Advertisement

Fuzzy Outranking Methods: Recent Developments

  • Ahmed Bufardi
  • Razvan Gheorghe
  • Paul Xirouchakis
Part of the Springer Optimization and Its Applications book series (SOIA, volume 16)

Abstract

The main objective of this chapter is to account for the most recent developments related to fuzzy outranking methods with a particular focus on the fuzzy outranking method developed by the authors. The valued outranking methods PROMETHEE and ELECTRE III, which are the outranking methods the most used for application in real-life multi-criteria decision aid problems, are also presented. The description of the general outranking approach is provided.

Key words

Outranking method fuzzy outranking relation pair-wise comparison multicriteria decision aid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Rashdan, D., Al-Kloub, B., Dean, A., and Al-Shemeri, T., 1999, Environmental impact assessment and ranking the environmental projects in Jordan, European Journal of Operational Research, 118: 30-45.CrossRefGoogle Scholar
  2. Anagnostopoulos, K., Giannoupoulo, M., and Roukounis, Y., 2003, Multicriteria evaluation of transportation infrastructure projects: An application of PROMETHEE and GAIA methods, Advanced Transportation, 14: 599-608.Google Scholar
  3. Augusto, M., Figueira, J., Lisboa, J., and Yasin, M., 2005, An application of a multi-criteria approach to assessing the performance of Portugal’s economic sectors: Methodology, analysis and implications, European Business Review, 17: 113-132.CrossRefGoogle Scholar
  4. Babic, Z., and Plazibat, N., 1998, Ranking of enterprises based on multicriterial analysis, International Journal of Production Economics, 56-57: 29-35.Google Scholar
  5. Beccali, M., Cellura, M., and Ardente, D., 1998, Decision making in energy planning: the ELECTRE multicriteria analysis approach compared to a fuzzy sets methodology, Energy Conversion and Management, 39: 1869-1881.CrossRefGoogle Scholar
  6. Brans, J.-P., and Vincke, Ph., 1985, A preference ranking organization method, Management Sciences, 31: 647-656.zbMATHCrossRefMathSciNetGoogle Scholar
  7. Bufardi, A., Gheorghe, R., Kiritsis, D., and Xirouchakis, P., 2004, A multicriteria decision-aid approach for product end-of-life alternative selection, International Journal of Production Research, 42: 3139-3157.CrossRefGoogle Scholar
  8. Chanas, S., 1987, Fuzzy optimization in networks, in: Optimization Models Using Fuzzy Sets and Possibility Theory, Kacprzyk, J., and Orlovski, S.A., (eds.), pp. 308-327, Reidel, Dordrecht.Google Scholar
  9. Cote, G., and Waaub, J.-P., 2000, Evaluation of road project impacts: Using the multicriteria decision aid, Cahiers de Geographie du Quebec, 44: 43-64.Google Scholar
  10. CzyĪak, P., and SáowiĔski, R., 1996, Possibilistic construction of fuzzy outranking relation for multiple-criteria ranking, Fuzzy Sets Systems, 81: 123-131.CrossRefGoogle Scholar
  11. Dubois, D., and Prade, H., 1988, Possibility Theory: An Approach to Computerised Processing of Uncertainty, Plenum Press, New York.Google Scholar
  12. Duckstein, L., Treichel, W., and El Magnouni, A., 1994, Ranking ground-water management alternatives by multicriterion analysis, ASCE, Journal of Water Resources Planning And Management, 120: 546-565.CrossRefGoogle Scholar
  13. Elevli, B., and Demirci, A., 2004, Multicriteria choice of ore transport system for an underground mine: Application of PROMETHEE methods, Journal of the South African Institute of Mining and Metallurgy, 104: 251-256.Google Scholar
  14. Fodor, J., and Roubens, M., 1994, Fuzzy Preference Modeling and Multicriteria Decision Support, Kluwer, Dordrecht.Google Scholar
  15. Fortemps, Ph., and Roubens, M., 1996, Ranking and defuzzification methods based on area compensation, Fuzzy Sets Systems, 82: 319-330.zbMATHCrossRefMathSciNetGoogle Scholar
  16. Geldermann, J., Spengler, T., and Rentz, O., 2000, Fuzzy outranking for environmental assessment. Case study: iron and steel making industry, Fuzzy Sets Systems, 115: 45-65.zbMATHCrossRefGoogle Scholar
  17. Gheorghe, R., 2005, A new fuzzy multicriteria decision aid method for conceptual design, PhD thesis, EPF Lausanne.Google Scholar
  18. Gheorghe, R., Bufardi, A., and Xirouchakis, P., 2004, Construction of a two-parameters outranking relation from fuzzy evaluations, Fuzzy Sets Systems, 143: 391-412.zbMATHCrossRefMathSciNetGoogle Scholar
  19. Gheorghe, R., Bufardi, A., and Xirouchakis, P., 2005, Construction of global fuzzy preference structures from two-parameter single-criterion fuzzy outranking relations, Fuzzy Sets Systems, 153: 303-330.zbMATHMathSciNetGoogle Scholar
  20. Gheorghe, R., and Xirouchakis, P., 2006, Decision-based methods for early phase sustainable product design, International Journal of Engineering Education, in press.Google Scholar
  21. Gilliams, S., Raymaekers, D., Muys, B., and Van Orshoven, J., 2005, Comparing multiple criteria decision methods to extend a geographical information system on afforestation, Computers and Electronics in Agriculture, 49: 142-158.CrossRefGoogle Scholar
  22. Goedkoop, M., and Spriensma, R., 2000, The Eco-indicator 99—A damage oriented method for Life Cycle Impact Assessment, Methodology Report, 2nd edition, Pre Consultantsbu, Amersfoort, The Netherlands.Google Scholar
  23. Goumas, M., and Lygerou, V., 2000, An extension of the PROMETHEE method for decision making in fuzzy environment: Ranking of alternative energy exploitation projects, European Journal of Operational Research, 123: 606-613.zbMATHCrossRefGoogle Scholar
  24. Grabisch, M., 1999, Fuzzy Measures and Integrals: Theory and Applications, Physica-Verlag, Heidelberg.Google Scholar
  25. Güngör, Z., and Arikan, F., 2000, A fuzzy outranking method in energy policy planning, Fuzzy Sets Systems, 114: 115-122.zbMATHCrossRefGoogle Scholar
  26. Hababou, M., and Martel, J.-M., 1998, Multicriteria approach for selecting portfolio manager, INFOR Journal, 36: 161-176.Google Scholar
  27. Hokkanen, J., and Salminen, P., 1994, Choice of a solid waste management system by using the ELECTRE III method, in Applying MCDA for Environmental Management, Paruccini, M., (ed.), Kluwer Academic Publishers, Dordrecht.Google Scholar
  28. Hokkanen, J., and Salminen, P., 1997, ELECTRE III and IV decision aids in an environmental problem, Journal of Multi-Criteria Decision Analysis, 6: 215-226.zbMATHCrossRefGoogle Scholar
  29. Kalogeras, N., Baourakis, G., Zopounidis, C., and van Dijk, G., 2005, Evaluating the financial performance of agri-food firms: a multicriteria decision-aid approach, Journal of Food Engineering, 70: 365-371.CrossRefGoogle Scholar
  30. Kangas, A., Kangas, J., and Pykäläinen, J., 2001, Outranking methods as tools in strategic natural resources planning, Silva Fennica, 35: 215-227.Google Scholar
  31. Karagiannidis, A., and Moussiopoulos, N., 1997, Application of ELECTRE III for the integrated management of municipal solid wastes in the Greater Athens Area, European Journal of Operational Research, 97: 439-449.zbMATHCrossRefGoogle Scholar
  32. Le Téno, J.F., and Mareschal, B., 1998, An interval version of PROMETHEE for the comparison of building product’s design with ill-defined data on environmental quality, European Journal of Operational Research, 109: 522-529.zbMATHCrossRefGoogle Scholar
  33. Leclercq, J.-P., 1984, Propositions d’extension de la notion de dominance en presence de relations deordre sur les pseudo-criteres: Melchior, Revue Belge de Recherche Operationnelle de Statistique et de lnformatique, 24(1): 32-46.zbMATHGoogle Scholar
  34. Liou, T.S., and Wang, M.J., 1992, Ranking fuzzy numbers with integral value, Fuzzy Sets Systems, 50: 247-255.CrossRefMathSciNetGoogle Scholar
  35. Marichal, J.-L., 1999, Aggregation operators for multicriteria decision aid, PhD thesis, Université de Liège.Google Scholar
  36. Matarazzo, B., 1986, Multicriterion analysis of preferences by means of pairwise actions and criterion comparisons (MAPPACC), Applied Mathematics and Computation, 18(2): 119-141.zbMATHCrossRefMathSciNetGoogle Scholar
  37. Matarazzo, B., and Munda, G., 2001, New approaches for the comparison of L-R fuzzy numbers: A theoretical and operational analysis, Fuzzy Sets Systems, 118: 407-418.zbMATHCrossRefMathSciNetGoogle Scholar
  38. Mavrotas, G., Diakoulaki, D., and Caloghirou, Y., 2006, Project prioritization under policy restrictions: A combination of MCDA with 0-1 programming, European Journal of Operational Research, 171: 296-308.zbMATHCrossRefMathSciNetGoogle Scholar
  39. Maystre, L., Pictet, J.,and Simos, J.,1994, Méthodes Multicritères ELECTRE. Description, Conseils Pratiques Et Cas‘Application A Gestion Environementale, Presses Polytechniques et universitaires Romandes, Lausanne.Google Scholar
  40. Nakamura, K., 1986, Preference relations on a set of fuzzy utilities as a basis for decision making, Fuzzy Sets Systems, 20: 147-162.zbMATHCrossRefGoogle Scholar
  41. Orlovsky, S.A., 1978, Decision-making with a fuzzy preference relation, Fuzzy Sets Systems, 1: 155-167.zbMATHCrossRefMathSciNetGoogle Scholar
  42. Paelinck, J., 1978, Qualiflex, a flexible multiple-criteria method, Economic letters, 3: 193-197CrossRefGoogle Scholar
  43. Pasche, C., 1991, EXTRA: An expert system for multicriteria decision making, European Journal of Operational Research, 52: 224-234.zbMATHCrossRefGoogle Scholar
  44. Pastijn, H., and Leysen, J., 1989, Constructing an outranking relation with ORESTE, Mathematical and Computer Modelling, 12(10-11): 1255-1268CrossRefGoogle Scholar
  45. Perny, P., 1992, Modélisation, agrégation et exploitation de préférences floues dans une problématique de rangement, PhD thesis, Université Paris-Dauphine.Google Scholar
  46. Perny, P., and Roy, B., 1992, Fuzzy outranking relations in preference modeling, Fuzzy Sets Systems, 49: 33-53.zbMATHCrossRefMathSciNetGoogle Scholar
  47. Petras, J.C.E., 1997, Ranking the sites for low- and intermediate-level radioactive waste disposal facilities in Croatia, International Transactions in Operational Research, 4: 135-159.Google Scholar
  48. Rogers, M., and Bruen, M., 1998, Choosing realistic values of indifference, preference and veto thresholds for use with environmental criteria within ELECTRE, European Journal of Operational Research, 107: 542-551.zbMATHCrossRefGoogle Scholar
  49. Rogers, M., and Bruen, M., 2000, Using ELECTRE III to choose route for Dublin Port Motorway, Journal of Transportation Engineering, 126: 313-323.CrossRefGoogle Scholar
  50. Roubens, M., 1982, Preference Relations on Actions and Criteria in Multicriteria Decision Making, European Journal of Operational Research, 10: 51-55.zbMATHCrossRefMathSciNetGoogle Scholar
  51. Roubens, M., 1989, Some properties of choice functions based on valued binary relations, European Journal of Operational Research, 40: 309-321.zbMATHCrossRefMathSciNetGoogle Scholar
  52. Roy, B., 1968, Classement et choix en présence de points de vue multiples (la méthode ELECTRE), R.I.R.O., 8: 57-75.Google Scholar
  53. Roy, B., and Bertier, P., 1973, La méthode ELECTRE II - Une application au media-planning, M. Ross (Ed.), OR 72, 291-302, North Holland, Amsterdam.Google Scholar
  54. Roy, B., 1974, Critères multiples et modélisation des préférences : l’apport des relations de surclassement, Revue d’Economie Politique, 1: 1-44.Google Scholar
  55. Roy, B., 1977, Partial preference analysis and decision-aid: The fuzzy outranking relation concept, in Conflicting Objectives in Decisions, Bell, D.E., Keeney, R. L., and Raiffa, H. (eds.), pp. 40-75, John Wiley and Sons, New York.Google Scholar
  56. Roy, B., 1978, ELECTRE III: algorithme de classement basé sur une représentation floue des préférences en présence des critères multiples, Cahiers du CERO, 20: 3-24.zbMATHGoogle Scholar
  57. Roy, B., and Hugonnard, J.C., 1982, Ranking of suburban line extension projects on the Paris metro system by a multicriteria method, Transportation Research Part A: General, 16(4): 301-312CrossRefGoogle Scholar
  58. Roy, B., 1991, The outranking approach and the foundations of ELECTRE methods, Theory and Decisions, 31: 49-73.CrossRefGoogle Scholar
  59. Roy, B., Présent, M., and Silhol, D., 1986, A programming method for determining which Paris Metro stations should be renovated, European Journal of Operational Research, 24: 318-334.CrossRefGoogle Scholar
  60. Siskos, J., 1982, A way to deal with fuzzy preferences in multi-criteria decision problems, European Journal of Operational Research, 10: 314-324.zbMATHCrossRefGoogle Scholar
  61. Siskos, J., Lochard, J., and Lombard, J., 1984, A multicriteria decision making methodology under fuzziness: application to the evaluation of radiological protection in nuclear power plant, in: TIMS/Studies in the Management Sciences, H. J. Zimmermann, ed., pp. 261-283, North-Holland, Amsterdam.Google Scholar
  62. Smol-ková, R., and Wachowiak, M. P., 2002, Aggregation operators for selection problems, Fuzzy Sets Systems, 131: 23-34.CrossRefGoogle Scholar
  63. Teng, G.-Y., and Tzeng, G.-H., 1994, Multicriteria evaluation for strategies of improving and controlling air quality in the super city: A case study of Taipei city, Journal of Environmental Management, 40: 213-229.CrossRefGoogle Scholar
  64. Tseng, T.Y., and Klein, C.M., 1989, New algorithm for the ranking procedure in fuzzy decision making, IEEE Transactions On Systems, Man, And Cybernetics, 19: 1289-1296.CrossRefMathSciNetGoogle Scholar
  65. Tzeng, G.-H., and Tsaur, S.-H., 1997, Application of multiple criteria decision making for network improvement, Journal of Advanced Transportation, 31: 49-74.CrossRefGoogle Scholar
  66. Vincke, Ph., 1992a, Multicriteria Decision-Aid, John Wiley and Sons, Chichester.Google Scholar
  67. Vincke, Ph., 1992b, Exploitation of a crisp relation in a ranking problem, Theory and Decision, 32: 221-240.zbMATHCrossRefMathSciNetGoogle Scholar
  68. Wang, J., 1997, A fuzzy outranking method for conceptual design evaluation, International Journal of Production Research, 35: 995-1010.zbMATHCrossRefGoogle Scholar
  69. Wang, J., 1999, Fuzzy outranking approach to prioritize design requirements in quality function deployment, International Journal of Production Research, 37: 899-916.zbMATHCrossRefGoogle Scholar
  70. Wang, J., 2001, Ranking engineering design concepts using a fuzzy outranking preference model, Fuzzy Sets Systems, 119: 161-170.CrossRefGoogle Scholar
  71. Vansnick, J.-C., 1986, On the problem of weights in multiple criteria decision making (the noncompensatory approach), European Journal of Operational Research, 24(2): 288-294.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Ahmed Bufardi
    • 1
  • Razvan Gheorghe
    • 1
  • Paul Xirouchakis
    • 1
  1. 1.Institute of Production and RoboticsEcole Polytechnique Fédérale de Lausanne (EPFL)Switzerland

Personalised recommendations