KR, Moody A, et al. Detection of GAD65 antibodies in diabetes and other autoimmune diseases using a simple radioligand assay. Diabetes 1994; 43:459.PubMedCrossRefGoogle Scholar
  23. 23.
    Bottazzo GF, Bosi E, Cull CA et al. IA-2 antibody prevalence and risk assessment of early insulin requirement in subjects presenting with type 2 diabetes (UKPDS 71). Diabetologia 2005; 48:703.PubMedCrossRefGoogle Scholar
  24. 24.
    Seissler J, de Sonnaville JJ, Morgenthaler NG et al. Immunological heterogeneity in type I diabetes: presence of distinct autoantibody patterns in patients with acute onset and slowly progressive disease. Diabetologia 1998; 41:891.PubMedCrossRefGoogle Scholar
  25. 25.
    Kawasaki E, Eisenbarth GS, Wasmeier C et al. Autoantibodies to protein tyrosine phosphatase-like proteins in type I diabetes. Overlapping specificities to phogrin and ICA512/IA-2. Diabetes 1996; 45:1344.PubMedCrossRefGoogle Scholar
  26. 26.
    Aguilar-Diosdado M, Parkinson D, Corbett JA et al. Potential autoantigens in IDDM. Expression of carboxypeptidase-H and insulin but not glutamate decarboxylase on the beta-cell surface. Diabetes 1994; 43:418.PubMedCrossRefGoogle Scholar
  27. 27.
    Schloot NC, Willemen SJ, Duinkerken G et al. Molecular mimicry in type 1 diabetes mellitus revisited: T-cell clones to GAD65 peptides with sequence homology to Coxsackie or proinsulin peptides do not crossreact with homologous counterpart. Hum Immunol 2001; 62:299.PubMedCrossRefGoogle Scholar
  28. 28.
    Liu J, Purdy LE, Rabinovitch S et al. Major DQ8-restricted T-cell epitopes for human GAD65 mapped using human CD4, DQA1*0301, DQB1*0302 transgenic IA(null) NOD mice. Diabetes 1999; 48:469.PubMedCrossRefGoogle Scholar
  29. 29.
    Durinovic-Bello I, Hummel M, Ziegler AG. Cellular immune response to diverse islet cell antigens in IDDM. Diabetes 1996; 45:795.PubMedCrossRefGoogle Scholar
  30. 30.
    Hueber W, Kidd BA, Tomooka BH et al. Antigen microarray profiling of autoantibodies in rheumatoid arthritis. Arthritis Rheum 2005; 52:2645.PubMedCrossRefGoogle Scholar
  31. 31.
    Reines BP. Is rheumatoid arthritis premature osteoarthritis with fetal-like healing? Autoimmun Rev 2004; 3:305.PubMedCrossRefGoogle Scholar
  32. 32.
    Glant TT, Buzas EI, Finnegan A et al. Critical roles of glycosaminoglycan side chains of cartilage proteoglycan (aggrecan) in antigen recognition and presentation. J Immunol 1998; 160:3812.PubMedGoogle Scholar
  33. 33.
    Poole AR, Witter J, Roberts N et al. Inflammation and cartilage metabolism in rheumatoid arthritis. Studies of the blood markers hyaluronic acid, orosomucoid and keratan sulfate. Arthritis Rheum 1990; 33:790.PubMedCrossRefGoogle Scholar
  34. 34.
    Deberg M, Labasse A, Christgau S et al. New serum biochemical markers (Coll 2-1 and Coll 2-1 NO2) for studying oxidative-related type II collagen network degradation in patients with osteoarthritis and rheumatoid arthritis. Osteoarthritis Cartilage 2005; 13:258.PubMedCrossRefGoogle Scholar
  35. 35.
    Cho ML, Yoon CH, Hwang SY et al. Effector function of type II collagen-stimulated T-cells from rheumatoid arthritis patients: cross-talk between T-cells and synovial fibroblasts. Arthritis Rheum 2004; 50:776.PubMedCrossRefGoogle Scholar
  36. 36.
    Myers LK, Higgins GC, Finkel TH et al. Juvenile arthritis and autoimmunity to type II collagen. Arthritis Rheum 2001; 44:1775.PubMedCrossRefGoogle Scholar
  37. 37.
    Kotaniemi A, Isomaki H, Hakala M et al. Increased type I collagen degradation in early rheumatoid arthritis. J Rheumatol 1994; 21:1593.PubMedGoogle Scholar
  38. 38.
    Lark MW, Bayne EK, Flanagan J et al. Aggrecan degradation in human cartilage. Evidence for both matrix metalloproteinase and aggrecanase activity in normal, osteoarthritic and rheumatoid joints. J Clin Invest 1997; 100:93.PubMedCrossRefGoogle Scholar
  39. 39.
    Branca D. Calpain-related diseases. Biochem Biophys Res Commun 2004; 322:1098.PubMedCrossRefGoogle Scholar
  40. 40.
    Reverter D, Sorimachi H, Bode W. The structure of calcium-free human m-calpain: implications for calcium activation and function. Trends Cardiovasc Med 2001; 11:222.PubMedCrossRefGoogle Scholar
  41. 41.
    Huang Y, Wang KK. The calpain family and human disease. Trends Mol Med 2001; 7:355.PubMedCrossRefGoogle Scholar
  42. 42.
    Iwaki-Egawa S, Matsuno H, Yudoh K et al. High diagnostic value of anticalpastatin autoantibodies in rheumatoid arthritis detected by ELISA using human erythrocyte calpastatin as antigen. J Rheumatol 2004; 31:17.PubMedGoogle Scholar
  43. 43.
    Lackner KJ, Schlosser U, Lang B et al. Autoantibodies against human calpastatin in rheumatoid arthritis: epitope mapping and analysis of patient sera. Br J Rheumatol 1998; 37:1164.PubMedCrossRefGoogle Scholar
  44. 44.
    Menard HA, el-Amine M. The calpain-calpastatin system in rheumatoid arthritis. Immunol Today 17:545.Google Scholar
  45. 45.
    Suji G, Sivakami S. Glucose, glycation and aging. Biogerontology 2004; 5:365.PubMedCrossRefGoogle Scholar
  46. 46.
    Yan SF, Ramasamy R, Naka Y et al. Glycation, inflammation and RAGE: a scaffold for the macrovascular complications of diabetes and beyond. Circ Res 2003; 93:1159.PubMedCrossRefGoogle Scholar
  47. 47.
    Meli M, Frey J, Perier C. Native protein glycoxidation and aging. J Nutr Health Aging 2003; 7:263.PubMedGoogle Scholar
  48. 48.
    Boulanger E, Dequiedt P, Wautier JL. [Advanced glycosylation end products (AGE): new toxins?]. Nephrologie 2002; 23:351.PubMedGoogle Scholar
  49. 49.
    Drinda S, Franke S, Canet CC et al. Identification of the advanced glycation end products N(epsilon)-carboxymethyllysine in the synovial tissue of patients with rheumatoid arthritis. Ann Rheum Dis 2002; 61:488.PubMedCrossRefGoogle Scholar
  50. 50.
    Chen JR, Takahashi M, Suzuki M et al. Pentosidine in synovial fluid in osteoarthritis and rheumatoid arthritis: relationship with disease activity in rheumatoid arthritis. J Rheumatol 1998; 25:2440.PubMedGoogle Scholar
  51. 51.
    Miyata T, Ishiguro N, Yasuda Y et al. Increased pentosidine, an advanced glycation end product, in plasma and synovial fluid from patients with rheumatoid arthritis and its relation with inflammatory markers. Biochem Biophys Res Commun 1998; 244:45.PubMedCrossRefGoogle Scholar
  52. 52.
    Rodriguez-Garcia J, Requena JR, Rodriguez-Segade S. Increased concentrations of serum pentosidine in rheumatoid arthritis. Clin Chem 1998; 44:250.PubMedGoogle Scholar
  53. 53.
    Newkirk MM, Goldbach-Mansky R, Lee J et al. Advanced glycation end-product (AGE)-damaged IgG and IgM autoantibodies to IgG-AGE in patients with early synovitis. Arthritis Res Ther 2003; 5:R82–R90.PubMedCrossRefGoogle Scholar
  54. 54.
    Lucey MD, Newkirk MM, Neville C et al. Association between IgM response to IgG damage by glyoxidation and disease activity in rheumatoid arthritis. J Rheumatol 2000; 27:319.PubMedGoogle Scholar
  55. 55.
    Ligier S, Fortin PR, Newkirk MM. A new antibody in rheumatoid arthritis targeting glycated IgG: IgM anti-IgG-AGE. Br J Rheumatol 1998; 37:1307.PubMedCrossRefGoogle Scholar
  56. 56.
    Sell DR, Lapolla A, Odetti P et al. Pentosidine formation in skin correlates with severity of complications in individuals with long-standing IDDM. Diabetes 1992; 41:1286.PubMedCrossRefGoogle Scholar
  57. 57.
    Chiarelli F, MM, de, Mezzetti A et al. Advanced glycation end products in children and adolescents with diabetes: relation to glycemic control and early microvascular complications. J Pediatr 1999; 134:486.PubMedCrossRefGoogle Scholar
  58. 58.
    Berg TJ, Clausen JT, Torjesen PA et al. The advanced glycation end product Nepsilon-(carboxymethyl)lysine is increased in serum from children and adolescents with type 1 diabetes. Diabetes Care 1998; 21:1997.PubMedCrossRefGoogle Scholar
  59. 59.
    Schwarz-Benmeir N, Glasser T, Barnoy S et al. Calpastatin in erythrocytes of young and old individuals. Biochem J 1994; 304:365.PubMedGoogle Scholar
  60. 60.
    Roep BO, Hiemstra HS, Schloot NC et al. Molecular mimicry in type 1 diabetes: immune cross-reactivity between islet autoantigen and human cytomegalovirus but not Coxsackie virus. Ann N Y Acad Sci 2002; 958:163–5.:163.PubMedGoogle Scholar
  61. 61.
    Bach JM, Otto H, Jung G et al. Identification of mimicry peptides based on sequential motifs of epitopes derived from 65-kDa glutamic acid decarboxylase. Eur J Immunol 1998; 28:1902.PubMedCrossRefGoogle Scholar
  62. 62.
    Lozovksaia LS, Soboleva VD, Iakovleva AA. [Etiological connection between juvenile rheumatoid arthritis and the chronic form of coxsackie virus infection]. Vopr Virusol 1996; 41:122.PubMedGoogle Scholar
  63. 63.
    Soboleva VD, Lozovskaia LS, Mitchenko AF. [Viremia in children with rheumatoid arthritis]. Vopr Virusol 1983; 207.Google Scholar
  64. 64.
    Petrov AV. [Frequency of different infectious agents persistence in mononuclear leukocytes of blood and synovial fluid in patients with rheumatoid arthritis]. Lik Sprava 2005; 28.Google Scholar
  65. 65.
    Alvarez-Lafuente R, Fernandez-Gutierrez B, de MS et al. Potential relationship between herpes viruses and rheumatoid arthritis: analysis with quantitative real time polymerase chain reaction. Ann Rheum Dis 2005; 64:1357.PubMedCrossRefGoogle Scholar
  66. 66.
    Petrov AV, Dudar’ LV, Malyi KD. [Persistence of various infective agents in blood mononuclear leukocytes in a debut of rheumatoid arthritis]. Ter Arkh 2004; 76:32.PubMedGoogle Scholar
  67. 67.
    Mehraein Y, Lennerz C, Ehlhardt S et al. Latent Epstein-Barr virus (EBV) infection and cytomegalovirus (CMV) infection in synovial tissue of autoimmune chronic arthritis determined by RNA-and DNA-in situ hybridization. Mod Pathol 2004; 17:781.PubMedCrossRefGoogle Scholar
  68. 68.
    Awata T, Hagura R, Urakami T et al. Age-dependent HLA genetic heterogeneity of IDDM in Japanese patients. Diabetologia 1995; 38:748.PubMedCrossRefGoogle Scholar
  69. 69.
    Demaine AG, Hibberd ML, Mangles D et al. A new marker in the HLA class I region is associated with the age at onset of IDDM. Diabetologia 1995; 38:623.PubMedCrossRefGoogle Scholar
  70. 70.
    Ziegler AG, Rabl W, Albert E et al. [Insulin autoantibodies and islet cell antibodies in recently appearing diabetes mellitus type I. Association with age of manifestation and HLA phenotype]. Dtsch Med Wochenschr 1991; 116:1737.PubMedCrossRefGoogle Scholar
  71. 71.
    Watanabe I, Taneichi K, Shibaki H. [Associations of HLA-DR 4, DR 2, DRw 9 with clinical findings in rheumatoid arthritis]. Ryumachi 1989; 29:39.PubMedGoogle Scholar
  72. 72.
    Gran JT, Husby G, Thorsby E. The association between rheumatoid arthritis and the HLA antigen DR4. Ann Rheum Dis 1983; 42:292.PubMedCrossRefGoogle Scholar
  73. 73.
    Schernthaner G, Ludwig H, Eibl M et al. [HL-A system and diabetes mellitus]. Schweiz Med Wochenschr 1976; 106:514.PubMedGoogle Scholar
  74. 74.
    Caruso C, Candore G, Colonna RG et al. HLA, aging and longevity: a critical reappraisal. Hum Immunol 2000; 61:942.PubMedCrossRefGoogle Scholar
  75. 75.
    Narayanan K, Rajendran CP, Porkodi R et al. Late onset rheumatoid arthritis—a clinical and laboratory study. J Assoc Physicians India 2001; 49:311.PubMedGoogle Scholar
  76. 76.
    Yaretzky A, Feldman J, Alterman P et al. [Rheumatoid arthritis in the elderly]. Harefuah 1997; 132:10–72.PubMedGoogle Scholar
  77. 77.
    Pease CT, Bhakta BB, Devlin J et al. Does the age of onset of rheumatoid arthritis influence phenotype?: a prospective study of outcome and prognostic factors. Rheumatology (Oxford) 1999; 38:228.CrossRefGoogle Scholar
  78. 78.
    Ricci G, Colombo C, Ghiazza B et al. Association between longevity and allelic forms of human leukocyte antigens (HLA): population study of aged Italian human subjects. Arch Immunol Ther Exp (Warsz) 1998; 46:31.Google Scholar
  79. 79.
    Papasteriades C, Boki K, Pappa H et al. HLA phenotypes in healthy aged subjects. Gerontology 1997; 43:176.PubMedGoogle Scholar
  80. 80.
    Ott PA, Herzog BA, Quast S et al. Islet-cell antigen-reactive T-cells show different expansion rates and Th1/Th2 differentiation in type 1 diabetic patients and healthy controls. Clin Immunol 2005; 115:102.PubMedCrossRefGoogle Scholar
  81. 81.
    Karlsson Faresjo MG, Ernerudh J, Ludvigsson J. Cytokine profile in children during the first 3 months after the diagnosis of type 1 diabetes. Scand J Immunol 2004; 59:517.PubMedCrossRefGoogle Scholar
  82. 82.
    Kero J, Gissler M, Hemminki E et al. Could TH1 and TH2 diseases coexist? Evaluation of asthma incidence in children with coeliac disease, type 1 diabetes, or rheumatoid arthritis: a register study. J Allergy Clin Immunol 2001; 108:781.PubMedCrossRefGoogle Scholar
  83. 83.
    Azar ST, Tamim H, Beyhum HN et al. Type I (insulin-dependent) diabetes is a Th1-and Th2-mediated autoimmune disease. Clin Diagn Lab Immunol 1999; 6:306.PubMedGoogle Scholar
  84. 84.
    Kallmann BA, Huther M, Tubes M et al. Systemic bias of cytokine production toward cell-mediated immune regulation in IDDM and toward humoral immunity in Graves’ disease. Diabetes 1997; 46:237.PubMedCrossRefGoogle Scholar
  85. 85.
    Shimada A, Charlton B, Rohane P et al. Immune regulation in type 1 diabetes. J Autoimmun 1996; 9:263.PubMedCrossRefGoogle Scholar
  86. 86.
    Kidd P. Th1/Th2 balance: the hypothesis, its limitations and implications for health and disease. Altern Med Rev 2003; 8:223.PubMedGoogle Scholar
  87. 87.
    Gerli R, Bistoni O, Russano A et al. In vivo activated T-cells in rheumatoid synovitis. Analysis of Th1-and Th2-type cytokine production at clonal level in different stages of disease. Clin Exp Immunol 2002; 129:549.PubMedCrossRefGoogle Scholar
  88. 88.
    van Roon JA, Bijlsma JW, Lafeber FP. Suppression of inflammation and joint destruction in rheumatoid arthritis may require a concerted action of Th2 cytokines. Curr Opin Investig Drugs 2002; 3:1011.PubMedGoogle Scholar
  89. 89.
    Berner B, Akca D, Jung T et al. Analysis of Th1 and Th2 cytokines expressing, CD4+ and CD8+ T-cells in rheumatoid arthritis by flow cytometry. J Rheumatol 2000; 27:1128.PubMedGoogle Scholar
  90. 90.
    Verhoef CM, van Roon JA, Vianen ME et al. Lymphocyte stimulation by CD3-CD28 enables detection of low T-cell interferon-gamma and interleukin-4 production in rheumatoid arthritis. Scand J Immunol 1999; 50:427.PubMedCrossRefGoogle Scholar
  91. 91.
    van Roon JA, Verhoef CM, van Roy JL et al. Decrease in peripheral type 1 over type 2 T-cell cytokine production in patients with rheumatoid arthritis correlates with an increase in severity of disease. Ann Rheum Dis 1997; 56:656.PubMedCrossRefGoogle Scholar
  92. 92.
    Gasparoni A, Ciardelli L, Avanzini A et al. Age-related changes in intracellular TH1/TH2 cytokine production, immunoproliferative T-lymphocyte response and natural killer cell activity in newborns, children and adults. Biol Neonate 2003; 84:297.PubMedCrossRefGoogle Scholar
  93. 93.
    Gardner EM, Murasko DM. Age-related changes in Type 1 and Type 2 cytokine production in humans. Biogerontology 2002; 3:271.PubMedCrossRefGoogle Scholar
  94. 94.
    Sandmand M, Bruunsgaard H, Kemp K et al. Is ageing associated with a shift in the balance between Type 1 and Type 2 cytokines in humans? Clin Exp Immunol 2002; 127:107.PubMedCrossRefGoogle Scholar
  95. 95.
    Sakata-Kaneko S, Wakatsuki Y, Matsunaga Y et al. Altered Th1/Th2 commitment in human CD4+ T-cells with ageing. Clin Exp Immunol 2000; 120:267.PubMedCrossRefGoogle Scholar
  96. 96.
    Karanfilov CI, Liu B, Fox CC et al. Age-related defects in Th1 and Th2 cytokine production by human T-cells can be dissociated from altered frequencies of CD45RA+ and CD45RO+ T-cell subsets. Mech Ageing Dev 1999; 109:97.PubMedCrossRefGoogle Scholar
  97. 97.
    Shearer GM. Th1/Th2 changes in aging. Mech Ageing Dev 1997; 94:1.PubMedCrossRefGoogle Scholar
  98. 98.
    Kretowski A, Mysliwiec J, Turowski D et al. Analysis of recently activated, memory and naive lymphocyte T subsets in the peripheral blood of patients with Graves’ disease and insulin-dependent diabetes mellitus. Rocz Akad Med Bialymst 1999; 44:226–34:226.PubMedGoogle Scholar
  99. 99.
    Petersen LD, Duinkerken G, Bruining GJ et al. Increased numbers of in vivo activated T-cells in patients with recent onset insulin-dependent diabetes mellitus. J Autoimmun 1996; 9:731.PubMedCrossRefGoogle Scholar
  100. 100.
    Peakman M, Alviggi L, Hussain MJ et al. Increased expression of T-cell markers of immunological memory associated with protection from tupe I diabetes. A study of identical twins. Diabetes 1994; 43:712.PubMedCrossRefGoogle Scholar
  101. 101.
    Peakman M, Warnock T, Vats A et al. Lymphocyte subset abnormalities, autoantibodies and their relationship with HLA DR types in children with type 1 (insulin-dependent) diabetes and their first degree relatives. Diabetologia 1994; 37:155.PubMedCrossRefGoogle Scholar
  102. 102.
    Ilonen J, Surcel HM, Kaar ML. Abnormalities within CD4 and CD8 T-lymphocytes subsets in type 1 (insulin-dependent) diabetes. Clin Exp Immunol 1991; 85:278.PubMedGoogle Scholar
  103. 103.
    Goronzy JJ, Weyand CM. Aging autoimmunity and arthritis: T-cell senescence and contraction of T-cell repertoire diversity—catalysts of autoimmunity and chronic inflammation. Arthritis Res Ther 2003; 5:225.PubMedCrossRefGoogle Scholar
  104. 104.
    Nanki T, Lipsky PE. Cytokine, activation marker and chemokine receptor expression by individual CD4(+) memory T-cells in rheumatoid arthritis synovium. Arthritis Res 2000; 2:415.PubMedCrossRefGoogle Scholar
  105. 105.
    Nielsen H, Petersen AA, Skjodt H et al. Blood levels of CD11b+ memory T-lymphocytes are selectively upregulated in patients with active rheumatoid arthritis. APMIS 1999; 107:1124.PubMedCrossRefGoogle Scholar
  106. 106.
    Thomas R, McIlraith M, Davis LS et al. Rheumatoid synovium is enriched in CD45RBdim mature memory T-cells that are potent helpers for B-cell differentiation. Arthritis Rheum 1992; 35:1455.PubMedCrossRefGoogle Scholar
  107. 107.
    Fulop T, Larbi A, Wikby A et al. Dysregulation of T-cell function in the elderly: scientific basis and clinical implications. Drugs Aging 2005; 22:589.PubMedCrossRefGoogle Scholar
  108. 108.
    Pawelec G, Effros RB, Caruso C et al. T-cells and aging (update february 1999). Front Biosci 1999; 4:D216–69.:D216–D269.PubMedCrossRefGoogle Scholar
  109. 109.
    Wagner U, Schulze-Koops H. [T-lymphocytes—do they control rheumatic immune responses?], Z Rheumatol 2005; 64:377.PubMedCrossRefGoogle Scholar
  110. 110.
    Fournier C. Where do T-cells stand in rheumatoid arthritis? Joint Bone Spine 2005; 72:527.PubMedCrossRefGoogle Scholar
  111. 111.
    Goronzy JJ, Weyand CM. T-cell regulation in rheumatoid arthritis. Curr Opin Rheumatol 2004; 16:212.PubMedCrossRefGoogle Scholar
  112. 112.
    Weyand CM, Fulbright JW, Goronzy JJ. Immunosenescence, autoimmunity and rheumatoid arthritis. Exp Gerontol 2003; 38:833PubMedCrossRefGoogle Scholar
  113. 113.
    Koetz K, Bryl E, Spickschen K et al. T-cell homeostasis in patients with rheumatoid arthritis. Proc Natl Acad Sci USA 2000; 97:9203.PubMedCrossRefGoogle Scholar
  114. 114.
    Nervi S, tlan-Gepner C, Fossat C et al. Constitutive impaired TCR/CD3-mediated activation of T-cells in IDDM patients co-exist with normal co-stimulation pathways. J Autoimmun 1999; 13:247.PubMedCrossRefGoogle Scholar
  115. 115.
    Saretzki G, Von ZT. Replicative aging, telomeres and oxidative stress Ann NY Acad Sci 2002; 959:24.PubMedCrossRefGoogle Scholar
  116. 116.
    Malaguarnera L, Ferlito L, Imbesi RM et al. Immunosenescence: a review. Arch Gerontol Geriatr 2001; 32:1.PubMedCrossRefGoogle Scholar
  117. 117.
    Engelhardt M, Martens UM. The implication of telomerase activity and telomere stability for replicative aging and cellular immortality (Review). Oncol Rep 1998; 5:1043.PubMedGoogle Scholar
  118. 118.
    Perillo NL, Walford RL, Newman MA et al. Human T-lymphocytes possess a limited in vitro life span. Exp Gerontol 1989; 24:177.PubMedCrossRefGoogle Scholar
  119. 119.
    Schonland SO, Lopez C, Widmann T et al. Premature telomeric loss in rheumatoid arthritis is genetically determined and involves both myeloid and lymphoid cell lineages. Proc Natl Acad Sci USA 2003; 100:13471.PubMedCrossRefGoogle Scholar
  120. 120.
    Goronzy JJ, Fujii H, Weyand CM. Telomeres immune aging and autoimmunity. Exp Gerontol 2006; 41:246.PubMedCrossRefGoogle Scholar
  121. 121.
    Jeanclos E, Krolewski A, Skurnick J et al. Shortened telomere length in white blood cells of patients with IDDM. Diabetes 1998; 47:482.PubMedCrossRefGoogle Scholar
  122. 122.
    Al-Harthi L, Marchetti G, Steffens CM et al. Detection of T-cell receptor circles (TRECs) as biomarkers for de novo T-cell synthesis using a quantitative polymerase chain reaction-enzyme linked immunosorbent assay (PCR-ELISA). J Immunol Methods 2000; 237:187.PubMedCrossRefGoogle Scholar
  123. 123.
    Ye P, Kirschner DE. Measuring emigration of human thymocytes by T-cell receptor excision circles. Crit Rev Immunol 2002; 22:483.PubMedGoogle Scholar
  124. 124.
    Hazenberg MD, Verschuren MC, Hamann D et al. T-cell receptor excision circles as markers for recent thymic emigrants: basic aspects, technical approach and guidelines for interpretation. J Mol Med 2001; 79:631.PubMedCrossRefGoogle Scholar
  125. 125.
    McFarland RD, Douek DC, Koup RA et al. Identification of a human recent thymic emigrant phenotype. Proc Natl Acad Sci USA 2000; 97:4215.PubMedCrossRefGoogle Scholar
  126. 126.
    van den Dool C, de Boer RJ. The effects of age, thymectomy and HIV Infection on alpha and beta TCR excision circles in naive T-cells. J Immunol 2006; 177:4391.PubMedGoogle Scholar
  127. 127.
    Nasi M, Troiano L, Lugli E et al. Thymic output and functionality of the IL-7/IL-7 receptor system in centenarians: implications for the neolymphogenesis at the limit of human life. Aging Cell 2006; 5:167.PubMedCrossRefGoogle Scholar
  128. 128.
    Naylor K, Li G, Vallejo AN et al. The influence of age on T-cell generation and TCR diversity. J Immunol 2005; 174:7446.PubMedGoogle Scholar
  129. 129.
    Nobile M, Correa R, Borghans JA et al. De novo T-cell generation in patients at different ages and stages of HIV-1 disease. Blood 2004; 104:470.PubMedCrossRefGoogle Scholar
  130. 130.
    Thewissen M, Linsen L, Somers V et al. Premature immunosenescence in rheumatoid arthritis and multiple sclerosis patients. Ann NY Acad Sci 2005; 1051:255–62.:255.PubMedCrossRefGoogle Scholar
  131. 131.
    Ponchel F, Morgan AW, Bingham SJ et al. Dysregulated lymphocyte proliferation and differentiation in patients with rheumatoid arthritis. Blood 2002; 100:4550.PubMedCrossRefGoogle Scholar
  132. 132.
    Koetz K, Bryl E, Spickschen K et al. T-cell homeostasis in patients with rheumatoid arthritis. Proc Natl Acad Sci USA 2000; 97:9203.PubMedCrossRefGoogle Scholar
  133. 133.
    Ramanathan S, Norwich K, Poussier P. Antigen activation rescues recent thymic emigrants from programmed cell death in the BB rat. J Immunol 1998; 160:5757.PubMedGoogle Scholar
  134. 134.
    Zadeh HH Greiner DL, Wu DY et al. Abnormalities in the export and fate of recent thymic emigrants in diabetes-prone BB/W rats. Autoimmunity 1996; 24:35.PubMedCrossRefGoogle Scholar
  135. 135.
    Effros RB. Loss of CD28 expression on T-lymphocytes: a marker of replicative senescence. Dev Comp Immunol 1997; 21:471.PubMedCrossRefGoogle Scholar
  136. 136.
    Vallejo AN, Weyand CM, Goronzy JJ. Functional disruption of the CD28 gene transcriptional initiator in senescent T-cells. J Biol Chem 2001; 276:2565.PubMedCrossRefGoogle Scholar
  137. 137.
    Vallejo AN, Brandes JC, Weyand CM et al. Modulation of CD28 expression: distinct regulatory pathways during activation and replicative senescence. J Immunol 1999; 162:6572.PubMedGoogle Scholar
  138. 138.
    Vallejo AN, Nestel AR, Schirmer M et al. Aging-related deficiency of CD28 expression in CD4+ T-cells is associated with the loss of gene-specific nuclear factor binding activity. J Biol Chem 1998; 273:8119.PubMedCrossRefGoogle Scholar
  139. 139.
    Bryl E, Vallejo AN, Matteson EL et al. Modulation of CD28 expression with anti-tumor necrosis factor alpha therapy in rheumatoid arthritis. Arthritis Rheum 2005; 52:2996.PubMedCrossRefGoogle Scholar
  140. 140.
    Lewis DE, Merched-Sauvage M, Goronzy JJ et al. Tumor necrosis factor-alpha and CD80 modulate CD28 expression through a similar mechanism of T-cell receptor-independent inhibition of transcription. J Biol Chem 2004; 279:29130.PubMedCrossRefGoogle Scholar
  141. 141.
    Bryl E, Vallejo AN, Weyand CM et al. Down-regulation of CD28 expression by TNF-alpha. J Immunol 2001; 167:3231.PubMedGoogle Scholar
  142. 142.
    Namekawa T, Wagner UG, Goronzy JJ et al. Functional subsets of CD4 T-cells in rheumatoid synovitis. Arthritis Rheum 1998; 41:2108.PubMedCrossRefGoogle Scholar
  143. 143.
    Weyand CM, Klimiuk PA, Goronzy JJ. Heterogeneity of rheumatoid arthritis: from phenotypes to genotypes. Springer Semin Immunopathol 1998; 20:5.PubMedCrossRefGoogle Scholar
  144. 144.
    Martens PB, Goronzy JJ, Schaid D et al. Expansion of unusual CD4+ T-cells in severe rheumatoid arthritis. Arthritis Rheum 1997; 40:1106.PubMedCrossRefGoogle Scholar
  145. 145.
    Bryl E, Witkowski JM. Decreased proliferative capability of CD4(+) cells of elderly people is associated with faster loss of activation-related antigens and accumulation of regulatory T-cells. Exp Gerontol 2004; 39:587.PubMedCrossRefGoogle Scholar
  146. 146.
    Vallejo AN, Bryl E, Klarskov K et al. Molecular basis for the loss of CD28 expression in senescent T-cells. J Biol Chem 2002; 277:46940.PubMedCrossRefGoogle Scholar
  147. 147.
    Witkowski JM, Bryl E. Paradoxical age-related cell cycle quickening of human CD4(+) lymphocytes: a role for cyclin D1 and calpain. Exp Gerontol 2004; 39:577.PubMedCrossRefGoogle Scholar
  148. 148.
    Rink L, Cakman I, Kirchner H. Altered cytokine production in the elderly. Mech Ageing Dev 1998; 102:199.PubMedCrossRefGoogle Scholar
  149. 149.
    Prelog M. Aging of the immune system: a risk factor for autoimmunity? Autoimmun Rev 2006; 5:136.PubMedCrossRefGoogle Scholar
  150. 150.
    Boren E, Gershwin ME. Inflamm-aging: autoimmunity and the immune-risk phenotype. Autoimmun Rev 2004; 3:401.PubMedCrossRefGoogle Scholar
  151. 151.
    Vallejo AN, Weyand CM, Goronzy JJ. T-cell senescence: a culprit of immune abnormalities in chronic inflammation and persistent infection, Trends Mol Med 2004; 10:119.PubMedCrossRefGoogle Scholar
  152. 152.
    Tsutsumi Y, Jie X, Ihara K et al. Phenotypic and genetic analyses of T-cell-mediated immunoregulation in patients with Type 1 diabetes. Diabet Med 2006; 23:1145.PubMedCrossRefGoogle Scholar
  153. 153.
    Yang Z, Zhou Z, Huang G et al. The CD4(+) regulatory T-cells is decreased in adults with latent autoimmune diabetes. Diabetes Res Clin Pract 2006.Google Scholar
  154. 154.
    Bisikirska BC, Herold KC. Regulatory T-cells and type 1 diabetes. Curr Diab Rep 2005; 5:104.PubMedCrossRefGoogle Scholar
  155. 155.
    Juedes AE, von Herrath MG. Regulatory T-cells in type 1 diabetes. Diabetes Metab Res Rev 2004; 20:446.PubMedCrossRefGoogle Scholar
  156. 156.
    Homann D, von HM. Regulatory T-cells and type 1 diabetes. Clin Immunol 2004; 112:202.PubMedCrossRefGoogle Scholar
  157. 157.
    Arreaza GA, Sharif S, Cameron MJ et al. Role of regulatory T-cells in the pathogenesis of autoimmune diabetes. Cur Dir Autoimmun 2001; 4:308–32.:308.CrossRefGoogle Scholar
  158. 158.
    Minami R, Sakai K, Miyamura T et al. [The role of CD4+CD25+ regulatory T-cells in patients with Rheumatoid Arthritis]. Nihon Rinsho Meneki Gakkai Kaishi 2006; 29:37.PubMedGoogle Scholar
  159. 159.
    Ruprecht CR, Gattorno M, Ferlito F et al. Coexpression of CD25 and CD27 identifies FoxP3+ regulatory T-cells in inflamed synovia. J Exp Med 2005; 201:1793.PubMedCrossRefGoogle Scholar
  160. 160.
    Leipe J, Skapenko A, Lipsky PE et al. Regulatory T-cells in rheumatoid arthritis. Arthritis Res Ther 2005; 7:93.PubMedCrossRefGoogle Scholar
  161. 161.
    Mottonen M, Heikkinen J, Mustonen L et al. CD4+ CD25+ T-cells with the phenotypic and functional characteristics of regulatory T-cells are enriched in the synovial fluid of patients with rheumatoid arthritis. Clin Exp Immunol 2005; 140:360.PubMedCrossRefGoogle Scholar
  162. 162.
    Trzonkowski P, Szmit E, Mysliwska J et al. CD4+CD25+ T regulatory cells inhibit cytotoxic activity of CTL and NK cells in humans-impact of immunosenescence Clin Immunol 2006; 119:307.PubMedCrossRefGoogle Scholar
  163. 163.
    Goronzy JJ, Weyand CM. T-cell development and receptor diversity during aging. Curr Opin Immunol 2005; 17:468.PubMedGoogle Scholar
  164. 164.
    Manfras BJ, Claudi-Boehm S, Kreienberg R et al. T-cell receptor repertoire and function in umbilical cord blood lymphocytes from newborns of type 1 diabetic mothers. Acta Diabetol 2004; 41:167.PubMedCrossRefGoogle Scholar
  165. 165.
    Luppi P, Zanone MM, Hyoty H, et al. Restricted TCR V beta gene expression and enterovirus infection in type I diabetes: a pilot study. Diabetologia 2000; 43:1484.PubMedCrossRefGoogle Scholar
  166. 166.
    Santamaria P, Lewis C, Jessurun J et al. Skewed T-cell receptor usage and junctional heterogeneity among isletitis alpha beta and gamma delta T-cells in human IDDM [corrected]. Diabetes 1994; 43:599.PubMedCrossRefGoogle Scholar
  167. 167.
    Malhotra U, Spielman R, Concannon P. Variability in T-cell receptor V beta gene usage in human peripheral blood lymphocytes. Studies of identical twins, siblings and insulin-dependent diabetes mellitus patients. J Immunol 1992; 149:1802.PubMedGoogle Scholar
  168. 168.
    Yudoh K, Matsuno H, Kimura T. [Relationship between periarticular osteoporosis and osteoblast senescence in patients with rheumatoid arthritis]. Clin Calcium 2001; 11:612.PubMedGoogle Scholar
  169. 169.
    Yudoh K, Matsuno H, Osada R et al. Decreased cellular activity and replicative capacity of osteoblastic cells isolated from the periarticular bone of rheumatoid arthritis patients compared with osteoarthritis patients. Arthritis Rheum 2000; 43:2178.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2007

Authors and Affiliations

  • Jacek M. Witkowski
    • 1
  1. 1.Department of PathophysiologyMedical University of GdanskPoland

Personalised recommendations